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ABSTRACT
In domains such as Human-Robot Collaboration artificial agents
must be able to support mutual adaptation and learning. Towards
this direction, we use a discrete Soft Actor-Critic agent on a real-
time collaborative game with humans. We examine how different
allocations of on-line and off-line gradient updates impact the game
performance and the total training time. Our results suggest that
early allocation of a high number of off-line g/u can accelerate
learning while shortening training duration.

CCS CONCEPTS
• Human-centered computing → Collaborative interaction;
• Computing methodologies→ Reinforcement learning.
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1 INTRODUCTION
Collaborative robots (cobots) are expected to share a common
workspace with humans and collaborate with them in industrial
work-floors [9, 11], rehabilitation set-ups [3] and many other en-
vironments. A crucial robot capability during collaboration is to
support mutual learning and adaptation [2]. Deep Reinforcement
Learning (RL) methods have recently presented very promising
results in real-world learning problems [7], including in Human-
Robot Collaboration scenarios [10]. Such frameworks provide the
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opportunity to study real-time how mutual learning and adapta-
tion between humans and (embodied) Artificial Intelligence (AI)
agents develop and which AI or human behaviour aspects can be
manipulated to accelerate learning and adaptation.

The purpose of this work is to investigate ways to accelerate
collaborative learning between a human and an agent and thus to
minimize the time spent by a human collaborator during training.
First, we examine two variations of the Soft Actor-Critic [6] training
algorithm; one that involves only off-line gradient updates (g/u) in
fixed intervals [7] and one that also involves a single g/u after each
state transition [10]. Subsequently, we explore the impact of the
number of off-line g/u throughout a training. Finally, we provide
a graphical RL framework for testing human-agent collaborative
settings, similar to the game defined in [10].

2 RELATEDWORK
Recently there has been an increasing interest towards human-
robot teams working and learning collaboratively to achieve spe-
cific goals. Deep RL methods have shown very promising results
towards this direction. In [4], sparse non-expert human user feed-
back is used to help an agent to learn a task. They keep a reward
model approximation of the user and train the deep RL agent based
on the human preferences. Complex novel behaviors are success-
fully learned with about an hour of human time. In [1, 12], an
interactive policy shaping from human reinforcement signals is
proposed in order to collaboratively train an agent’s policy, while
promoting sample efficiency and avoiding the need for coding a
reward function. TAMER outperforms both humans and other RL
algorithms with only 15 minutes of training. The Soft Actor-Critic
algorithm has also shown impressive results during learning in real-
time applications [6, 7] and in real-time human-robot collaborative
learning. In [10], a human and a UR3 cobot learn to move a ball
to a target by controlling different rotations of a tray. The team
manages to learn the task in less than 30 minutes.

All the above scenarios require humans to provide, synchronously
or asynchronously, demonstrations and feedback or directly inter-
act with an (embodied) AI agent. Short duration of participation
or collaboration is important, considering the mental and physical
human load. Towards this direction we explore how several factors
of deep RL methods affect the learning and total training duration.
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Figure 1: The experimental pipeline and the descending allocation in detail.

3 METHOD
3.1 The virtual environment
Our virtual environment is based on the real-world learning para-
digm by [10]. Specifically, we modified a Marble-Maze game1 which
provides a 3D graphical representation of a rotating tray. The hu-
man and the agent control the rotation of the tray around one axis
each and must collaborate in order to successfully move a ball from
a starting point to a goal. The human controls the rotation around
the y-axis through the left and right keyboard arrows (counter-
clockwise or clockwise rotation). The actions of the agent control
the rotation around the x-axis. The integrated game is available at
github.com/ligerfotis/maze3d_collaborative.

3.2 RL Set-Up
The state space consists of an 8 dimensional vector that includes the
x- and y- linear position and velocity of the ball and the angles and
angular velocity of the tray around x and y axes. The agent’s action
space is 1-dimensional and can take three discrete values −1, 0 and 1
(rotation anti-clockwise, pause or rotation clockwise). The agent is
rewarded with 10 when reaching the goal and −1 for each training
step passed [10]. The agent is the discrete Soft Actor-Critic (dSAC)
algorithm [6]. Our implementation was based on the SLM Lab code
[8] and was modified, based on Christodoulou [5] to consider the
discrete actions. All the networks of dSAC consist of two hidden
layers of 32 nodes each.

3.3 Training Algorithm
We define a trial to be the period from the beginning of a game up
to either reaching the goal or a maximum of 200 game steps. At
every step the actions of the human and the agent aaдent change
the state s ′ of the environment and the agent receives a reward r .
This transition (s,aaдent , r , s ′) is saved in a replay buffer D. An
experiment consists of 70 training trials. Every 10 trials we perform
a number of off-line g/u, after which we test the performance of
the human-agent over 10 trials. No further training or storing of
any transition in D occurs during these test trials. The score for
every testing trial starts from 200 and 1 is subtracted for each game
step passed. For each g/u we use a mini-batch of 256 transitions
randomly selected from D. We use two variations in the algorithm;
one that involves only offline g/u in fixed intervals [7] (Offline
algorithm (O-a)) and one that also involves a single g/u after each
state transition [10] (Online-Offline algorithm (O-O-a)). In both

1https://github.com/amengede/Marble-Maze

cases, an offline g/u session is performed every 10 training trials
and the total number of g/u is the same (Figure 1).

3.4 Off-line Gradient Updates Allocation
Offline g/u were either distributed evenly across each experiment or
followed a descending allocation using geometric progression with
1/2 ratio (Figure 1). The latter is expected to accelerate learning
while minimizing the total training time. In order to have the same
number of total off-line g/u for both on-line and off-line algorithms,
we add 2K g/u at each interval of the off-line algorithm, which
corresponds tomax_дame_train_steps ∗updates_interval . For the
first approach, we experimented with two different numbers of
total g/u: a)154K (off-line session: 22K in O-a and 20K in O-O-a) and
b)28K (off-line session: 4K in O-a and 2K in O-O-a). In the second
approach, we only used 28K total g/u distributed with descending
allocation.

4 RESULTS
Two participants2 completed three independent runs of each condi-
tion of O-a and O-O-a. Figure 2 shows the mean standard error of
the mean (SEM) of the human-agent performance for the different
numbers of off-line and of on-line g/u (average of 6 independent
runs - three for each participant.) A higher number of off-line g/u

vs 28K 2 users.png

Figure 2: Mean and SEM for 154K vs 28K total g/u. First ten
test trials (0) are played with a random agent.

2Two different GPUs (GeForce GTX 1050 and a Quadro RTX 4000) were used by each
participant.
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vs 28K Descending 2 users.png

Figure 3: Mean and SEM for 154K vs 28K descending total
g/u. First ten test trials (0) are played with a random agent.

Time 156K vs 28K vs 28K Descending 2 users.png

Figure 4: Mean and SEM of Cumulative Total Experiment
Time

supports faster and more stable learning. Moreover, adding on-line
g/u also seems to lead to higher scores earlier during the training.

Naturally, the higher the number of total g/u, the longer the
training duration will be. However, we would like to accelerate
the mutual learning while keeping training duration relative short.
Towards this, we experimented with variable off-line g/u combining
the high performance supported by the higher number of off-line
g/u in the beginning of the learning and shortening the total training
duration by using a lower number of g/u towards the end of the
training.

Figure 3 presents the results of using the descending update allo-
cation (Section 3.4) and compares them with the case of the higher
number of off-line g/u in Figure 2. It appears that the descending
allocation shows similar learning characteristics with that of the
154K off-line g/u in considerably less total training time (∼ 25 min-
utes less - see Figure 4); there is an early convergence to a high
performance and the behaviour does not vary greatly within each

testing session. The mean cumulative total time of using descending
allocation is even less than of the normal allocation with the same
number of total offline g/u, by a factor of 20% and 28%, for O-O-a
28K and O-a 28K respectively.

5 CONCLUSION
Our results indicate that allocating a higher number of off-line g/u
early in the training can accelerate learning while minimizing the
total training time. Moreover, interpolating on-line g/u after each
state transition also appears to accelerate learning. Although the
time of interacting with the agent does not change in the different
experiments, human collaborator idle periods during off-line g/u is
greatly decreased. Naturally, our results are limited by the number
of repetitions of each experiment and the number of participants. In
the future we plan to repeat the experiments with more participants
and expand them to test how other factors such as different reward
functions can affect the overall learning.
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