
2nd International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2020),

1-3 April 2020, Berlin, Germany

Oral Topic: <Machine Learning>

Sample-Efficient Covariance Matrix Adaptation Evolutional Strategy via

Simulated Rollouts in Neural Networks

H. Xue 1, S. Böttger 1, N. Rottmann 1, H. Pandya 2, R. Bruder 1,

G. Neumann 3, A. Schweikard 1 and E. Rueckert 1
1 University of Luebeck, Institute of Robotics and Cognitive Systems, Luebeck, Germany

2 University of Lincoln, School of Computer Science, College of Science, Lincoln, UK
3 Karlsruhe Institute of Technology, Bosch Center for Artificial Intelligence, University of

Tuebingen, Germany

Abstract: Gradient-free reinforcement learning algorithms often fail to scale to high dimensions and require a large number

of rollouts. In this paper, we propose learning a predictor model that allows simulated rollouts in a rank-based black-box

optimizer Covariance Matrix Adaptation Evolutional Strategy (CMA-ES) to achieve higher sample-efficiency. We validated

the performance of our new approach on different benchmark functions where our algorithm shows a faster convergence

compared to the standard CMA-ES. As a next step, we will evaluate our new algorithm in a robot cup flipping task.

Keywords: CMA-ES, Reinforcement Learning, Dynamic Movement Primitives, Cup Flipping

1. Introduction

Reinforcement Learning (RL) has become a

popular approach in robotics [2], where an agent learns

a policy from scratch based on the cost. In this paper,

we investigate an episodic reinforcement learning

problem. Several approaches have been proposed. One

categorization of these learning approaches is whether

it is a gradient-based approaches or a gradient-free

approach. Gradient-based approaches are efficient but

sensitive to the design of the cost function, whereas

gradient-free approaches remained less affected by the

cost function design but less efficient. In this work, we

focus on one state-of-the-art gradient-free algorithm,

Covariance Matrix Adaptation Evolutional Strategy

(CMA-ES) [5].

However, one problem of the CMA-ES is its

limited performance in high feature dimensions,

leading to larger number of rollouts or convergence in

local optima. In real robot control tasks, fast

convergence to optimal policies is essential [6][7]. The

goal of this paper is to enhance the sample-efficiency

of the original CMA-ES algorithm to achieve faster

convergence.

In order to enhance of the performance of CMA-

ES, several variants have been proposed on top of that.

CMA-ES with Active Update [16] adapts the

covariance matrix by considering all the offsprings.

Some other approaches, e.g., Mirrored Sampling [17],

Orthogonal Sampling [18] and Quasi-Gaussian

Sampling [21] introduce new ways of proposing

offsprings. In Mirrored Sampling, two offsprings are

generated symmetrically with one random vector so

that the samples spread evenly in the sampling space.

Orthogonal Sampling bases itself on Mirrored

Sampling, where offspring vectors are orthnormalized

by Gram-Schimdt process. In Quasi-Gaussian

Sampling, a uniform sampling in unit ball instead of

Gaussian distribution is performed so that trust-region

effect is enabled. CMA-ES with Increasing Population

Size [24] schemes an increasing population size after

restart to achieve a more global search. [15] introduces

a computationally efficient CMA-ES for large scale

optimization by applying Cholesky decomposition

into covariance matrix to reduce time and memory.

Another work is close relation is [22], where they

replaced the original ranking of the candidate solutions

in CMA-ES by an approximate ranking using local

weighted regression. Some other appraoches suggest

online selection strategy to search for the best variant

fit into the current optimization function [19][20]. In

these approaches, the best variant is chosen via

automatic machine learning.

Our approach is categorized as a variant of

changing the sampling scheme of the offsprings.

However, distinct from the above variants, where some

adaptations are only valid under the inherent uni-

modal Gaussian distribution, our approach can

theoretically be applied to any other black-box

optimizers with arbitrary sampling distribution.

Fig. 4. Illustration of cup flipping task performed on Franka Panda robot in V-REP simulator

2nd International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2020),

1-3 April 2020, Berlin, Germany

Moreover, our approach can be easily combined with

previous variants. In this work, we validate this idea in

one black-box optimizer CMA-ES. The idea arises

from the observation that the samples in previous

iterations only contribute indirectly to the update of

Gaussian covariance and mean, causing low data-

efficiency. One way to improve it is to learn a global

predictor model based on all of the tested samples. The

idea of learning a predictor model and proposing

candidate solutions is also closely related to [12],

where they address the problem of automatic machine

learning by learning a predictor model mapping the

current configuration of the algorithm and the dataset

feature to the performance score.

The main contributions of this paper are as follows:

(i) Integration of a predictor model into standard

CMA-ES for further performance enhancement with

no extra efforts on tunning predictor model hyper-

parameters.

(ii) Formulation of the cup flipping task as an RL

problem, introducing proper objective function

considering the arm constraints.

(iii) Evaluation of CMA-ES with active update and

Mirrored Sampling on the flipping task.

2. Methods

In this section, we give a brief overview on our new

algorithm CMA-ES with Simulated Rollouts (CMA-

ES-SR) and the trajectory formulation using dynamic

movement primitives.

2.1. Covariance Matrix Adaptation Evolutional

Strategies with Simulated Rollouts (CMA-ES-SR)

CMA-ES is an optimizer that searches for the

optimal parameters 𝜃𝑜𝑝𝑡 that minimizes the cost 𝐶. In

standard CMA-ES, a multi-variate Gaussian

distribution is used to characterize the distribution of

candidate solutions (samples). In each generation,

𝑁𝑝𝑜𝑝 candidate solutions are drawn such that

𝜃1:𝑁𝑝𝑜𝑝
~ 𝜇 + 𝜎𝒩(0, ∑), where the mean vector 𝜇 ∈

ℝ𝐷 and 𝐷 represents the dimension of 𝜃, the step size

𝜎 ∈ ℝ1 determines the degree of exploration and ∑ ∈
ℝ𝐷×𝐷 is the covariance matrix. After each sample is

tested, 𝜇, 𝜎 and ∑ get updated to increase the sampling

probability of better candidate solutions. A detailed

explanation on the update rule is listed in [25].

However, the standard CMA-ES only uses the

previous samples for updating 𝜇 , 𝜎 and ∑, which is

data-inefficient. We suggest integrating a predictor

model ℳ, such that

ℳ: 𝜽 → 𝐶 with 𝜽 ∈ ℝ𝐷, 𝐶 ∈ ℝ1. (1)

The predictor ℳ is fit to all the tested candidate

solutions in each iteration of CMA-ES. With an

available model, more promising candidate solutions

can be proposed than random samples, leading to faster

convergence [12]. In this paper, we use a multi-layer

perceptron as it is a universal function approximator

[13]. However, any arbitrary predictor model can be

used in general.

The algorithm is shown in Fig. 1. With a learned

predictor model, 𝑁 samples are drawn 𝜃1:𝑁~ 𝜇 +
𝜎𝒩(0, ∑) , with 𝑁 ≫ 𝑁𝑝𝑜𝑝. The best 𝑁𝑏𝑒𝑠𝑡 solutions

are picked according to the model prediction. The final

𝑁𝑝𝑜𝑝 candidate solutions 𝛳𝑝𝑜𝑝 consist of the 𝑁𝑏𝑒𝑠𝑡

predictor-proposed solutions 𝛳𝑚𝑜𝑑𝑒𝑙 and 𝑁𝑝𝑜𝑝−𝑁𝑏𝑒𝑠𝑡

samples 𝛳𝑟𝑎𝑛𝑑𝑜𝑚 randomly drawn from the Gaussian

distribution. The value of 𝑁𝑏𝑒𝑠𝑡 adjusts itself based on

the quality of 𝛳𝑚𝑜𝑑𝑒𝑙 and 𝛳𝑟𝑎𝑛𝑑𝑜𝑚 . Meanwhile, we

also design a heuristic determining to which extent we

trust the model. It is measured by the quality of 𝛳𝑚𝑜𝑑𝑒𝑙

and 𝛳𝑟𝑎𝑛𝑑𝑜𝑚 , where the mean and variance of cost

values from both are calculated. We use the optimistic

bound similar to the acquisition function in Gaussian

process. Since CMA-ES minimizes the objective

function, the optimistic bound is calculated by

subtracting the variance. When the quality of 𝛳𝑚𝑜𝑑𝑒𝑙

is better than that of 𝛳𝑟𝑎𝑛𝑑𝑜𝑚, we trust the model more

by incrementing 𝑁𝑏𝑒𝑠𝑡 by one.

Additionally, we set an upper bound for 𝑁𝑏𝑒𝑠𝑡 to

avoid the dominance of the predictor-proposed

solutions over the random solutions. Without this

upper bound, one potential consequence is that the

final candidate solution contains mainly predictor-

proposed solutions, i.e., over-trust on the predictor. In

the case where the predictor fails to fit the cost

landscape but happens to render better solutions than

random samples, the algorithm will converge to local

optima. For small input dimensions, we also restrict

the upper bound of 𝑁𝑏𝑒𝑠𝑡 and 𝑁 so that the final set of

candidate solutions still follow the Gaussian

Fig. 3. MLP Model contribution on Ackley with input

dimension of 32. 𝑁𝑝𝑜𝑝 is 14.

Fig. 1. CMA-ES-SR algorithm

2nd International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2020),

1-3 April 2020, Berlin, Germany

distribution. Otherwise, the final offsprings can cluster

due to the model-fitted landscape especially in low

dimension, and no longer follow the original Gaussian

distribution. This can cause less exploration and a non-

desired update in 𝜇, 𝜎 and ∑. In high dimensions, 𝑁

samples remain sparse in space and the final offspring

distribution will not be affected by the model-fitted

landscape. In short, one advantage of our algorithm is

the preservation of the Gaussian distribution on both

𝛳𝑚𝑜𝑑𝑒𝑙 and 𝛳𝑟𝑎𝑛𝑑𝑜𝑚. Therefore, it does not affect the

Gaussian parameter update.

The hyperparameters of this algorithm are the

boundaries of 𝑁 and 𝑁𝑏𝑒𝑠𝑡. Typically, a batch forward

is computationally cheap. One can increase the upper

bound of 𝑁 to exceed 4096 if sufficient computation

power is available. The lower bound of 𝑁 (𝑁𝑝𝑜𝑝
𝐷)

scales exponentially with the number of dimensions 𝐷,

the base can be chosen as values other than 𝑁𝑝𝑜𝑝 as

long as the number of model proposed samples 𝑁𝑏𝑒𝑠𝑡

remains sparse in low dimensions. The default setting

of 𝑁𝑝𝑜𝑝 2⁄ takes into account that half of the offsprings

affect the update.

The details of model learning are presented in

Supplementary Information, Section 5.

2.2. Dynamic Movement Primitives (DMP)

DMPs is an approach to characterize smooth

trajectory profiles of a robot [9][10][11]. The trajectory

expressiveness is achieved by combining a second-

order spring-damper system with a learnable external

forcing function 𝑓(𝑡).

 �̈� = 𝛼(𝛽(𝑔 − 𝑦) − �̇�) + 𝑓(𝑡), (2)

 𝑓(𝑡) =
∑ 𝛹𝑖

𝑁
𝑖=1 (𝑡)𝑤𝑖

∑ 𝛹𝑖
𝑁
𝑖=1 (𝑡)

. (3)

The system describes the trajectory in terms of the

position 𝑦 , velocity �̇� and acceleration �̈� given the

goal position 𝑔 and the damping coefficients 𝛼 and 𝛽.

Forcing function 𝑓(𝑡) adds to the trajectory

complexity by incorporating a set of weighted sum of

𝑁 basis functions 𝛹𝑖(𝑡), which can either be stroke-

based or rhythmic-based. Variable 𝑡 denotes the

discrete time. For a cup flipping task, we applied

stroke-based basis functions

 𝛹𝑖(𝑡) = exp [(𝑡 − 𝑏𝑖)
2 2ℎ𝑖⁄]. (4)

It is characterized as a set of Gaussian Basis Functions

(GBFs) with pre-defined mean 𝑏𝑖 and width ℎ𝑖.

3. Results and Discussion

We evaluated the performance of CMA-ES-SR on

different benchmark optimization problems using the

same neural network with no additional tunning. In

addition, we started to investigate an episodic RL

problem [7] where the goal for a 7-DoF robot arm is to

flip a cup filled with liquid around 360 degrees while

achieving minimal spillage.

3.1 Benchmarks

For the same benchmark function, we are also

interested in the performance enhancement of CMA-

ES-SR in different input dimensions. And the detailed

settings of benchmarks are shown in Supplementary

Information, Table 3.

3.2 Performance of CMA-ES-SR on benchmarks

In order to evaluate the performance of CMA-ES-

SR compared to the standard CMA-ES, we quantified

the following metrics:

(i) The convergence acceleration rate 𝑃,

(ii) The best cost value found within a fixed number of

iterations,

(iii) The number of predictor-proposed samples 𝑁𝑏𝑒𝑠𝑡

w.r.t. the number of generations (iterations) and the

number of predictor-proposed samples used for mean

and covariance update,

The convergence acceleration 𝑃 is defined as

(𝐼1 − 𝐼2) min (𝐼1, 𝐼2)⁄ , where 𝐼1 and 𝐼2 refer to the

minimal number of generations required to achieve a

certain threshold in cost value respectively from CMA-

ES and CMA-ES-SR.

The learning curve of CMA-ES-SR on some

exemplary benchmarks are shown in Fig. 2. It can be

observed that our algorithm achieves faster

convergence than the original CMA-ES in cases where

the learned model is capable of generalizing the cost

landscape. Under the circumstance where the model

fails to learn the cost landscape, it does not affect the

overall optimization process and behaves similarly as

the standard CMA-ES. This corresponds to the case of

Rosenbrock function, where the cost value is of large

magnitude. This poses challenges on regression using

MLP and the predictor fails to fit or generalize with our

current configuration. Nonetheless, a similar learning

curve as the standard CMA-ES can still be observed.

Detailed statistics on the convergence acceleration rate

𝑃 on all tested benchmarks are illustrated in Table 1.

If one compare the same benchmark of different input

dimensions, a consistent performance boost with

increasing input dimension can be observed on

average.

We also show metric(iii) for one benchmark in Fig.

3 as an example. Most of the benchmarks also register

similar patterns. It can be observed that the number of

predictor-proposed solutions 𝑁𝑏𝑒𝑠𝑡 nearly reaches its

upper bound, and the number of accepted solutions

proposed by the model takes similar value as 𝑁𝑏𝑒𝑠𝑡 .

This shows predictor-proposed samples are of higher

quality than random samples. It can be concluded that

the model indeed contributes to higher-quality

solutions than random samples when 𝑁𝑏𝑒𝑠𝑡 reaches its

upper bound. At this stage, a faster convergence. The

quality of proposed samples is highly dependent on the

current step size, mean vector, data distribution and

trained model. In the later phase, random samples are

at least as good as model-proposed samples, CMA-ES-

SR behaves similarly as standard CMA-ES and the

algorithm starts to converge.

2nd International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2020),

1-3 April 2020, Berlin, Germany

3.3. Performance of CMA-ES on flipping task

 For the flipping task, we used the package Pycma

[4]. The trajectories are trained from scratch on two

robot arms Franka Panda and KUKA-iiwa R820 in V-

REP simulator [14]. All the settings are the same

except for the joint constraints, where KUKA-iiwa has

stricter joint constraints. Hence, the performance on

KUKA-iiwa is restricted. We demonstrated one

learned trajectory of Panda in Fig. 4. It can be

illustrated that the robot arm learns to flip the cup

vertically down and finally stopped at an upright pose,

with no spillage. We validated the performance five

times with a Gaussian noise of zero-mean and variance

of 0.2 applied on each joint, shown in Table 2.

Table 2. Learned trajectory performance per robot type

Robot Type
Spillage

(%)
𝜑

𝐦𝐚𝐱
 (°) 𝜑

𝐞𝐧𝐝
 (°)

Franka Panda 0±0 179.89±0.04 0.18±0.06

KUKA iiwa

R820
23±6 136.01±0.07 1.39±0.08

4. Conclusions

Reducing the number of required rollouts in robot

tasks requires sample-efficient RL algorithms. The

popular RL algorithm CMA-ES fails to scale to high

dimensions. To improve the sample efficiency, we

extended the standard CMA-ES by learning a predictor

to propose high-quality samples. We tested our new

algorithm CMA-ES-SR on different benchmark

optimization functions and showed that CMA-ES-SR

outperforms the standard CMA-ES by at least 50% in

terms of convergence speed. With the increasing

dimension, the performance gain is higher. The

limitation is the additional overhead in fitting the

model. In addition, we demonstrated how to learn a cup

flipping task in 7-DoF robot arms which features fast

robot motion and fulfills the joint angle and angular

velocity constraints. The future work is to evaluate the

performance of CMA-ES-SR on the flipping task and

extend to different predictor models.

References

[1]. M. Jamil, X. S. Yang, A literature survey of benchmark

functions for global optimization problems. arXiv

preprint arXiv:1308.4008, 2013

[2]. J. Kober, J. A. Bagnell, J. Peters, Reinforcement

learning in robotics: A survey. The International

Journal of Robotics Research, 32(11), 2013, pp.1238-

1274.

[3]. A. R. Conn, K. Scheinberg, L. N. Vicente, Introduction

to derivative-free optimization, Siam., 2009.

[4]. N. Hansen, Y. Akimoto, and P. Baudis. CMA-

ES/pycma on Github. Zenodo,

DOI:10.5281/zenodo.2559634, February 2019.

[5]. N. Hansen, A. Ostermeier, Adapting arbitrary normal

mutation distributions in evolution strategies: The

covariance matrix adaptation. In Proceedings of IEEE

international conference on evolutionary computation,

1996, pp. 312-317.

[6]. M. P. Deisenroth, G. Neumann, J. Peters, A survey on

policy search for robotics, Foundations and Trends in

Robotics, 2(1–2), 2013, pp. 1-142.

[7]. A. Kupcsik, M. P. Deisenroth, J. Peters, A. P. Loh, P.

Vadakkepat, G. Neumann, Model-based contextual

policy search for data-efficient generalization of robot

skills. Artificial Intelligence, 247, 2017, pp. 415-439.

[8]. S. Ioffe, C. Szegedy, Batch normalization:

Accelerating deep network training by reducing

internal covariate shift. arXiv preprint

arXiv:1502.03167, 2015

[9]. S. Schaal, Dynamic movement primitives-a

framework for motor control in humans and humanoid

robotics, In Adaptive motion of animals and machines,

Springer, 2006, pp. 261-280.

[10]. E. Rückert, A. d'Avella, Learned parametrized

dynamic movement primitives with shared synergies

for controlling robotic and musculoskeletal systems.

Frontiers in computational neuroscience, 7, 2013, 138.

[11]. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S.

Schaal, Dynamical movement primitives: learning

attractor models for motor behaviors. Neural

computation, 25(2), 2013, pp. 328-373.

[12]. F. Hutter, H. H. Hoos, K. Leyton-Brown, Sequential

model-based optimization for general algorithm

configuration. In International conference on learning

and intelligent optimization, 2011, pp. 507-523

[13]. T. Chen, H. Chen, Universal approximation to

nonlinear operators by neural networks with arbitrary

activation functions and its application to dynamical

systems, IEEE Transactions on Neural Networks, 6(4),

1995, pp. 911-917

[14]. E. Rohmer, S. P. Singh, M. Freese, CoppeliaSim

(formerly V-REP): a Versatile and Scalable Robot

Simulation Framework, In Proceedings of the

International Conference on Intelligent Robots and

Systems (IROS), 2013.

[15]. I. Loshchilov, A computationally efficient limited

memory CMA-ES for large scale optimization. In

Proceedings of the 2014 Annual Conference on

Genetic and Evolutionary Computation, 2014, pp.

397-404.
[16]. D. V. Arnold, & N. Hansen, Active covariance matrix

adaptation for the (1+ 1)-CMA-ES. In Proceedings of

the 12th annual conference on Genetic and

evolutionary computation, 2010, pp. 385-392.

[17]. D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold,

T.Hohm, Mirrored sampling and sequential selection

for evolution strategies. In International Conference

on Parallel Problem Solving from Nature, 2010, pp.

11-21

[18]. H. Wang, M. Emmerich, T. Bäck, Mirrored orthogonal

sampling with pairwise selection in evolution

strategies. In Proceedings of the 29th Annual ACM

Symposium on Applied Computing, 2014, pp. 154-156.

[19]. D. Vermetten, S. van Rijn, T. Bäck, C. Doerr, Online

selection of CMA-ES variants. In Proceedings of the

Genetic and Evolutionary Computation Conference,

2019, pp. 951-959.

[20]. S. van Rijn, H. Wang, B. van Stein, T. Bäck, Algorithm

configuration data mining for cma evolution strategies.

In Proceedings of the Genetic and Evolutionary

Computation Conference, 2017, pp. 737-744

2nd International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2020),

1-3 April 2020, Berlin, Germany

[21]. B. Bischl, O. Mersmann, H. Trautmann, M. Preuß,

Algorithm selection based on exploratory landscape

analysis and cost-sensitive learning. In Proceedings of

the 14th annual conference on Genetic and

evolutionary computation, 2012, pp. 313-320.

[22]. Z. Bouzarkouna, A. Auger, D. Y. Ding, Local-meta-

model CMA-ES for partially separable functions. In

Proceedings of the 13th annual conference on Genetic

and evolutionary computation, 2011, pp. 869-876.

[23]. I. Loshchilov, F. Hutter. Fixing weight decay

regularization in adam , 2018

[24]. A. Auger, N. Hansen, A restart CMA evolution

strategy with increasing population size. In 2005 IEEE

congress on evolutionary computation, pp. 1769-1776,

2005.

[25]. A. Auger, N. Hansen, Tutorial CMA-ES: evolution

strategies and covariance matrix adaptation. In

Proceedings of the 14th annual conference companion

on Genetic and evolutionary computation, 2012, pp.

827-848.

Fig. 2. Learning curves on exemplary benchmarks: The tasks are specified by a function and the feature dimension. and the

incumbent settings (the best solutions found so far) are shown. The population size is ⌊4 + 3 ln(𝐷)⌋. For each problem, we

ran our algorithm CMA-ES-SR and standard CMA-ES algorithm five times, the mean and variance of the learning curves are

shown.

Table 1. Performance of CMA-ES-SR on different benchmarks, where the mean and variance of final converged value in the

given iteration are shown. The columes 𝑃50, 𝑃75, 𝑃90 refers to the convergence acceleration rate with the threshold set as 50%,

75%, 90% percentile of the final convergence value of standard CMA-ES.

Benchmark Function,

Dimension
Iterations

CMA-ES CMA-ES-SR (NN)

mean var mean var 𝑃50 (%) 𝑃75 (%) 𝑃90 (%)

Ackley, 2 50 0.018 0.01 0.012 0.01 75 22 43

Ackley, 8 150 0.080 0.04 0.254 0.48 14 71 108

Ackley, 32 350 12.963 9.83 4.408 8.32 91 161 261

DejongsF5, 2 100 0.399 0.49 0.399 0.49 29 7 13

DejongsF5, 8 100 1.402 1.29 2.747 2.41 -300 0 62

DejongsF5, 20 200 1.408 0.74 0.896 0.61 0 -33 160

Griewank, 2 50 0.061 0.02 0.062 0.03 0 -25 114

Griewank, 8 150 0.181 0.10 0.049 0.05 100 32 33

Griewank, 32 350 0.064 0.01 0.031 0.00 -29 95 14

Michalewicz, 2 50 -1.841 0.06 -1.866 0.01 -50 -67 -75

Michalewicz, 10 100 -4.415 0.87 -4.491 1.64 107 16 30

Michalewicz, 20 200 -6.875 1.24 -7.417 0.94 467 1343 178

Rosenbrock, 2 50 0.031 0.04 0.547 0.85 100 -50 -25

Rosenbrock, 8 100 5.977 0.91 6.346 0.84 0 0 17

Rosenbrock, 16 150 14.999 0.56 16.238 1.81 0 -14 5

Rosenbrock, 32 250 53.157 42.57 33.594 1.63 40 -21 3

Sphere, 8 100 0.022 0.01 0.010 0.00 50 50 70

Sphere, 16 150 0.167 0.06 0.031 0.01 25 40 94

Sphere, 32 200 1.693 0.51 0.277 0.08 25 47 131

Sum absolute, 8 100 5.376 0.11 5.139 0.02 -25 46 72

Sum absolute, 16 200 5.398 0.11 5.104 0.01 -11 33 67

Sum absolute, 32 250 8.023 0.52 5.672 0.11 33 146 125

Averaged Performance / 4.467 / 3.093 / 33 86 68

2nd International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2020),

1-3 April 2020, Berlin, Germany

Supplementary Information

5. Algorithm Details

The network architecture we used is a three-layer

MLP with 1024 nodes on each layer. We added two

batch normalization layers [8] after non-linear

activation layer PReLU. We used AdamW [23] as the

optimizer with the default learning rate of 10−3. Loss

Metric is mean square error with mean reduction. In

order to prevent overfitting, we conducted early

stopping with a tolerance of nine iterations and

performed train-test split on the experience in the

replay buffer. The validation dataset consists of the

samples collected from the last optimization iteration.

Since CMA-ES updates the Gaussian mean and

variance in an accumulative manner, we assume the

query points in current iteration are not far away from

the query points in the last iteration. A small error in

validation set infers similar error for the query points

in current iteration given the trained network. In the

first iteration, we did not perform any training as no

dataset from previous iterations is available. In the

second iteration, only samples from the first iteration

are available, hence, we defined the validation set to be

one-fifth of the samples retrieved in the first iteration.

The remaining samples serve as training samples.

From the third iteration on, the training and validation

dataset were chosen as explained above. In each

iteration, we retrained MLP from scratch. All of the

samples were pre-processed to have zero-mean and

unit-variance in each dimension.

6. Experiment Details

We validated the performance of CMA-ES and

CME-ES-SR on different benchmark optimization

problems suggested in [1]. The problem settings differ

from each other in the domain for each input feature.

The details of the problem setting are shown in Table

3. The initial mean vector μ0 passed to CMA-ES(-SR)

was chosen uniformly from the input domain, while

the initial variance 𝜎0 passed to CMA-ES optimizer to

be 0.3(𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑎𝑥). For each benchmark and each

input dimension, we ran the experiment five times

respectively for CMA-ES, CMA-ES-SR with two

models.

Table 3. The settings of benchmark optimization functions

Optimization Problems Domain 𝛍𝟎

Ackley [-32,32]

DeJong F5 [-65,65]

Griewank [-50,50]

Michalewicz [0, 𝜋]

Rosenbrock [-2,2]

Sphere [-10,10]

Sum of absolute value [-10,10]

In the cup flipping task, the learnable parameters 𝜃

describe the robot trajectories 𝜏 in joint space. The

parameters 𝜃 consist of 10 weight parameters 𝑤𝑖 for

GBFs, two meta-parameters 𝛼 and 𝑔. We

characterized each of the seven joint trajectory profiles

with one DMP so that the total number of learnable

parameters is 84. 𝛽 is chosen as 𝛼 4⁄ , so that the

system is critically-damped [9]. The trajectory time is

fixed as five seconds. The cost function is defined as

 𝐶1 = 𝑎1𝐶𝑠𝑝𝑖 + 𝑎2(180 − 𝜑𝑚𝑎𝑥) +

𝑎3𝜑𝑒𝑛𝑑 + 𝑎4𝛿𝑐𝑜𝑙𝐶𝑐𝑜𝑙 ,
𝐶2 = 𝐶𝑤𝑜𝑟𝑠𝑡 + 𝑎5𝛿𝑐𝑜𝑛𝐶𝑐𝑜𝑛,

(6)

where 𝐶1 is the case when joint angle and angular

velocity constraints are satisfied and 𝐶2 corresponds to

the case of violation. The term 𝜑𝑚𝑎𝑥 is the largest

difference of the cup normal vector to the vector (0,0,1)

in 3D space throughout the whole trajectory, while the

term 𝜑𝑒𝑛𝑑 refers to the same angle difference but at the

end of the trajectory. Initially, cup normal vector is

(0,0,1). 𝐶𝑤𝑜𝑟𝑠𝑡 denotes the worst possible of 𝐶1 . 𝛿𝑐𝑜𝑙

and 𝛿𝑐𝑜𝑛 are indicator functions telling whether

collision happens and robot constraints are met. The

cost maximizes the rotation angle of the cup 𝜑𝑚𝑎𝑥

while achieving minimal spillage 𝐶𝑠𝑝𝑖 and the upright

final pose 𝜑𝑒𝑛𝑑. When the constraints are not satisfied,

the cost is 𝐶𝑤𝑜𝑟𝑠𝑡 plus an extra cost for exceeding the

joint angle and joint velocity constraints. With such

design, the robot arm constraints must be first satisfied

so that it can learn to perform flipping.

