Learn Python Programming

This site contains materials and exercises for the Python 3 programming language.
In this course you will learn how to write code, the basics and see examples.

Python is a programming language supports several programming paradigms including
Object-Orientated Programming (OOP) and functional programming.

Related course: Complete Python Programming Course & Exercises

Table of Contents:

Overview of articles and exercises:

Introduction

e 7 reasons to leam Python
* Why Python is Awesome

Learn Python

o Getting started

e Execute Python scripts
o Variables

e Strings

e Replace

» Join

e String find

e Split

e Random numbers

o Keyboard input

Control structures

o [f statements
» [or Loops
e While loop

Data and operations

e Functions

o |ist

e List operations
e Sort list

¢ Range function
e Dictionary

o Read file

o Write file

+ Nested loops
e Slices
 Multiple return
e Scope

o tmeand dae
o [ry exception
o owy 10 use oo and pyp

OOP

e Class

e Constructor

o Getter and setter
» Modules

e Inheritance

o Static method

o |[terable

¢ Class method

o Multine Inheritanos

e Virtualenv
e Enumerate
e Pickle

Variables and Types

Python supports different types of variables (datatypes) such as whole numbers, floating point
numbers and text.

You do not need to specify the datatype of a variable, you can simply assign any value to a
variable. Type the program below and start it.

Related course: Complete Python Programming Course & Exercises

Datatypes

Varables can be of several data types. Python supports integers (numbers), floating point
numbers, booleans (true or false} and strings (text).

Python will determine the datatype based on the value you assign to the variable. If you
create a variable x, x = 3, then Python assumes its an integer. But if you assign x = 1.5 then
Python knows its not an integer but floating point numiber.

Example

The example below shows you several variables. These can be assigned as you wish. Once
defined you can print them or use arithmetics.

#1/usr/bin/python

x =3 # a whole number

f = 3.1415926 # a floating point number
name = "Python" # a string

print(x)

print(£f)

print(name)

combination = name + " " + name
print(combination)

sum = £ + £
print(sum)

Run the program from terminal or with an IDE.

python example.py

In the example we have several variables (x,f,name} which are of different data types. Later In
the program we create more variables (combination, sum).

Variables can be defined anywhere in the program. Variable names can be one to n letters.

Python Strings (With Examples)

Any time you want 1o use text in Python, you are using strings. Python understands you want
to use a string if you use the double-quotes symbol.

Once a string is created, you can simply print the string variable directly. You can access
characters using block quotes.

Related course: Complete Python Programming Course & Exercises
Strings

Define string
Variables can be of the string data type. They can hold characters or text.

If you create string variable x. You can show it on the screen using the print() function.

x = "Hello"
print(x)

String indexing
Inaividual characters can be accessed using blockquotes, counting starts from zero.

print(x[0])
print(x[1])

The first character starts at zero. This may be a bit counter intuitive, but has historic reasons.

Sub string

By using a colon you can create a substring. If no start or end number is written, Python
assumes you mean the first character or last character.

Try the example below:
% = "hello world"
s = x[0:3]
print(s)

s = x[:3]
print(s)

Complete example

This example does a lot of string operatlons like printing text, numbers, combining strings,
slicing and accessing elements.

Try the program below:

How to read keyboard-input?

In Python and many other programming languages you can get user input. Do not worry, you
do not need to write a keyboard driver

The input() function will ask keyboard input from the user. If you are still using Pythen 2, you
have the funciion raw_input().

Related course: Complete Python Programming Course & Exercises

Example

The input function prompts text if a parameter is given. The functions reads input from the
keyboard, converts it to a string and removes the newline (Enter).

Type and experiment with the script below (save as key.py)

#1!/usr/bin/env python3

name = input('What is your name? ')
print('Hello ' + name)

job = input('What is your job? ')
print('Your job is ' + job)

num = input('Give me a number? ')
print('You said: ' + str(num))

Qutput should be something like this, depending on your terminal;

user@cdebian: ~
| Fle Edit View Search Terminal Help

i To=h PML exanple.py

By the time you are reading this, perhaps you are used to voice input or other types of
human-computer interaction. Eitherway keyboard input is still very useful for coding.

ff you are a beginner, then | highly recommend this book.

Exercise

Try these exercises:

1. Make a program that asks a phone number.

If Statements Explained

A program sometimes may have to make choices. These choices can execute different code
depending on certain condition.

In Python the if statement is used for conditional execution or branching. An if statement is
one of the control structures. (A control structure controls the flow of the program.)

The if statement may be combined with certain operator such as equality (==), greater than
(>=), smaller than {<=) and not equal (!==). Conditions may be combined using the keywords
or and and.

Related course: Complete Python Programming Course & Exercises

Introduction

In the example below we show the use if statement, a control structure. An if statement
evaluates data (a condition) and makes a choice.

Lets have al look at a basic If statement. In its basic form it looks like this:

#!/usr/bin/env python3
if <condition>:
<statement>

In this form

« is the condition evaluated as a Boolean, it can either be True or False.
» s one more lines of code. Each of those lines must indented with four spaces.

Several examples of the if statements are shown below, you can run them in the Python
interpreter:

#!/usr/bin/env python3
>>»> x =3
>>> if x < 10:

print('x below ten')

x below ten
>>> if x > 10:
print('x is greater than ten')

>>> if x > 1 and x < 4:
print('x is in range')

x is in range
>>>

it's very important to have four spacas for the statements. Every if statement needs a colon.
More than one condition can be combined using the and keyword.

Indentation and Blocks

An if statement doesn't need to have a single statement, it can have a block. A block is
more than one statement.

The example below shows a code block with 3 statements (print). A block is seen by Python
as a single entity, that means that if the condition is true, the whole block is executed (every

statement).

#1/usr/bin/env python3

X =4

if x < 5:
print("x is smaller than five")
print(“this means it's not equal to five either")
print("x is an integer")

All programming languages can create blocks, but Python has a unigue way of doing it. A
block is defined only by its indention,

Other programming languages often used symbols like { , } orwords begin and

end .
So the baslc form of a Python if statement block is:
if <condition>:
<statement>
<statement>

<statement>

<statement> # not in block

After completing the if statement, Python continues execution of the program. The if
statement ends by its indetion, it goes back four spaces.

Visual example of if statement (click to enlarge):

True False
Condition

I alternate action]

l

Rest of Code

Python "for" Loops (lteration
Introduction)

Programs sometimes need to repeat actions. To repeat actions we can use a for loop.
A for loop is written inside the code. A for loop can have 1 or more instructions.

A for loop will repeat a code dlock. Repeation is continued until the stop condition is met. i
the stop condition is not met it will loop infintely.

These instructions (loop) is repeated untit a condition is met.

Related course: Complete Python Programming Course & Exercises

Example

In the exercise below we will repeat actions on every item of a list.

The first loop will repeat the print functionfor every item of the list.
The second loop will do a calculation on every element of the list num and print the resut.

Type the code below and run the program.

#!/usr/bin/env python3

city = ['Tokyo', 'New York', 'Toronto', 'Hong Kong']
print('Cities loop:')
for x in city:

print('City: ' + x)

print('\n') # newline
num = [1,2,3,4,5,6,7,8,9]
print('x"2 loop:')

for x in num:

¥y =x *x
print(str{x) + '*' + str(x) + '=' + str(y))

Save the file as loopexample.py
Then run the code with the command:

python loopexample.py

Schematically a for loop does this:

Python "while" Loops (Indefinite
Iteration)

A while loop repeats code until the condition is rmet. Unlike for loops, the number of iterations
in it may be unknown. A while loop aiways consists of a condition and a block of code.

A while loop ends if and only if the condition is true, in contrast to a for loop that always has a
finite countable number of steps.

Related course: Complete Python Programming Course & Exercises

Example

While loop example

The while loop below defines the condition (x < 10) and repeats the instructions until that
condition is true. Type this code:

#1/usr/bin/python
x =3
while x < 10:

print(x)
X=x+1

Executes the code below until the condition x < 10 is met, Unlike a for loop, the tterator i is
increased in the loop.

Save then runt with your Python IDE or from the terminal.

bk 8 o
Linux@linux:=/pythonprojects$
linux@linux:~/pythonprojects$ python loop.py
3

4
5
6
7
8
9
L

inux@linux:~/pythonprojectss$ [l

You can &lso create infinite loops, this is when the condition never changes.

Functions in Python (With
Examples)

To group sets of code you can use functions. Functions are small parts of repeatable code.
A function accepts parameters.

Without functions we only have a long list of instructions. Functions can help you organize
code. Functions can also be reused, often they are included in modules.

Related course: Complete Python Programming Course & Exercises

Example

Functions

Functions can bs seen as executable code blocks. A function can be used once or more.

A simple example of a function is:

def currentYear():
print('2018"')

currentYear ()

The function is immediately called in this example. Function definitions always start with the
def keyword.

Functions can be reusable, once created a function can be used in muttiple programs. The
print function Is an example of that.

Functions with parameters
In the example below we have parameter x and y. Type this program and save it as
summation.py

#!/usr/bin/env python3

def f(x,y):
return x*y

print(£(3,4))

In this example we have two functions: fix,y) and print(). The function f(x,y) passed its output
to the print function using the retum keyword.

Python Lists (With Examples)

List can be seen as a collection: they can hold many variables. List resemble physical lists,
they can contain a number of items.

Alist can have any number of elements. They are similar to arrays in other programming
languages. Lists can hold all kinds of variables: integers (whole numbers), floats, characters,
texts and many more,

Related course: Complete Python Programming Course & Exercises

Example

Empty list

Lets create an empty list. To define an empty list you should use brackets.
Brackets is what tells Python that the object is a list.

list = []

Lists can hold both numbers and text. Regardiess of contents, they are accessed in the
same fashion.

To access a list add the id between the brackets, such as list[Q], list{1] and so on.

Define list

An empty list was defined above. Lists can contain all kinds of data.
You can create numeric lists like this:

ratings = [3,4,6,3,4,6,5 1}
Lists can contain strings or characters:

ratings = ['A','A','B','A','C','A']
To output simple print them

print(ratings)

You can interact item by itern using a for loop.

Access list items

You can access a list item by using brackets and s index. Python starts counting at zero,
that means the first element is zero.

List operations

Lists can be changed with several methods. What are these methods?

To add items to a list, you can use the append() riicimod. Call the methiod on the [, 1=
parameter contains the item to add. Calling append(3) would add 3 to the list. To remove an
itemn from the end of the list, you can use the pop() method.

Lists can be accessed like traditional arrays, use the block quotes and index to get an item.

Related course: Complete Python Programming Course & Exercises

Example

Lists can be madiied using their mathods.
In the axample below we create a list and use methods to change the list contents,

Append and pop
Type tha progam shawn below and run it
x = [3,4,5]
x.append(6)
print(x)
x.append(7)

print(x)
x.pop()

print(x)
Aceess items

To acoess tems, Simply tss e bisok auslss:

x = [3,4,5]

print(x[0])
print(x[1])

print(x[-1])
If you are a beginner, then | highly recommeni this book.

Exercise

Try the exercises balow

1. Giventhe listy = [6.4,2] add the ltarns 12, B ard 4.
2. Chanue the 2nd item of the izt to 3.

After completing these ceriinus with the next axercize.

Class(es) and Objects in Python

Python class is concept of “object oriented programming”. Python is an object oriented
programming language (oop). OQOP is a way 1o build software.

With OOP you can make your program much more organized, scalable, reusable and
extensible. The OOP concept can be a bit weird. It can be challenging to grasp, but it's a
very powerful concept.

Related course: Complete Python Programming Course & Exercises

Example

Objects

In Python, you can define objects. An object is a collection of methods and variables. Objects
live somewhere in the computers memory. They can be manipulated at runtime.

Lets create a theoritcal example, we create an object dog. Creating an object is just one line
of code:

ocbjl = dog()

Each object can have variables. The values of those variables are unique to the object. We
set object variables (name,age)

objl.name = "Woof"
objl.age = 5

if methods exist for an object, they can be called. The objects unique variables can be used
in those methods.
The methods can be used muitiple times:

objl.bark()
objl.bark()

In your prograr you can have multiple objects. Those objects can be of the same type or a
different type.

objl = dog()
obj2 = dog()
obj3 = dog()

obj4 = bird()

So how does Python know the type of an object? How does it know which methods and
variables exist for a typa? They are defined in a class.

What is a constructor in Python?

The constructor is a method that is called when an object is created. This method is defined
in the class and can be used to initialize basic variables.

If you create four objects, the class constructor is called four times. Every class has a
consiructor, but its not required to explicitly defing it.

Related course: Complete Python Programming Course & Exercises

Example

Constructor
Each time an object is created a method is called. That methods is named the constructor.

The constructor is created with the function init. As parameter we write the self keyword,
which refers to itself (the object). The process visually is:

cal Class

Constructor > Retum

Start Create Obj

Inside the constructor we initialize two variables: legs and ams. Sometimes variables are
named properties in the context of object oriented programming. We create one object (bob)
and just by creating it, its variables are initlalized,

class Human:
def _ init_ (self):
self.legs = 2
self.arms = 2

bob = Human()

print(bob.legs)

The newly created ohject now has the variables set, without you having to define them
manually. You could create tens or hundreds of objects without having to set the values each
time.

python __init_

The function init{self) builds your object. ts not just variables you can set hers, you can call
class methods too. Everything you need to initialize the object(s).

Lets say you have a class Plane, which upon creation should start flying. There are marny
steps involved in taking off: accelerating, changing flaps, closing the wheels and so on.

The default actions can be defined in methods. These methods can be called in the
constructor.

class Plane:

Getter and Setter in Python

A class can have one more variables (sometimes called properties). When you create objects
each of those objects have unique values for those variables.

Class variables need not be set directly: they can be set using class methods. This is the
object orientated way and helps you avoid mistakes.

Related course: Complste Python Programming Course & Exercises

Example

We create a class with a properties. From that class we create several objeclts.

class Friend:
def _ init (self):
self.job = "None"

Alice = Friend()

Bob = Friend()

These objects du not have the property (o) sat. To gat it, we could 221 1 dirsctly but that's 2

bad practice. instead we czsle lwo maihcss: gefdobl ar setllah),

class Friend:
def _ init (self):
self.job = "None"

def getJob(self):
return self.job

def setJob(self, job):
self.job = job

Alice = Friend()
Bob = Friend()

Alice.setJob("Carpenter")
Bob.setJob("Builder")

print(Bob.job)
print(Alice.job)

BV oiEcts de crealed, Both of them hevia uiigue valles for the propory ah!

Alice

Friend //—7
+Job+
+setioby job)
cgeob) |y

Python Modules and Packages - An
Introduction

Modules can have one or more functions. They help you (o organize your code. Instead of
one long Python file, you can have several files (modules).

A module is a Pythen file that has functions or classes. A Python program can use one or
more modules.

Related course: Complete Python Programming Course & Exercises

Example

What is a module?

There are many modules (sometimes called libraries) available for Python. By using these
medules you can code much faster.

Think of them like building hlocks, they contain large sets of functions (sometimes classes)
that provide you with additional functionality.

Import modules
You can load a module with the import keyword.
In the example below we load the os module. This is short for operating system, SO you can

do system tasks,

import os
os.system("dir")

Using that medule we call one of its functions named system (uns a command).
In this case it will simply list the files In the directory {dir command).

There are many many modules available for Python.

Get specific functions from a module

To import a specific function in a module, you can use the line:

from module import function

There's a medule named time which has all kind of functionality for time: get the date, hourr,
minute, second and so on. That's quite a lot of functionality.

Lets say you want the program to wait 2 seconds. If you want, you can Import a specific
function instead of the whole module.

Inheritance in Python (With
Examples)

Inheritance: A class can get the properties and variables of ancther class. This class is called
the super class or parent class.

Inheritances saves you from repeating yourself {in cading: dont repeat yourself), you can
define methods once and use them in one or more subclasses.

Related course: Complete Python Programming Course & Exercises

Example

Introduction

Yoo necd 2t loas! twio classes for iharisnce 1o work. Like redl life, one will inhert from the:
other.
The class that inherits from the super class, will gel evervthing, What's everything?

Inihe case of ebiect orentstl prograriming et rmeans it vk gsl the mathnds and varablss
from the super class

kMulliplz classas oan ininardt rom the sama super class: In sunh cases & of subclasses wil
get ail of the preperiias and nigthinds of he super clags.

class App

/\

class iPhoneApp class AndroidApp

How it works

Define two classss, ora super class (App) and orie sulr olass (Android), The st class
(Androie) Filmerits ficrn ihe ciaze App.

Firgl we define the super clazz. The supger clasa s wiitlsn just ks a nomrrs clsss, hes's
nothing special aboul it except that othe's will inhedt form . Yoo can glve § methods and
variables if you want.

class App:
def start(self):
print('starting’)

Wiz defined mathods and vardaties n the supsr class (App), ores nherited we can use them
in the sub class, Let's create a class (Android) that inherits from the super class.

In the super class we create the method start(). This is just for demonstration purpose, the
method wil be usable when creating an object with the class Android.

How does Python know a class wants to inherit? The braces after it with the class name.
class Android({App):

First the normal class name is defined, the super class is defined aiter that.

Code Example

The example below is a demonstration of inheritance in Python. Python supports multiple
inheritance, but in this example we inherit from only one super class.

Complete example below:

#1/usr/bin/python
class App:
def start(self):
print('starting')
class Android(App):
def getVersion(self):
print(‘Android version')
app = Android()

app.start()
app.getVersion()

If you are a beginner, 17211 highly recommend 1his beck.

Exercises

Try the exercises below:

1. Create 2 new wliass hat nharita from B2 cEss Anp
2. Try 1o create a class that inherits from two super classas (multiple Inheritance)

Download examples

Back Next

Pythion Modules and Packages - An Introduction Python's Statlc Methods Demystified

Cockie polisy | Fivacy gglicy | Terms ofuss |
G 2021 htlps Ayihonbasids

[ai-lab-science / LEGORoboticsPython Public

<> Code (® Issues 1% Pull requests (® Actions [Projects 0 wiki © Security |~ Insights

Motoren

JakobGreten edited this page on 6 Oct 2020 - 1 revision

Um einen Motor zu benutzen muss man zuerst ein Motor-Objekt erstellen und dabei den Port » Pages 10
angeben. Fir den Port C sieht das dann zum Beispiel so aus: leftMotor = Motor(Port.C) .

AnschlieBend kann man mit der run_target -Methode den Motor um einen bestimmten Winkel

drehen oder mit der run -Methode den Motor ohne Begrenzung laufen lassen. Um den Motor Overview

wieder anzuhalten, sollte man die stop -Methode benutzen.
¥ Workshop 2020

+ Wochenplan
#Motor auf Port C in] « Montag
leftMotor = Motor{Port.C))

» Dienstag

= Mittwoch

Mit einer Zielgeschwindigkeit von 300 Grad pro Sekunde den Motor um 9@ Grad zum
= Donnerstag

Ursprung drehen
leftMotor. run_target(300,90) » Freitag

= Materialien
#wWarte 2 Sekunden

wait(2000) ¥ Hardware-Komponenten
» EV3 Brick
Mit einer Zielgeschwindigkeit von 200 Grad pro Sekunde den Motor starten o Konsolenausgabe
leftMotor.run(20@) o Display
o Buttons

#wWarte 2 Sekunden waehrend der Motor laeuft
wait(5000)

o Lautsprecher
* Motoren

* Sensoren

#Stoppe den Motor nach 5 Sekunden
o Beriihrungssensor

leftMotor.stop()
o Ultraschallsensor

o Gyrosensor

o Farbsensor

o Inertial Measurement
Unit

o Time-of-Flight Sensor

o Pixy 2 Kamera

Bekannte Probleme

Clone this wiki locally

https://github.com/ai~ | Ll;l

[ai-lab-science / LEGORoboticsPython public

<> Code © Issues 11 Pull requests (® Actions [} Projects 0 wiki @© Security l~ Insights
Ultraschallsensor
JakobGreten edited this page on 6 Oct 2020 - 2 revisions
Der Ultraschallsensor misst Entfernungen zwischen 3 und 250cm. Der Messwert wird in Millimeter » Pages 16
Uibergeben.
Overview

#Ultraschallsensor auf Port 1
ultrasonicSensor UltrasonicSensor{Port.S1)

#Gemessene Distanz lesen (in Millimeter)
d=ultrasonicSensor.distance()

¥ Workshop 2020
» Wochenplan

« Montag

» Dienstag

* Mittwoch
+ Donnerstag
* Freitag

* Materialien

v Hardware-Komponenten
* EV3 Brick
o Konsolenausgabhe

o Display

o Buttons

o Lautsprecher
¢ Motoren

* Sensoren
o Berlihrungssensor

o Ultraschallsensor

o Gyrosensor

o Farbsensor

o |nertial Measurement
Unit

o Time-of-Flight Sensor

o Pixy 2 Kamera

Bekannte Probleme

Clone this wiki locally

https://github.com/ai~ (&

[ai-lab-science / LEGORoboticsPython public

<> Code © Issues 1 Pull requests (® Actions [Projects 00 wiki @© Security [~ Insights

Display

JakobGreten edited this page on 6 Oct 2020 - 1 revision

Genauso wie die Konsolenausgabe kann das Display genutzt werden um Zwischenausgaben zu » Pages 16
machen. Daflir gibt es die Funktion screen.print() . Bilder kdnnen liber die Image -Klasse geladen

werden und {iber screen.load_image gezeichnet werden. Das Laden der Bilder von der SD-Karte

kann etwas dauern, also sollte es mdglichst nicht in einer Schleife ausgefihrt werden. Overview

]) ¥ Workshop 2020
#Zeige den Text "Hallo" auf dem Display 2 « Wochenplan

ev3.screen.print('Hallo")

« Montag
#lLade eines der von Lego bereitgestellten Bilder. * Dienstag
imagel = Image(ImageFile.WINKING) » Mittwoch
* Donnerstag
Alternativ kann auch ein png geladen werden » Freitag
image2 = Image("DemoPic.png") « Materialien
Zwischen Laden des Bildes und dem Zeichnen v Hardware-Komponenten
sollte am Besten etwas Zeit liegen(wenige Milisekunden reichen) « EV3 Brick
wait(3000) o Konsolenausgabe
o Displa
Zeichne das erste Bild Py
o Buttons

ev3.screen. load_image(imagel)
o Lautsprecher

wait(2000) * Motoren

* Sensoren
#L0sche alles was vorher auf dem Display angezeigt wurde o Beriihrungssensor
ev3.screen.clear() o Ultraschallsensor

. . X G
Zeichne das zweite Bild e Gyrosensor

ev3.screen. load_image(image2) o Farbsensor

o Inertial Measurement

Stelle das Statuslicht auf Rot Unit
ev3, light.on(Color.RED) o Time-of-Flight Sensor
o Pixy 2 Kamera

Bekannte Probleme

Clone this wiki locally

https://github.com/ai- | (B

@ ai-lab-science / LEGORoboticsPython Public

<> Code © Issues 1% Pull requests ® Actions [Projects 00 wiki ® Security l~ Insights

Buttons

JakobGreten edited this page on 6 Oct 2020 - 1 revision

Die Tasten des EV3 sind sehr niitzlich um beispielsweise das Programm zu beenden oder Parameter b Pages 16
des Programms wihrend der Laufzeit zu verdndern. Die aktivierten Tasten kann man durch
buttons.pressed() bekommen. Mogliche Buttons sind: DOWN, LEFT, CENTER, RIGHT, UP.

Overview
#!/usr/bin/env pybricks—-micropython i8]
from pybricks.hubs import EV3Brick v Workshop 2020
from pybricks.parameters import Button, Color = Wochenplan
from pybricks.tools import (wait, print) » Montag
from pybricks.media.ev3dev import Image, ImageFile » Dienstag

« Mittwoch

« Donnerstag
#Erstelle ein EV3-Objekt)
ev3 =EV3Brick() « Freitag

» Materialien
#Plife ob der untere Button gedrickt wurde
down_pressed = Button.DOWN in ev3.buttons.pressed() V.Hag\cli;/gr:;:omponenten

#Fiihre eine Schleife so lange aus, bis der untere Button gedrickt wurde o Konsolenausgabe

while not Button.DOWN in ev3.buttons.pressed():

print('wWarte auf Button.DOWN') o Buttons
o Lautsprecher

o Display

 Motaren
« Sensoren
o Berilhrungssensor
o Ultraschallsensor
o Gyrosensor
o Farbsensor
o |nertial Measurement
Unit
o Time-of-Flight Sensor
o Pixy 2 Kamera

Bekannte Probleme

Clone this wiki locally

https://github.com/ai- | (&

