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Abstract: Gradient-free reinforcement learning algorithms often fail to scale to high dimensions and require a large number 

of rollouts. In this paper, we propose learning a predictor model that allows simulated rollouts in a rank-based black-box 

optimizer Covariance Matrix Adaptation Evolutional Strategy (CMA-ES) to achieve higher sample-efficiency. We validated 

the performance of our new approach on different benchmark functions where our algorithm shows a faster convergence 

compared to the standard CMA-ES. As a next step, we will evaluate our new algorithm in a robot cup flipping task. 
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1. Introduction

Reinforcement Learning (RL) has become a 

popular approach in robotics [2], where an agent learns 

a policy from scratch based on the cost. In this paper, 

we investigate an episodic reinforcement learning 

problem. Several approaches have been proposed. One 

categorization of these learning approaches is whether 

it is a gradient-based approaches or a gradient-free 

approach. Gradient-based approaches are efficient but 

sensitive to the design of the cost function, whereas 

gradient-free approaches remained less affected by the 

cost function design but less efficient. In this work, we 

focus on one state-of-the-art gradient-free algorithm, 

Covariance Matrix Adaptation Evolutional Strategy 

(CMA-ES) [5].  

However, one problem of the CMA-ES is its 

limited performance in high feature dimensions, 

leading to larger number of rollouts or convergence in 

local optima. In real robot control tasks, fast 

convergence to optimal policies is essential [6][7]. The 

goal of this paper is to enhance the sample-efficiency 

of the original CMA-ES algorithm to achieve faster 

convergence.  

In order to enhance of the performance of CMA-

ES, several variants have been proposed on top of that. 

CMA-ES with Active Update [16] adapts the 

covariance matrix by considering all the offsprings. 

Some other approaches, e.g., Mirrored Sampling [17], 

Orthogonal Sampling [18] and Quasi-Gaussian 

Sampling [21] introduce new ways of proposing 

offsprings. In Mirrored Sampling, two offsprings are 

generated symmetrically with one random vector so 

that the samples spread evenly in the sampling space. 

Orthogonal Sampling bases itself on Mirrored 

Sampling, where offspring vectors are orthnormalized 

by Gram-Schimdt process. In Quasi-Gaussian 

Sampling, a uniform sampling in unit ball instead of 

Gaussian distribution is performed so that trust-region 

effect is enabled. CMA-ES with Increasing Population 

Size [24] schemes an increasing population size after 

restart to achieve a more global search. [15] introduces 

a computationally efficient CMA-ES for large scale 

optimization by applying Cholesky decomposition 

into covariance matrix to reduce time and memory. 

Another work is close relation is [22], where they 

replaced the original ranking of the candidate solutions 

in CMA-ES by an approximate ranking using local 

weighted regression. Some other appraoches suggest 

online selection strategy to search for the best variant 

fit into the current optimization function [19][20]. In 

these approaches, the best variant is chosen via 

automatic machine learning. 

Our approach is categorized as a variant of 

changing the sampling scheme of the offsprings. 

However, distinct from the above variants, where some 

adaptations are only valid under the inherent uni-

modal Gaussian distribution, our approach can 

theoretically be applied to any other black-box 

optimizers with arbitrary sampling distribution. 

Fig. 4. Illustration of cup flipping task performed on Franka Panda robot in V-REP simulator 
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Moreover, our approach can be easily combined with 

previous variants. In this work, we validate this idea in 

one black-box optimizer CMA-ES. The idea arises 

from the observation that the samples in previous 

iterations only contribute indirectly to the update of 

Gaussian covariance and mean, causing low data-

efficiency. One way to improve it is to learn a global 

predictor model based on all of the tested samples. The 

idea of learning a predictor model and proposing 

candidate solutions is also closely related to [12], 

where they address the problem of automatic machine 

learning by learning a predictor model mapping the 

current configuration of the algorithm and the dataset 

feature to the performance score.  

The main contributions of this paper are as follows: 

(i) Integration of a predictor model into standard 

CMA-ES for further performance enhancement with 

no extra efforts on tunning predictor model hyper-

parameters.  

(ii) Formulation of the cup flipping task as an RL 

problem, introducing proper objective function 

considering the arm constraints.  

(iii) Evaluation of CMA-ES with active update and 

Mirrored Sampling on the flipping task. 

2. Methods

In this section, we give a brief overview on our new 

algorithm CMA-ES with Simulated Rollouts (CMA-

ES-SR) and the trajectory formulation using dynamic 

movement primitives.  

2.1. Covariance Matrix Adaptation Evolutional 

Strategies with Simulated Rollouts (CMA-ES-SR) 

CMA-ES is an optimizer that searches for the 

optimal parameters 𝜃𝑜𝑝𝑡 that minimizes the cost 𝐶. In

standard CMA-ES, a multi-variate Gaussian 

distribution is used to characterize the distribution of 

candidate solutions (samples).  In each generation, 

𝑁𝑝𝑜𝑝 candidate solutions are drawn such that

𝜃1:𝑁𝑝𝑜𝑝
~ 𝜇 + 𝜎𝒩(0, ∑), where the mean vector 𝜇 ∈

ℝ𝐷 and 𝐷 represents the dimension of 𝜃, the step size 

𝜎 ∈ ℝ1 determines the degree of exploration and ∑ ∈
ℝ𝐷×𝐷 is the covariance matrix. After each sample is 

tested, 𝜇, 𝜎 and ∑ get updated to increase the sampling 

probability of better candidate solutions. A detailed 

explanation on the update rule is listed in [25]. 

However, the standard CMA-ES only uses the 

previous samples for updating 𝜇 , 𝜎  and ∑, which is 

data-inefficient. We suggest integrating a predictor 

model ℳ, such that  

ℳ: 𝜽 → 𝐶 with  𝜽 ∈ ℝ𝐷, 𝐶 ∈ ℝ1. (1) 

The predictor ℳ  is fit to all the tested candidate 

solutions in each iteration of CMA-ES. With an 

available model, more promising candidate solutions 

can be proposed than random samples, leading to faster 

convergence [12]. In this paper, we use a multi-layer 

perceptron as it is a universal function approximator 

[13]. However, any arbitrary predictor model can be 

used in general. 

The algorithm is shown in Fig. 1. With a learned 

predictor model, 𝑁  samples are drawn 𝜃1:𝑁~ 𝜇 +
𝜎𝒩(0, ∑) , with 𝑁 ≫ 𝑁𝑝𝑜𝑝.  The best 𝑁𝑏𝑒𝑠𝑡  solutions

are picked according to the model prediction. The final 

𝑁𝑝𝑜𝑝  candidate solutions 𝛳𝑝𝑜𝑝  consist of the 𝑁𝑏𝑒𝑠𝑡

predictor-proposed solutions 𝛳𝑚𝑜𝑑𝑒𝑙  and 𝑁𝑝𝑜𝑝−𝑁𝑏𝑒𝑠𝑡

samples 𝛳𝑟𝑎𝑛𝑑𝑜𝑚 randomly drawn from the Gaussian

distribution. The value of 𝑁𝑏𝑒𝑠𝑡 adjusts itself based on

the quality of 𝛳𝑚𝑜𝑑𝑒𝑙  and 𝛳𝑟𝑎𝑛𝑑𝑜𝑚 . Meanwhile, we

also design a heuristic determining to which extent we 

trust the model. It is measured by the quality of 𝛳𝑚𝑜𝑑𝑒𝑙

and 𝛳𝑟𝑎𝑛𝑑𝑜𝑚 , where the mean and variance of cost

values from both are calculated. We use the optimistic 

bound similar to the acquisition function in Gaussian 

process. Since CMA-ES minimizes the objective 

function, the optimistic bound is calculated by 

subtracting the variance. When the quality of 𝛳𝑚𝑜𝑑𝑒𝑙

is better than that of 𝛳𝑟𝑎𝑛𝑑𝑜𝑚, we trust the model more

by incrementing 𝑁𝑏𝑒𝑠𝑡 by one.

Additionally, we set an upper bound for  𝑁𝑏𝑒𝑠𝑡 to

avoid the dominance of the predictor-proposed 

solutions over the random solutions. Without this 

upper bound, one potential consequence is that the 

final candidate solution contains mainly predictor-

proposed solutions, i.e., over-trust on the predictor. In 

the case where the predictor fails to fit the cost 

landscape but happens to render better solutions than 

random samples, the algorithm will converge to local 

optima. For small input dimensions, we also restrict 

the upper bound of 𝑁𝑏𝑒𝑠𝑡 and 𝑁 so that the final set of

candidate solutions still follow the Gaussian 

Fig. 3. MLP Model contribution on Ackley with input 

dimension of 32. 𝑁𝑝𝑜𝑝 is 14.

Fig. 1. CMA-ES-SR algorithm 
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distribution. Otherwise, the final offsprings can cluster 

due to the model-fitted landscape especially in low 

dimension, and no longer follow the original Gaussian 

distribution. This can cause less exploration and a non-

desired update in 𝜇, 𝜎 and ∑. In high dimensions, 𝑁 

samples remain sparse in space and the final offspring 

distribution will not be affected by the model-fitted 

landscape. In short, one advantage of our algorithm is 

the preservation of the Gaussian distribution on both 

𝛳𝑚𝑜𝑑𝑒𝑙  and 𝛳𝑟𝑎𝑛𝑑𝑜𝑚. Therefore, it does not affect the 

Gaussian parameter update. 

The hyperparameters of this algorithm are the 

boundaries of 𝑁 and 𝑁𝑏𝑒𝑠𝑡. Typically, a batch forward 

is computationally cheap. One can increase the upper 

bound of 𝑁 to exceed 4096 if sufficient computation 

power is available. The lower bound of 𝑁  ( 𝑁𝑝𝑜𝑝
𝐷 ) 

scales exponentially with the number of dimensions 𝐷, 

the base can be chosen as values other than  𝑁𝑝𝑜𝑝 as 

long as the number of model proposed samples 𝑁𝑏𝑒𝑠𝑡 

remains sparse in low dimensions. The default setting 

of 𝑁𝑝𝑜𝑝 2⁄  takes into account that half of the offsprings 

affect the update. 

The details of model learning are presented in 

Supplementary Information, Section 5. 

 

2.2. Dynamic Movement Primitives (DMP) 
 

DMPs is an approach to characterize smooth 

trajectory profiles of a robot [9][10][11]. The trajectory 

expressiveness is achieved by combining a second-

order spring-damper system with a learnable external 

forcing function 𝑓(𝑡).  
 

 �̈� = 𝛼(𝛽(𝑔 − 𝑦) − �̇�) + 𝑓(𝑡), (2) 

 𝑓(𝑡) =
∑ 𝛹𝑖

𝑁
𝑖=1 (𝑡)𝑤𝑖

∑ 𝛹𝑖
𝑁
𝑖=1 (𝑡)

.  (3) 

 

The system describes the trajectory in terms of the 

position 𝑦 , velocity �̇�  and acceleration �̈�  given the 

goal position 𝑔 and the damping coefficients 𝛼 and 𝛽. 

Forcing function 𝑓(𝑡)  adds to the trajectory 

complexity by incorporating a set of weighted sum of 

𝑁  basis functions 𝛹𝑖(𝑡), which can either be stroke-

based or rhythmic-based. Variable 𝑡  denotes the 

discrete time. For a cup flipping task, we applied 

stroke-based basis functions 
 

 𝛹𝑖(𝑡) = exp [(𝑡 − 𝑏𝑖)
2 2ℎ𝑖⁄ ]. (4) 

 

It is characterized as a set of Gaussian Basis Functions 

(GBFs) with pre-defined mean 𝑏𝑖 and width ℎ𝑖.  

 

 

3. Results and Discussion 
 

We evaluated the performance of CMA-ES-SR on 

different benchmark optimization problems using the 

same neural network with no additional tunning. In 

addition, we started to investigate an episodic RL 

problem [7] where the goal for a 7-DoF robot arm is to 

flip a cup filled with liquid around 360 degrees while 

achieving minimal spillage. 

3.1 Benchmarks 

 

For the same benchmark function, we are also 

interested in the performance enhancement of CMA-

ES-SR in different input dimensions. And the detailed 

settings of benchmarks are shown in Supplementary 

Information, Table 3. 
 

3.2 Performance of CMA-ES-SR on benchmarks 
 

In order to evaluate the performance of CMA-ES-

SR compared to the standard CMA-ES, we quantified 

the following metrics:  

(i) The convergence acceleration rate 𝑃, 

(ii) The best cost value found within a fixed number of 

iterations, 

(iii) The number of predictor-proposed samples 𝑁𝑏𝑒𝑠𝑡 

w.r.t. the number of generations (iterations) and the 

number of predictor-proposed samples used for mean 

and covariance update,  

The convergence acceleration 𝑃  is defined as 

(𝐼1 − 𝐼2) min (𝐼1, 𝐼2)⁄ ,  where 𝐼1  and 𝐼2  refer to the 

minimal number of generations required to achieve a 

certain threshold in cost value respectively from CMA-

ES and CMA-ES-SR.  

The learning curve of CMA-ES-SR on some 

exemplary benchmarks are shown in Fig. 2. It can be 

observed that our algorithm achieves faster 

convergence than the original CMA-ES in cases where 

the learned model is capable of generalizing the cost 

landscape. Under the circumstance where the model 

fails to learn the cost landscape, it does not affect the 

overall optimization process and behaves similarly as 

the standard CMA-ES. This corresponds to the case of 

Rosenbrock function, where the cost value is of large 

magnitude. This poses challenges on regression using 

MLP and the predictor fails to fit or generalize with our 

current configuration. Nonetheless, a similar learning 

curve as the standard CMA-ES can still be observed. 

Detailed statistics on the convergence acceleration rate 

𝑃 on all tested benchmarks are illustrated in Table 1. 

If one compare the same benchmark of different input 

dimensions, a consistent performance boost with 

increasing input dimension can be observed on 

average. 

We also show metric(iii) for one benchmark in Fig. 

3 as an example. Most of the benchmarks also register 

similar patterns. It can be observed that the number of 

predictor-proposed solutions 𝑁𝑏𝑒𝑠𝑡  nearly reaches its 

upper bound, and the number of accepted solutions 

proposed by the model takes similar value as 𝑁𝑏𝑒𝑠𝑡 . 

This shows predictor-proposed samples are of higher 

quality than random samples. It can be concluded that 

the model indeed contributes to higher-quality 

solutions than random samples when 𝑁𝑏𝑒𝑠𝑡 reaches its 

upper bound. At this stage, a faster convergence. The 

quality of proposed samples is highly dependent on the 

current step size, mean vector, data distribution and 

trained model. In the later phase, random samples are 

at least as good as model-proposed samples, CMA-ES-

SR behaves similarly as standard CMA-ES and the 

algorithm starts to converge. 
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3.3. Performance of CMA-ES on flipping task 
 

      For the flipping task, we used the package Pycma 

[4]. The trajectories are trained from scratch on two 

robot arms Franka Panda and KUKA-iiwa R820 in V-

REP simulator [14]. All the settings are the same 

except for the joint constraints, where KUKA-iiwa has 

stricter joint constraints. Hence, the performance on 

KUKA-iiwa is restricted. We demonstrated one 

learned trajectory of Panda in Fig. 4. It can be 

illustrated that the robot arm learns to flip the cup 

vertically down and finally stopped at an upright pose, 

with no spillage. We validated the performance five 

times with a Gaussian noise of zero-mean and variance 

of 0.2 applied on each joint, shown in Table 2. 
 

Table 2. Learned trajectory performance per robot type 

 

Robot Type 
Spillage 

(%) 
𝜑

𝐦𝐚𝐱
 (°) 𝜑

𝐞𝐧𝐝
 (°) 

Franka Panda 0±0 179.89±0.04 0.18±0.06 

KUKA iiwa 

R820 
23±6 136.01±0.07 1.39±0.08 

 
 

4. Conclusions 
 

Reducing the number of required rollouts in robot 

tasks requires sample-efficient RL algorithms. The 

popular RL algorithm CMA-ES fails to scale to high 

dimensions. To improve the sample efficiency, we 

extended the standard CMA-ES by learning a predictor 

to propose high-quality samples. We tested our new 

algorithm CMA-ES-SR on different benchmark 

optimization functions and showed that CMA-ES-SR 

outperforms the standard CMA-ES by at least 50% in 

terms of convergence speed. With the increasing 

dimension, the performance gain is higher. The 

limitation is the additional overhead in fitting the 

model. In addition, we demonstrated how to learn a cup 

flipping task in 7-DoF robot arms which features fast 

robot motion and fulfills the joint angle and angular 

velocity constraints. The future work is to evaluate the 

performance of CMA-ES-SR on the flipping task and 

extend to different predictor models. 

 
 

References 
 

[1]. M. Jamil, X. S. Yang, A literature survey of benchmark 

functions for global optimization problems. arXiv 

preprint arXiv:1308.4008, 2013 

[2]. J. Kober, J. A. Bagnell, J. Peters, Reinforcement 

learning in robotics: A survey. The International 

Journal of Robotics Research, 32(11), 2013, pp.1238-

1274. 

[3]. A. R. Conn, K. Scheinberg, L. N. Vicente, Introduction 

to derivative-free optimization, Siam., 2009. 

[4]. N. Hansen, Y. Akimoto, and P. Baudis. CMA-

ES/pycma on Github. Zenodo, 

DOI:10.5281/zenodo.2559634, February 2019. 

[5]. N. Hansen, A. Ostermeier, Adapting arbitrary normal 

mutation distributions in evolution strategies: The 

covariance matrix adaptation. In Proceedings of IEEE 

international conference on evolutionary computation, 

1996, pp. 312-317.  

[6]. M. P. Deisenroth, G. Neumann, J. Peters, A survey on 

policy search for robotics, Foundations and Trends in 

Robotics, 2(1–2), 2013, pp. 1-142. 

[7]. A. Kupcsik, M. P. Deisenroth, J. Peters, A. P. Loh, P. 

Vadakkepat, G. Neumann, Model-based contextual 

policy search for data-efficient generalization of robot 

skills. Artificial Intelligence, 247, 2017, pp. 415-439. 

[8]. S. Ioffe, C. Szegedy, Batch normalization: 

Accelerating deep network training by reducing 

internal covariate shift. arXiv preprint 

arXiv:1502.03167, 2015 

[9]. S. Schaal, Dynamic movement primitives-a 

framework for motor control in humans and humanoid 

robotics, In Adaptive motion of animals and machines, 

Springer, 2006, pp. 261-280. 

[10]. E. Rückert, A. d'Avella, Learned parametrized 

dynamic movement primitives with shared synergies 

for controlling robotic and musculoskeletal systems. 

Frontiers in computational neuroscience, 7, 2013, 138. 

[11]. A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. 

Schaal, Dynamical movement primitives: learning 

attractor models for motor behaviors. Neural 

computation, 25(2), 2013, pp. 328-373.  

[12]. F. Hutter, H. H. Hoos, K. Leyton-Brown, Sequential 

model-based optimization for general algorithm 

configuration. In International conference on learning 

and intelligent optimization, 2011, pp. 507-523 

[13]. T. Chen, H. Chen, Universal approximation to 

nonlinear operators by neural networks with arbitrary 

activation functions and its application to dynamical 

systems, IEEE Transactions on Neural Networks, 6(4), 

1995, pp. 911-917 

[14]. E. Rohmer, S. P. Singh, M. Freese, CoppeliaSim 

(formerly V-REP): a Versatile and Scalable Robot 

Simulation Framework, In Proceedings of the 

International Conference on Intelligent Robots and 

Systems (IROS), 2013. 

[15]. I. Loshchilov, A computationally efficient limited 

memory CMA-ES for large scale optimization. In 

Proceedings of the 2014 Annual Conference on 

Genetic and Evolutionary Computation, 2014, pp. 

397-404. 
[16]. D. V. Arnold, & N. Hansen, Active covariance matrix 

adaptation for the (1+ 1)-CMA-ES. In Proceedings of 

the 12th annual conference on Genetic and 

evolutionary computation, 2010, pp. 385-392. 

[17]. D. Brockhoff, A. Auger, N. Hansen, D. V. Arnold,  

T.Hohm, Mirrored sampling and sequential selection 

for evolution strategies. In International Conference 

on Parallel Problem Solving from Nature, 2010, pp. 

11-21 

[18]. H. Wang, M. Emmerich, T. Bäck, Mirrored orthogonal 

sampling with pairwise selection in evolution 

strategies. In Proceedings of the 29th Annual ACM 

Symposium on Applied Computing, 2014, pp. 154-156. 

[19]. D. Vermetten, S. van Rijn, T. Bäck, C. Doerr, Online 

selection of CMA-ES variants. In Proceedings of the 

Genetic and Evolutionary Computation Conference, 

2019, pp. 951-959.  

[20]. S. van Rijn, H. Wang, B. van Stein, T. Bäck, Algorithm 

configuration data mining for cma evolution strategies. 

In Proceedings of the Genetic and Evolutionary 

Computation Conference, 2017, pp. 737-744 



2nd International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2020),  

1-3 April 2020, Berlin, Germany 

[21]. B. Bischl, O. Mersmann, H. Trautmann, M. Preuß, 

Algorithm selection based on exploratory landscape 

analysis and cost-sensitive learning. In Proceedings of 

the 14th annual conference on Genetic and 

evolutionary computation, 2012, pp. 313-320. 

[22]. Z. Bouzarkouna, A. Auger, D. Y. Ding, Local-meta-

model CMA-ES for partially separable functions. In 

Proceedings of the 13th annual conference on Genetic 

and evolutionary computation, 2011, pp. 869-876.  

[23]. I. Loshchilov, F. Hutter. Fixing weight decay 

regularization in adam , 2018 

[24]. A. Auger, N. Hansen, A restart CMA evolution 

strategy with increasing population size. In 2005 IEEE 

congress on evolutionary computation, pp. 1769-1776, 

2005. 

[25]. A. Auger, N. Hansen, Tutorial CMA-ES: evolution 

strategies and covariance matrix adaptation. In 

Proceedings of the 14th annual conference companion 

on Genetic and evolutionary computation, 2012, pp. 

827-848. 

 

 

 
 

Fig. 2. Learning curves on exemplary benchmarks: The tasks are specified by a function and the feature dimension. and the 

incumbent settings (the best solutions found so far) are shown. The population size is ⌊4 + 3 ln(𝐷)⌋. For each problem, we 

ran our algorithm CMA-ES-SR and standard CMA-ES algorithm five times, the mean and variance of the learning curves are 

shown.  

 

Table 1. Performance of CMA-ES-SR on different benchmarks, where the mean and variance of final converged value in the 

given iteration are shown. The columes 𝑃50, 𝑃75, 𝑃90 refers to the convergence acceleration rate with the threshold set as 50%, 

75%, 90% percentile of the final convergence value of standard CMA-ES.  
 

Benchmark Function, 

Dimension 
Iterations 

CMA-ES CMA-ES-SR (NN) 

mean var mean var 𝑃50 (%) 𝑃75 (%) 𝑃90 (%) 

Ackley, 2 50 0.018 0.01 0.012 0.01 75 22 43 

Ackley, 8 150 0.080 0.04 0.254 0.48 14 71 108 

Ackley, 32 350 12.963 9.83 4.408 8.32 91 161 261 

DejongsF5, 2 100 0.399 0.49 0.399 0.49 29 7 13 

DejongsF5, 8 100 1.402 1.29 2.747 2.41 -300 0 62 

DejongsF5, 20 200 1.408 0.74 0.896 0.61 0 -33 160 

Griewank, 2 50 0.061 0.02 0.062 0.03 0 -25 114 

Griewank, 8 150 0.181 0.10 0.049 0.05 100 32 33 

Griewank, 32 350 0.064 0.01 0.031 0.00 -29 95 14 

Michalewicz, 2 50 -1.841 0.06 -1.866 0.01 -50 -67 -75 

Michalewicz, 10 100 -4.415 0.87 -4.491 1.64 107 16 30 

Michalewicz, 20 200 -6.875 1.24 -7.417 0.94 467 1343 178 

Rosenbrock, 2 50 0.031 0.04 0.547 0.85 100 -50 -25 

Rosenbrock, 8 100 5.977 0.91 6.346 0.84 0 0 17 

Rosenbrock, 16 150 14.999 0.56 16.238 1.81 0 -14 5 

Rosenbrock, 32 250 53.157 42.57 33.594 1.63 40 -21 3 

Sphere, 8 100 0.022 0.01 0.010 0.00 50 50 70 

Sphere, 16 150 0.167 0.06 0.031 0.01 25 40 94 

Sphere, 32 200 1.693 0.51 0.277 0.08 25 47 131 

Sum absolute, 8 100 5.376 0.11 5.139 0.02 -25 46 72 

Sum absolute, 16 200 5.398 0.11 5.104 0.01 -11 33 67 

Sum absolute, 32 250 8.023 0.52 5.672 0.11 33 146 125 

Averaged Performance / 4.467 / 3.093 / 33 86 68 

 



2nd International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2020),  

1-3 April 2020, Berlin, Germany 

Supplementary Information 
 

5. Algorithm Details 
 

The network architecture we used is a three-layer 

MLP with 1024 nodes on each layer. We added two 

batch normalization layers [8] after non-linear 

activation layer PReLU. We used AdamW [23] as the 

optimizer with the default learning rate of 10−3.  Loss 

Metric is mean square error with mean reduction. In 

order to prevent overfitting, we conducted early 

stopping with a tolerance of nine iterations and 

performed train-test split on the experience in the 

replay buffer. The validation dataset consists of the 

samples collected from the last optimization iteration. 

Since CMA-ES updates the Gaussian mean and 

variance in an accumulative manner, we assume the 

query points in current iteration are not far away from 

the query points in the last iteration. A small error in 

validation set infers similar error for the query points 

in current iteration given the trained network. In the 

first iteration, we did not perform any training as no 

dataset from previous iterations is available. In the 

second iteration, only samples from the first iteration 

are available, hence, we defined the validation set to be 

one-fifth of the samples retrieved in the first iteration. 

The remaining samples serve as training samples. 

From the third iteration on, the training and validation 

dataset were chosen as explained above. In each 

iteration, we retrained MLP from scratch. All of the 

samples were pre-processed to have zero-mean and 

unit-variance in each dimension.  

 

6. Experiment Details 
 

We validated the performance of CMA-ES and 

CME-ES-SR on different benchmark optimization 

problems suggested in [1]. The problem settings differ 

from each other in the domain for each input feature. 

The details of the problem setting are shown in Table 

3. The initial mean vector μ0 passed to CMA-ES(-SR) 

was chosen uniformly from the input domain, while 

the initial variance 𝜎0 passed to CMA-ES optimizer to 

be 0.3(𝜇𝑚𝑎𝑥 − 𝜇𝑚𝑎𝑥). For each benchmark and each 

input dimension, we ran the experiment five times 

respectively for CMA-ES, CMA-ES-SR with two 

models. 
 

Table 3. The settings of benchmark optimization functions 

 

Optimization Problems Domain 𝛍𝟎 

Ackley [-32,32]  

DeJong F5 [-65,65] 

Griewank [-50,50] 

Michalewicz [0, 𝜋] 

Rosenbrock [-2,2] 

Sphere [-10,10] 

Sum of absolute value [-10,10] 

 

In the cup flipping task, the learnable parameters 𝜃 

describe the robot trajectories 𝜏  in joint space. The 

parameters 𝜃  consist of 10 weight parameters 𝑤𝑖  for 

GBFs, two meta-parameters 𝛼  and 𝑔.  We 

characterized each of the seven joint trajectory profiles 

with one DMP so that the total number of learnable 

parameters is 84. 𝛽  is chosen as 𝛼 4⁄ , so that the 

system is critically-damped [9]. The trajectory time is 

fixed as five seconds. The cost function is defined as 
 

 𝐶1 = 𝑎1𝐶𝑠𝑝𝑖 + 𝑎2(180 − 𝜑𝑚𝑎𝑥) +

𝑎3𝜑𝑒𝑛𝑑 + 𝑎4𝛿𝑐𝑜𝑙𝐶𝑐𝑜𝑙 ,  
𝐶2 = 𝐶𝑤𝑜𝑟𝑠𝑡 + 𝑎5𝛿𝑐𝑜𝑛𝐶𝑐𝑜𝑛,  

(6) 

 

where 𝐶1  is the case when joint angle and angular 

velocity constraints are satisfied and 𝐶2 corresponds to 

the case of violation. The term 𝜑𝑚𝑎𝑥  is the largest 

difference of the cup normal vector to the vector (0,0,1) 

in 3D space throughout the whole trajectory, while the 

term 𝜑𝑒𝑛𝑑 refers to the same angle difference but at the 

end of the trajectory. Initially, cup normal vector is 

(0,0,1). 𝐶𝑤𝑜𝑟𝑠𝑡  denotes the worst possible of 𝐶1 . 𝛿𝑐𝑜𝑙 

and 𝛿𝑐𝑜𝑛  are indicator functions telling whether 

collision happens and robot constraints are met. The 

cost maximizes the rotation angle of the cup 𝜑𝑚𝑎𝑥 

while achieving minimal spillage 𝐶𝑠𝑝𝑖 and the upright 

final pose 𝜑𝑒𝑛𝑑. When the constraints are not satisfied, 

the cost is 𝐶𝑤𝑜𝑟𝑠𝑡 plus an extra cost for exceeding the 

joint angle and joint velocity constraints. With such 

design, the robot arm constraints must be first satisfied 

so that it can learn to perform flipping.  


