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Zusammenfassung

Durch die andauernde Weiterentwicklung kollaborativer Robotertypen ist der
Einsatz von Robotern nicht mehr beschränkt auf rein industrielle Anwendun-
gen und dringt verstärkt in Anwendungsbereiche mit einem inhärent hohen Maß
an physischer Mensch-Roboter-Interaktion vor. Dies ist gleichbedeutend mit ei-
nem Paradigmenwechsel hinsichtlich der Roboterregelungstechnik in Richtung
hochgradiger Kraftregelungssensitivität, um funktionale und sicherheitstechni-
sche Anforderungen an die Regelung von physischen Kontaktkräften zu erfüllen.
Eine grundlegende Herausforderung hierbei ist die Schätzung auftretender Kon-
taktkräfte. Mittels der in modernen Robotern integrierten Gelenkwinkel- und
Drehmomentsensorik, die eine größere mechanische Perzeptibilität als externe
Kraftsensorik ermöglicht, wurde in dieser Arbeit ein propriozeptiver Ansatz zur
Entwicklung eines inversen dynamischen Modells gewählt, um dynamische Stö-
rungen während feinskaliger Bewegungen abzuschätzen und auf äußere Kraft-
einwirkungen zurückzuführen. Hierfür wurden verschiedene Modellierungstech-
niken basierend auf dynamischer Parameteridentifikation, künstlichen neurona-
len Netzwerken sowie einer neuartigen hybriden Modellarchitektur mit Gelenk-
drehwinkelkodierung implementiert und auf dem KUKA LBR iiwa 14 ausge-
wertet. Die Evaluationsergebnisse zeigen eine signifikante Verbesserungen der
Drehmoment- und Krafschätzungsgenauigkeit mithilfe einer hybriden Architek-
tur gegenüber konventionellen dynamischen Starrkörpermodellen oder eigenstän-
digen neuronalen Netzwerken.

Abstract

The applicability of robotic automation has transcended the industrial domain
through the emergence of collaborative robotics and is increasingly entering the
realm of applications with high levels of physical human-robot interactions. This
is concomitant with a paradigm shift towards higher force control sensitivity to
accomplish functional and safety requirements concerning the regulation of con-
tact forces between robots and humans. A fundamental challenge in this regard
is the observability and estimation of interaction forces. Utilizing the availability
of joint position and torque sensors in recent collaborative robot models that
yield a larger perceptive field for interaction forces than local force sensors, a
proprioceptive approach is taken in this thesis to develop inverse dynamic mod-
els to estimate dynamic disturbances and determine external interaction forces
during fine-scale motion. A series of state-of-the-art techniques are implemented
and evaluated on the KUKA LBR iiwa 14, including dynamic parameter iden-
tification, neural-network based single-step, and time-series models, and a novel
hybrid architecture combining a rigid body dynamics model with downstream
neural networks and joint rotational displacement encodings. The results indi-
cate that significant improvements in torque and force estimation accuracy can
be obtained by the proposed method when compared with conventional rigid
body dynamics models or neural networks alone.
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1
Introduction

Since the advent of multi-articulated anthropomorphic robots, a conceptual and increas-
ingly practical candidate platform technology has been introduced with the potential to
be deployed in substitution for manual labor tasks which were previously deemed to be
unsuitable for automation, e.g. due to confined workspaces or complex movement sequences
associated with a particular task.

The application of robotics for this purpose has been successful especially for the au-
tomation of tasks involving repetitive motion patterns under well-controlled environmental
conditions where an accurate dynamic and kinematic modeling of the robot and the envi-
ronment can be feasibly carried out. Under the additional condition of minimal variation of
the operational parameters allowing for high predictability, a robotic system may then be
able to well surpass natural human limitations regarding dexterity, precision, endurance, or
perception by courtesy of its task-specifically designed structural advantages to effectively
perform at super-human performance levels. This is the case for applications without or
with at least only minimally constrained direct physical contact, i.e. through inherently
compliant or freely movable manipulation objects, and has been demonstrated for various
industrial use cases covering e.g. pick and place, palletization, and welding applications
where a pure motion control strategy is sufficient.

As its name suggests, motion control is a control scheme reduced to the mere execution
of a pre-planned motion path governed by a desired dynamic trajectory and the control ob-
jective can be thought of as the mere compensation of arising path or trajectory deviations.
This approach appears to be a sufficient control strategy given the preconditions of highly
accurate model knowledge of the interaction object and precise robot control, allowing for a
control behavior that can be agnostic of the actual physical interaction at task execution. In
contact-based applications that require constrained direct interactions, however, inevitable
modeling and motion execution inaccuracies often lead to a large discrepancy between the
planned motion path and actual motion of the robot relative to the environment, resulting
in inadequate control of interaction with an object, i.e. by the inability to apply task- and
object-specific contact forces.

Thus, the motion control paradigm has to be augmented with the additional consider-
ation of occurring mechanical forces between the robot, the environment and objects to be
interacted with, i.e. force control. This allows for more comprehensive utilization of robotics
in applications involving physical interactions, as has been established for industrial tasks,
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1 Introduction

e.g. with robotic grinding, polishing and deburring (Hägele et al., 2016).

However, either due to the absence of an appropriate object of comparison, an adaptive
bias because of our exposure to its inherently ubiquitous presence, or, when assuming a more
impressionable perspective, because of its truly and objectively impressive characteristics
from which results a great aptitude to interact with the surrounding physical environment
– human upper extremity motion is still generally considered a benchmark any technical
solution has to measure up against in the realm of complex real-world manipulation and
physical interaction tasks with strict interaction force constraints under the influence of
perturbations and uncertainty effects. A general setting within which task complexity,
force sensitivity requirements, spatial constriction, and uncertainty concurrently culminate
is faced when physical interactions between robots and humans occur, i.e. when the oper-
ational space is shared between humans and robots. A multitude of elementary challenges
consequently deriving from this has rendered the domain comparatively impermeable to
the wider deployment of robotic automation solutions. The causes for this mainly revolve
around devising robotic motion and force control schemes that allow for a task execution
sufficiently fulfilling robustness, efficiency, effectiveness, and safety requirements.

By classifying robotic applications according to their respective degree of conceptual
inherence of physical human-robot interaction, one can identify the degree to which op-
erational scenarios exhibit the aforementioned properties and challenges complicating the
use of robots for these tasks. A useful evaluative approach in this regard is to assign any
considered task a two-dimensional notional value consisting of the level of physical prox-
imity between the human and a robot in relation to the level of autonomy enjoined on the
robot during task execution (Haddadin and Croft, 2016). Those tasks that cluster together
according to this abstract scoring are hence expected to feature comparable requirements to
force control for physical human-robot interaction. From the conjecture that an increase in
average interaction proximity and robot autonomy respectively implies a likewise increase
in the possibility of direct human-robot contact and uncertainty about any projected course
of physical interaction, it can be deduced that close human-robot proximity and robot
autonomy call for higher sophistication in robot motion control with incomparably more
control strategy objectives. Aside from physical interaction proximity and autonomy, also
the task-specific mode of motion execution, i.e. its scale, dynamic properties and charac-
teristic spatial patterns, as well as technical properties of actuation and sensing hardware
elements have to be taken into consideration for successful force control, as all of these, in
combination with the aforementioned factors, dictate the degree to which interaction forces
can be observed and controlled by a robotic system.

1.1 Motivation

While in a classically collaborative setup the main concern in force control is to reliably
detect presumably sporadically occurring unsafe physical contacts and quickly respond with
a safe reactive motion, the higher continuity of physical interaction in cooperative or similar
close contact applications poses a challenge for the successful introduction of many potential
human-robot interaction applications. On that note, this subsequent section is intended to
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describe a subset of highly contact-based physical human-robot interaction applications
requiring critical force control.

One application field that typically involves highly complex and force-sensitive phys-
ical interaction is to be found in the healthcare sector. As in the clinical field, virtually
by definition, a large proportion of procedures are tactile and carried out in contact with
the body of a patient, it becomes immediately apparent that one encounters a multitude
of interconnected and volatile dynamic mechanical effects between the respective region
of interest of the patient’s anatomy and e.g. a manipulated medical instrument. Because
these applications are conventionally accepted to rely on medical personnel to utilize expert
knowledge and sensorimotor skill to be executed, the potential of improvement for medi-
cal procedures through conceptual change by integration of robotic systems within medical
tasks may be overlooked. The transfer of different aspects of the task execution from a
human to a robotic system or their employment in augmentation of healthcare professionals
may allow for the compensation of detrimental factors of pronounced user-dependency in
healthcare tasks, e.g. personal variability of skill and natural human limitations regard-
ing perception, cognition, physical strength, manipulative accuracy, and dexterity (Taylor,
1997). The concurrency of natural human limitations with regards to the tolerable workload
and high demand of physical effort due to repetitive and strenuous motions for extended
durations, as well as the scarcity of available trained personnel in healthcare further moti-
vate the replication or assistance of manual labor through robots as has been analogously
established for industrial purposes. The potential types of interaction with a patient to
be performed by a robot in medical applications can be summarized under the terms of
tactile, kinesthetic or force-sensitive interactions (Althoefer et al., 2010), where the func-
tional subgroups along with their respective application examples range from explorative
motion, e.g. palpational examination, sonography, over manipulative motion, e.g. tool-use
during surgery and musculoskeletal manipulation, to responsive motion guidance, as seen
e.g. in movement assistance for rehabilitation among others (Cutkosky and Provancher,
2016; Dario et al., 1996; Chang and Kim, 2013).

Despite a vast amount of scientific endeavors along with a steady increase in commer-
cialized robotic applications aiming at force-sensitive human-robot interactions, a major
factor impeding the widespread implementation of robotics in healthcare applications is the
low tolerance margins concerning force-sensitivity, e.g. with regards to handling forces and
torques occurring on the patient’s body during a procedure due to safety considerations
as well as the adequate control of desired contact forces acting on the patient (Speich and
Rosen, 2004). Therefore a fundamental area of research for the deployment of robotics
in medical human interaction applications is the development of robust and highly force-
sensitive control schemes to apply task-specific levels of contact forces on the target anatomy
while at the same time regulating any occurring contact force limits to maintain safety stan-
dards, i.e. in the cases of target force exceedance or unexpected collisions between the robot
and patient or environment.

The outlined basic requirements and challenges in potential human-robot interaction
applications in the medical and healthcare sector can be illustrated based on the application
example of robotic sonography which constitutes the motivational origin of this thesis. The
procedural steps of conventional medical ultrasound manually carried out by healthcare pro-
fessionals on patients are commonly known to incorporate a coarse initial positioning and
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orientation of an acoustic transducer at task-specific areas of the patient’s body, i.e. acous-
tic windows, that are expected to allow for a suitable visualization of internal anatomical
structures. This is then generally followed by an exploratory phase characterized by reposi-
tioning and reorientation of the transducer with incrementally smaller steps until the specific
target structure is satisfactorily visualized. Meanwhile, the contact between the transducer
and the patient’s body is constantly maintained as to not interrupt the image acquisition.
Additionally, it is important to note that the applied contact force between the transducer
and the patient is likewise manually regulated up and downwards by the healthcare profes-
sional to visualize deeper located or obstructed internal structures and not inflict discomfort
or harm on the patient respectively. From a sensorimotoric perspective, for the physician
this process amounts to a complex tactile manipulation of the transducer in contact with
the patient involving manual motions on at a greatly variable scale which is directed by
multiple sensory input streams and clinical objectives (Nicholls, Sweet, and Hyett, 2014).
As such, here again, the diagnostic success is conceivably dependent on personal factors,
e.g. the skill, dexterity, cognition, and even mere availability of the performing healthcare
professional rendering the integration of robotic agents within this imaging modality highly
desirable. Thus, a considerable amount of research focusing on different aspects of robotic
automation of medical ultrasound has been carried out (Haxthausen et al., 2021), while
a major common subject of investigation is guaranteeing sufficiently sensitive control of
occurring contact forces.

The emphasis on and functional expectations from reliable force sensitivity in robotic
medical ultrasound stand out rather prominently compared to other robotic force-sensitive
applications within and outside of the healthcare sector because of the following reasons
among others: The net duration of physical interaction in terms of actual contact and the
temporal continuity thereof comprises a major portion of the total task execution time,
as opposed to e.g. occupational deployments of robots in collaborative or other arrange-
ments. Furthermore, the patient assumes the role of the actual object of interaction and is
often partially or fully immobilized in a lying or seated position instead of possessing full
agency and ability to physically react and evade potentially harmful external interactions
as when collaboratively working together with a robot, leaving the human in a markedly
exposed position. Although the patient’s involvement during the task can thus be thought
of as mainly passive, often the patient still has a considerable level of basic agency in form
of physiological, psychological, or otherwise medically induced movements, that nonethe-
less differentiate the patient as an interaction subject from normally inanimate interaction
objects in industrial applications or patients under general anesthesia in robotic surgery.
Another aspect that has to be considered is that the expected typical areas of interaction are
not primarily restricted e.g. to the upper extremities as would be the case in hand-guided
robotic payload handling or a well-defined anatomic internal target structure in robotic
surgery, but can be located at any anatomic region of interest including generally sensitive
or injured body parts. Lastly, there is a distinct discrepancy arising from the requirement
of the executability of interactive motions a) over a wide kinematic and dynamic range on
one hand and b) at a finely controllable scale on the other.
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1.2 Contributions of this Thesis

While the challenge revolving around approaching human-like robotic force control is ap-
parent in the context of the automation of critically force-sensitive medical and healthcare
applications (Kumar et al., 2000), any progress made in this direction has obvious beneficial
implications for similar applications of human-robot interaction such as in high-proximity
collaborative robotics (Haddadin and Croft, 2016).

The accomplishment of the overarching goal of force-sensitive robotics can be considered
as a classic control problem, that consists a of the design of an appropriate regulator R

and an observer O that together form a feedback-loop to control the system state S. In
the context of robotic force-control, S represents the dynamic state of the robot and R

corresponds to the actuation system which generates motion control signals u in form of
motor voltages to alter S, such that the force F applied to the environment, e.g. during
the physical interaction with a human, reaches the control goal of a task-specific target
force Ftarg under the influence of external influences. The control-loop is closed by the
feedback of an estimate Fobs of F based on an interpretation of the observable features
of S performed by the observer O. Practically, this corresponds to the acquisition and
computational processing of sensory data, which is naturally restricted by the limitations of
sensorization, measurement error, noise and other external influences, collectively defined
as eo (see Figure 1.1). Following from this, it is possible to identify two interrelated but still

R

S

u O
eo

F

Ftarg

Fobs

es

Figure 1.1: A closed loop control system. Adapted from (Glad and Ljung, 2018)

distinct elementary sub-problems within the general formulation that at the same time rep-
resent two main concepts of control theory, i.e. the regulation and observation of a system’s
state.1

1 At the same time, this may also be understood as a paraphrase of the duality of controllability and
observability (Kalman, 1960)
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As the control performance is directly dependent upon the accuracy by which the ac-
tual interaction force F can be approximated with Fobs, the work presented in the following
intends to contribute to the sub-problem of observability in robotic force control for physi-
cal interactions. Although a multitude of perception and sensing technologies are available
that in combination would theoretically allow for a direct measurement of the occurring
interaction forces z, in practice this is either often infeasible, due to technical complexity, or
prone to measurement errors, as discussed in the next section. Therefore it may appear to
be reasonable or even outright necessary to resort to a perception scheme that relies on the
readily available sensory capabilities commonly integrated within robotic actuation systems
(proprioception), i.e. joint position readings from motor encoders and torque measurements
from joint-level strain gauges (Section 1.3 on page 8). Assuming the a priori availability
of a model that establishes an accurate mapping between momentary proprioceptive ob-
servations of the joint positions, along with their temporal derivations, and observations of
the joint torques resulting hereof, i.e. an inverse dynamics model, it is possible to trace any
deviations between the joint torques measured and those estimated by the inverse dynamics
model back to the entirety of external forces acting upon the robot, i.e. interaction forces
in this context.

Practically speaking, the estimation of external forces is primarily deteriorated by mod-
eling inaccuracies as well as by torque measurement errors distorting the discrepancy be-
tween the estimated and actual torques, which are the two central subjects of investigation
covered by this thesis. Granted that the robust modeling of inverse dynamics minimizing
these adverse effects is a well-studied topic in robotics (see Section 1.3 on page 8), the
dynamic behavior of robots employed in the class of physical interaction tasks with contin-
uous close human-robot proximity and high force-sensitivity requirements, exhibits several
characteristics that specifically impede sufficiently accurate inverse dynamics modeling and
force/torque estimation in this domain.

From the perspectives of kinematics and actuation performance, lightweight anthropo-
morphic robots with integrated joint torque sensors such as those of the KUKA LBR iiwa
series, which is certified for human-interaction tasks and constitutes the reference platform
evaluated in this thesis, are well-suited for the described applications. In terms of sensing,
however, the combination of a predominance of comparatively low-intensity, irregularly di-
rected robot motions in particular, i.e. during heuristic manipulative and explorative robot-
human interactions, and the general requirement of high force-sensitivity does exhaust the
torque sensing accuracy of joint-level strain gauges. Considering the discussed use cases of
close-proximity and long-term human-robot interaction, torque sensing or modeling inaccu-
racies result in per-joint torque estimation errors otherwise deemed to be tolerable. Through
the mechanic coupling between joints that is present in highly nonlinear dynamic systems
such as robots, single joint torque estimation errors are prone to propagate and mutually
reinforce each other along the kinematic chain. Effectively, this leads to an aggravation of
the problem of estimating Cartesian forces acting at contact points on the robot during
physical interactions. The origins of the disturbances on joint torque sensing that emerge
under the outlined circumstances are identified and conjectured in this work to be e.g. hys-
teretical torque sensing depending on the joint position history, the transfer of vibrations
from the actuator transmission on the strain gauges, complex friction, backlash etc.

To compensate for these effects and, a selection of state-of-the-art methods for inverse
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dynamics modeling ranging from the baseline method of inverse dynamic modeling by classic
parametric identification to weakly parameterized learning-based techniques are applied and
evaluated on data sets of long-term proprioceptive time-series measurements acquired on
the KUKA LBR iiwa during the execution of joint-wise independent reference trajectories.
The research questions attempted to be answered are revolving around the infamous bias-
variance tradeoff with respect to model design:

1. Can the robot dynamics be sufficiently incorporated in a closed-form model expression
such as the Newtonian or Lagrangian formulation of rigid body dynamics and possibly
yield a desirable global model validity by physically substantiated model assumptions;
or, does this introduce an overly strong model bias, preventing the inclusion of marginal
and hardly formalizable but nonetheless significant additional dynamic effects?

2. Are data-driven, prior-free modeling approaches, such as artificial neural networks as
universal function approximators capable of providing higher model fidelity? Can they
generalize to out-of-distribution dynamic states in spite of an inherent susceptibility
to model variance given the scarcity of training data due to resource-intensive data
acquisition in robotics?

3. Does an hybridization of both approaches provide a benefit over the respective stand-
alone methods in terms of a synergetic combination of the rigidity of physical parametric
models and the flexibility of neural networks?

These subjects are investigated by the initial application of a parametric identification and
subsequent generation of an inverse dynamic model based on Newtonian rigid body dynam-
ics. In a second step, a model based on the multilayer perceptron architecture is evaluated.
As dynamics itself is concerned with the temporal change of a system due to acting forces,
it is evident that a comprehensive modeling of robot inverse dynamics has to consider the
factor of time. Thus it is further investigated how temporal information can be incorporated
in inverse dynamics models to improve torque estimation accuracy by additionally evaluat-
ing the time-series architectures of Recurrent Neural Networks and Transformer networks.
In this context the importance of recurrence for the modeling of temporal dependencies in
proprioceptive time-series data is analyzed in comparison with model accuracies obtainable
by machine learning methods not relying on sequential information. To this end, a joint
positional encoding is developed as an additional feature to be fed into a neural network.
The encoding is realized by concatenating every input vector with additional values for
the rotational displacements since the most recent changes of the motion direction of the
robot joints, aiming at partially substituting sequential information gained through network
recurrence.

The last contribution is with respect to the data scarcity problem. Because a near-
exhaustive sampling of the vast high-dimensional dynamic and kinematic space within which
a kinematically redundant and agile robot can operate is technically infeasible, the amount
of recorded data cannot be easily leveraged for statistical learning methods to yield sufficient
generalization capabilities regarding cases of exposure to completely novel data. Likewise
the limited expressiveness of paramteric models results in insufficient From this follows the
issue of possibly unreliable model estimates when utilizing learning-based methods, which
theoretically possess superior modeling capability in comparison to parametric methods.
Therefore a hybrid model approach is presented where learning based estimators are inte-
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grated as downstream error models predicting the error of a backbone pre-estimation by
a model obtained through parametric identification of the robot’s rigid body dynamics.
In order to mimic real-world heuristic explorative and interactive motions, an algorithm
for the random generation of combinations of linear trajectory segments simulating general
target approach motions and intermittent randomized parametric low-amplitude sinusoidal
trajectories imitating fine-scale interactions has been implemented. In addition to ensuring
good resemblance of the motions expected to be encountered under field conditions, the
periodicity and joint-wise randomness of the motions is intended to provoke the mentioned
torque sensing disturbances over wide range of possible inter-joint dynamic effects.

1.3 Related Work

From a hardware perspective, in order to realize high sensitivity in the force control of close-
proximity human-robot interaction applications, the necessity of sensory feedback giving
insight on momentarily occurring contact forces and torques is evident. Readily available
sensing technologies based on mechanical deformation transducers, e.g. piezo-elements or
more frequently strain gauges, constitute a natural choice for this purpose. Regarding the
concrete means of the utilization of such force-sensing equipment in a robot, it is useful
to assume the following perspective: Creating an analogy between a robotic system and
an organism, both can generally be abstracted as sensorimotor systems, for whom, bor-
rowing terminology from the field of biology, two conceptually different approaches may be
distinguished with regards to the integration of the sensory elements: Exteroception and
propriopception, the former denoting the perception of sensory input from outside, e.g. vi-
sion and cutaneous mechanoreception, and the latter reciprocally describing sensing from
within, e.g. through mechanoreceptors embedded in the musculoskeletal system such as
muscle spindles, Golgi organs, and articular mechanoreceptors. A complex neurological fu-
sion and processing of these various sensory signals, whose elaboration exceeds the scope
of this thesis, then yields a relatively practicable estimate of, and control accuracy over
the applied forces during the execution of a force-sensitive interaction task by e.g. a hu-
man. Transferring these sensory concepts to robotic perception, one faces a task-specific
design optimization problem concerning the most appropriate means of implementing these
sensing strategies, i.e. resorting a) to a proprioceptive integration in the form of a force
sensor placement inside of the actual kinematic components like the joints or b) exterocep-
tive sensing by the punctual placement of sensors outside of the robot chassis. Typically
the proprioceptive sensing strategy is accomplished by the inference of mechanic torques
from measured joint motor voltages, positions, dedicated serial rotational strain gauges be-
tween the robotic links and inertial measurement units or, when utilizing exteroception, by
mounting of force/torque sensors at sites of assumed contact with the environment, most
commonly as wrist sensors at the end-effector between the most distal link and attached
tool.

Based on the number and structural arrangement of the mechanical force transduc-
ing sub-elements within a sensor, one can generally differentiate between solitary load cells
for single-axis force measurements and multi-axis sensors, which allow for the sensing of
forces and torques along and around multiple spatial axes, the most common sensor type
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being 6-axis force/torque sensors. The application of external load cells or multiaxis force
sensors has the major advantage of allowing for direct measurement of contact forces with
potentially very high accuracy. This, however, comes at the cost of rather large unobserv-
able physical contact or collision areas by nature of the highly local sensory space of these
devices. In working environments affected by uncertainty as in human interaction applica-
tions, especially in medicine, this may lead up to the possibility of under-detected contacts
and collisions between the robot and a human, i.e. when the contact point is not situated at
exact location of an external force sensor. The mounting of multiple external force sensors
distributed over the entire housing of the robot may seem to alleviate this problem to an
extent, but nonetheless, the spatially discrete sensing scheme of this force measurement ap-
proach implies an unavoidable presence of spatial sensory gaps, where a simple increase of
the sensor count would scale poorly with the increase in system complexity and robustness
(Le, Choi, and Kang, 2013). Moreover, an inherent susceptibility to decalibration and gen-
eral loss of accuracy through wear and external influences, e.g. temperature and mechanical
stress, constitute some undesirable properties in robotic force sensing applications (Zhang
et al., 2020). From a structural point of view, the addition of external force sensors may
also introduce difficulties because of an alteration of the robot geometry and mass distribu-
tion, i.e. leading to a restriction of the collision-free configuration space, particularly when
a kinematic design is required to optimize both the dexterous workspace coverage and com-
pactness at the same time. Artificial skins, where multiple interconnected arrays of flexible
mechanical transducer sub-elements are embedded in an elastic substrate layer, represent
an emerging alternative external sensing technology capable of providing spatially contin-
uous force measurements theoretically encompassing the total robot encasing (Hwang and
Hwang, 2013; Calandra et al., 2015; Duan, Taurand, and Soleimani, 2019), albeit currently
with a reduced absolute force measuring range and limited capability to yield physically
quantifiable measurements of force magnitude.

Although external force sensing with dedicated strain gauge sensors yields high mea-
surement accuracy, a proprioceptive approach to force sensing entails several attractive
characteristics that are advantageous in multiple ways. First and foremost the argument of
systemic simplicity is to be made. As stated before, proprioception indicates the structural
embedding of the sensory elements inside of the components generating and transmitting
motion, i.e. the joints and links. For the purposes of motion generation and transmission,
robotic systems are equipped with joint position encoders and motor voltage controllers
from the outset. These readily provide proprioceptive signals describing the momentary
kinematic configurations and occurring joint torques that can either be inferred from motor
voltages or, increasingly common since the introduction of lightweight serial robots intended
for collaborative use with humans, measured directly by courtesy of dedicated joint torque
sensors (Hirzinger et al., 2001). In general, such sensors are designed as rotational strain
gauges that mechanically connect the output side of the joint gears with their respective
distally following link. In comparison to the estimation of joint torques based on motor
voltages, this largely avoids any measurement disturbances originating purely from actua-
tor dynamics, e.g. motor internal friction, backlash, stutter, etc. Proprioception, however,
does not necessarily have to be considered as a purely standalone approach, but also as a
means to introduce redundancy into the sensorization of a robotic system in case of the
presence of external sensory hardware.
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Hence, a proprioceptive strategy provides a multitude of benefits over and in addition
to other sensing methods for the observation of robot dynamics.

Due to the ubiquity of robotic application scenarios involving some form of physical
contact, there exists a vast corpus of research on the topic of robotic force control.

With regards to the focus of this thesis on the force control sub-problem of force ob-
servability with proprioceptive sensorization, the theoretic foundations have been laid out
in the seminal works on the parametric dynamic identification of robots within the frame-
work of rigid body dynamics. By re-formulating the Newton-Euler equations of motion as
an equation system in which the inertial link parameters describing the dynamics of the
link bodies appear linearly, the inverse dynamic model can be obtained based on multiple
measurements of the input-output relation between the link motion and forces by linear re-
gression (An, Atkeson, and Hollerbach, 1985; Khosla and Kanade, 1985; Atkeson, An, and
Hollerbach, 1986). This general principle of dynamic identification is utilized to characterize
a dynamic model of the robot in order to relate any deviations from the model estimates of
the dynamics state back to external influences, i.e. interaction forces. The majority of force
estimation techniques are thereby conceptualized as a disturbance observer, that tracks the
momentary dynamic and kinematic state through IMUs and/or joint sensors and performs
a comparison with the prediction of a dynamic model for that particular state (Alcocer et
al., 2003; Hacksel and Salcudean, 1994). Regarding the underlying dynamic model, several
modifications of the original formulation based on the assumption of rigid body dynamics
have been introduced, depending on the reliability of the observation of model input quan-
tities, the technical properties of the robotic system, or the model accuracy requirements.
An initial extension was the proposal of the identification of joint friction using a simplified
Coulomb and Viscous friction model, which augments the notion of robot dynamics being
based on the inertial properties of its links to also entail the influence of effects at joint level
(Gautier and Khalil, 1988; Stürz, Affolter, and Smith, 2017b; Xu et al., 2020). In order to
improve the statistical validity of the parameters to be identified, a variety of experiment
design strategies exist for the generation of robotic test trajectories that optimally excite
the effects influencing the robot dynamics (Swevers et al., 1997). Along with the advent
of collaborative robotics lead by the development of the DLR LWR I to III (Albu-Schäffer
et al., 2007), the disturbance observer is formulated as a pure momentum observer, dis-
regarding dynamic effects due to link body acceleration in order to achieve faster model
predictions and gain independence from inherently noisy acceleration measurements (De
Luca et al., 2006; De Luca, Schroder, and Thummel, 2007). With the aim to achieve higher
model fidelity, especially in the context of safety-critical human-robot interactions, dynamic
effects caused by joint flexibility are added to the model assumptions by the simultaneous
acquisition of the joint position on both the joint input and output side and the subsequent
identification of additional joint stiffness and damping parameters (Haddadin, De Luca, and
Albu-Schäffer, 2017).

In recognition of the partial insufficiency of parametric model formulations due to model
incompleteness, laborious parameter identification procedures, and high levels of required
domain knowledge, several efforts have been made in pursuit of applying black-box tech-
niques for dynamic modeling and disturbance observation. These range from Gaussian
processes to artificial neural networks (Nguyen-Tuong, Seeger, and Peters, 2009; Hitzler
et al., 2019; Jiang, Ishida, and Sunawada, 2006; Liu, Wang, and Wang, 2021; Yilmaz et
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1 Introduction

al., 2020; Smith and Hashtrudi-Zaad, 2005) that are employed to learn a dynamic model
directly from observable data to be used within a disturbance observer scheme. Recent
advancements have been made by casting the dynamic modeling problem as a time-series
process that can be leveraged by sequence-accepting neural networks, e.g. recurrent neural
networks such as the long short-term memory architecture (Rueckert et al., 2017; Wang
et al., 2020).

1.4 Structure of this Thesis

The contributions of this thesis with regards to the presented problem of proprioceptive
force estimation during irregular low-intensity motion are organized in four parts:

First, the technical specifications of the robotic reference platform investigated in this
thesis are analyzed and discussed from a hardware and software perspective in Chapter 2 on
the following page. On one hand, this is done with regards to their respective implications
on the task at hand. On the other hand, this is in order to gain insight into the physical
and technical rationale behind the techniques of force estimation developed in this thesis.

The theoretical foundations of the model-based force estimation techniques used in this
thesis are laid out in Chapter 3. Chapter 4 covers the presentation of the proposed novel
dynamic modeling techniques.

This is concluded by a comparative performance analysis of the discussed techniques
to determine the benefits gained from the developments presented in this work.
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2
Experimental Setup

This chapter is intended to provide a description of the technical details of the experi-
mentation system used for the development and evaluation of the techniques for dynamic
modeling and force estimation proposed in this thesis. The chapter is structured in two
parts, covering the hardware specifications of the utilized robotic platform and the details
of the software system employed for the simulation and control of the robot.

2.1 Robotic Evaluation Platform

The entirety of the dynamic model implementations and experiments of this thesis were
designed to be applied on the commercially available robot LBR iiwa 14 R820 (KUKA
AG, Augsburg, Germany) which is part of the LBR iiwa series of collaborative robots
together with the structurally analogous but smaller LBR iiwa 7 R800. The kinematic
and mechatronic architecture of these robots is based on the fundamental advancements
in lightweight collaborative robot design introduced with the research robot DLR LWR
III (German Aerospace Center, Köln, Germany) (Albu-Schäffer et al., 2007). Given the
inaccessibility of some details of the actual mechatronic architecture of the LBR iiwa 14
R820 due to manufacturer confidentiality, the structural and dynamic similarity to the
DLR LWR III (Haddadin, De Luca, and Albu-Schäffer, 2017) allows the technical analysis
of the LBR iiwa 14 R820 based on the technical specifications of the DLR LWR III, which
are well-documented in the related research literature, when necessary.

In the context of long-term or rather continuous physical human-robot interaction ap-
plications, especially under uncontrolled operational conditions such as in the medical field,
a large portion of the robot workspace is occupied by obstacles comprised of both cluttered
objects in the environment and the physical body of the interacting human in close proxim-
ity. With the exception of the task-specific target area of interaction on the human body,
this results in a high number of undesired possible collision points with the robot, greatly
reducing the amount of collision-free configurations and configuration paths required for
a particular target pose or motion. The kinematic redundancy of the LBR iiwa 14 with
6+1 degrees of freedom alleviates this problem of collision avoidance to some extent (Zhu
et al., 2016). In addition to 6 degrees of freedom, i.e. 3 rotational and 3 translational, for
the end-effector pose, an auxiliary degree of freedom for the re-configuration of the robot
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without a change in the end-effector pose, i.e. a null-space movement, is provided by the
anthropomorphic joint structure of the robot. Following a biomimetic design principle,
the kinematics of the LBR iiwa 14 is modeled after the example of the human arm as a
serial chain of n = 7 revolute joints, where the respective axis of rotation of one joint is
perpendicular to its distally following joint.

x1
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z2

x3

y3

x5

y5

x7

y7

z7

z5

z3
y4

y2

x2

z1

x4

z4
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y6

z6

x0

y0
z0

Figure 2.1: Mounting position and reference frame assignment for the joints of the kine-
matic chain of the robotic evaluation platform KUKA LBR iiwa 14 R820; reference frame
0 designates the world coordinate system located at the robot base. Please note that this
frame assignment is deliberately chosen to be in accordance with the structural position
of the actual joints and rotation axes between the links of the real KUKA LBR iiwa 14
R820, which is the reason for the otherwise kinematically irrelevant discrepancy between
the mechanical link lengths and the Denavit-Hartenberg parameters di (see Table 2.2 on
the following page).

Through this configuration, often referred to as a spherical-revolute-spherical, the kine-
matic degrees of freedom of the human arm, likewise consisting of a spherical shoulder,
revolute elbow, and spherical wrist joint, are emulated by approximating each spherical
joint with three consecutive perpendicular joints j1, j2, j3 and j5, j6, j7, and the intermedi-
ate elbow joint by a single revolute joint j4. In comparison to historically more conventional
kinematic designs with 6 degrees of freedom, this redundant constellation with 7 joints has
several benefits from the perspective of constrained motion planning, e.g an increase in
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the dexterous workspace, a relative decrease in end-effector path lengths to reach a target
pose and generally improved pose reachability in the presence of obstacles. On a side note,
it should be pointed out, however, that the notion of kinematic redundancy is intimately
related to the functional requirements imposed on a robot during the execution of a par-
ticular task, in the sense that redundancy is only given when the kinematic performance
exceeds the minimal dexterity prerequisites for the completion of that task, e.g 6 degrees
of freedom for the three-dimensional translation and orientation of the end-effector pose
(Chiaverini, 2019). The kinematic structure of the LBR iiwa 14 is depicted in Figure 2.1 on
the previous page along with the orientation and position of the respective mechanic joint
frames for the real robot in an upright configuration, which at the same time constitutes the
mounting orientation in which the robot is operated during the experiments for this thesis.
For comparability, the joint reference frames are defined virtually as in Table 2.2, following
the formalism of the commonly used modified Denavit-Hartenberg convention (Craig, 2005;
Denavit and Hartenberg, 1955).

Table 2.2: Kinematic description of the KUKA LBR iiwa 14 R820 in accordance with the
modified Denavit-Hartenberg convention.

Link i αi(m) ai(°) di(m) θi(°)
1 0 0 0.360 θ1
2 0 -90 0 θ2
3 0 90 0.420 θ3
4 0 90 0 θ4
5 0 -90 0.400 θ5
6 0 -90 0 θ6
7 0 90 0.126 θ7

Table 2.3: The range of motion and velocity of the respective joints of the KUKA LBR
iiwa 14 R820 (KUKA Robot Group, 2015).

Joint Position Range Velocity Range
1 ±170◦ ±85◦/s
2 ±120◦ ±85◦/s
3 ±170◦ ±100◦/s
4 ±120◦ ±75◦/s
5 ±170◦ ±130◦/s
6 ±120◦ ±135◦/s
7 ±175◦ ±135◦/s

The design goals of anthropomorphism and usability within collaborative settings are
also reflected in terms of the dynamics and internal electronics of the robot, and especially
the joint design (see Figure 2.4 on the next page), exhibiting several features contributing to
the operational functionality, safety, and controllability in physical human-robot interaction
applications. As mentioned, detailed specifications of several components of the KUKA
LBR iiwa are not publicly accessible. Due to the general structural equivalence with the
DLR LWR III, as the architectural ancestor of sorts (Bischoff et al., 2010), the following
statements are made in reference to the available data on the DLR LWR III. The motion of
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the links is generated by compact low-speed and high-torque brushless DC motors originally
developed by the German Aerospace Center under the name RoboDrive. The motor torque
is transmitted onto the distally following link through a strain wave gear with a large
reduction ratio between 100:1 and 160:1, more commonly known by the commercial name
Harmonic Drive. Both a potentiometer-based joint position sensor as well as a strain gauge
torque sensor are attached on the output side of the gearbox through a cross roller bearing,
allowing for a measurement of the rotational displacements and torques arising between
two successive links that is mechanically largely isolated from friction, vibration and other
dynamic perturbations emerging in the motor or transmission. Nevertheless, the attachment
of torque sensors onto the eponymously flexible flex-spine of the Harmonic Drive, as well
as the inherent flexibility of the strain gauge sensor, which enables the mechanic torque-
sensing after all, introduce significant measurement noise (Chawda and Niemeyer, 2017).
In addition, hysteretical torque signal deviations depending on the rotational displacement
since the last reversal of motion direction have been reported (Allgeier and Evans, 1995)
and identified experimentally in this thesis as well.

Link Position Sensor
Crossed Roller Bearing

Power Converter Unit
Joint-/ Motorcontroller Board

Power Supply

Torque
Sensor

Harmonic
Drive

DLR RoboDrive
with Safety Brake
and Position Sensor

Figure 2.4: The internal structure of a joint of the DLR LWR III depicted in exploded
view (Left) and assembly (Right), which the mechatronic structure of the commercial KUKA
LBR iiwa investigated in this thesis has been directly derived from, rendering both virtually
equivalent from a dynamic perspective. (Modified from (Albu-Schäffer et al., 2007)).

Without the execution of dedicated identification experiments to estimate the hystere-
sis parameters, a qualitative insight on the approximate geometry of the hysteresis loops
associated with joint rotation and measured torques has been deemed to be sufficient. To
this end, without the external application of any loads, a slow, joint-wise periodic triangular
trajectory with constant velocity, except for the inflection at the triangle vertex, is com-
manded on the robot that allows for the generation of a joint position loop (see Figure 2.5
on the following page). Based on the visualization of the gathered measurements, one can
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Figure 2.5: Torques measured in relation to angular deflection per joint during a cyclical
linear joint-wise motion around the respective zero point with a maximum deflection of±10°.
Please note the occurrence of significant torque noise in spite of a low relative joint velocity
of 10 %, as well as the formation of a pronounced torque hysteresis loop with respect to the
history of traversed joint orientations. In order to clarify the hysteretic effect, a smoothed
curve based on the noisy measurements is obtained using a Savitzky-Golay filter and laid
over the original curves respectively.

immediately recognize a pronounced non-linearity at motion initiation around the respec-
tive joints’ zero positions. The same applies to the locations of directional reversal at 10◦

and −10◦, where the torque signal shows down- or up-swings respectively. Furthermore,
after a rotational displacement of approximately 6◦ in one motion direction, the hysteresis
loops develop into saturation. These effects, however, are not noticeable with the same
clarity for every joint given the obtained data, as the upright mounting position leads to
a nonuniform influence of gravitational torques on the net measurements, i.e. depending
on the cross-product of the gravitational vector with the respective joint’s axis of rotation.
For instance, the torques of joint 2 are nearly exclusively caused by the gravitational force
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perpendicular to its rotational axis due to the masses of the distal links, whereas the torques
sensed at joint 1 are almost solely due to its own internal dynamics, especially given the
minimal contribution of distal inertial effects as the joint accelerations are constantly close
to zero. Aside from this, the data demonstrate the presence of considerable relative torque
measurement noise, even at low and constant joint velocities. In summary, this conducted
simple experiment demonstrates that despite the availability of dedicated joint torque sen-
sors, which are moreover mechanically insulated to some degree, a significant amount of
perturbations and non-linear effects have an impact on the torque measurements.

2.2 Control System

The motion execution and retrieval of proprioceptive data is implemented as a teleoperation
control network for this thesis, where joint-level motion commands and data queries sent
from the control computer are redirected through proprietary high-level command inter-
preter application (RL RobServer, Institute of Robotics and Cognitive Systems, Lübeck,
Germany) running on an external server towards a Java application that is executed on the
robot controller (KUKA Sunrise Cabinet, KUKA AG, Augsburg, Germany). The commu-
nication between these devices is accomplished via Ethernet connection using the TCP/IP
protocol at a frequency of approximately 150 Hz depending on minor fluctuations due to the
momentary utilization of the local network infrastructure. The interpreted commands are
then fed-forward onto the low-level motor controllers located in the robot Section 2.2, where
the hardware control between the robot and the KUKA Sunrise Cabinet takes place at a
rate of 1000 Hz. As such, the latency introduced by the TCP/IP connection constitutes the
bottleneck with regards to the communication frequency, not allowing for a hard real-time
control of the robot. Therefore, a soft-real time approach is taken using asynchronous joint
motion commands with an immediate joint position retrieval. The joint positions to be
commanded are generated in advance, stored in a buffer and then sent sequentially after
a previously commanded joint configuration is reached. To further accommodate for the
control rate, the distance in configuration space between the respective joint positions of
two successive commands is taken into account together with the maximum joint velocity,
such that the configuration space distance between joint position commands is adapted to
allow for a motion completion during the latency time.

Figure 2.6: Architecture of the robot communication and control network.
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For the generation, simulation, and commanding of the robotic motion, a collection
of python applications were developed that integrate within the robotics simulation soft-
ware CoppeliaSim formerly known as V-REP (Coppelia Robotics, Ltd., Zürich, Switzerland;
(Rohmer, Singh, and Freese, 2013)) via the python interface toolkit PyRep (James, Freese,
and Davison, 2019). Thereby, the generated motion commands are checked in simulation for
kinematic and dynamic feasibility as well as self-collisions or those with the environment in
advance and in real-time during motion execution on the robot as well. To this end, a CAD
model of the KUKA LBR iiwa 14 is placed in the simulation environment and surrounded
by manually placed virtual cuboid obstacles approximating the position of the obstacles in
the proximity of the real robot in the laboratory. Through the simultaneous retrieval of the
current joint positions of the real robot, the joint configuration of the simulated counterpart
is updated, yielding a synchronized monitoring of the robot.
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3
Force Estimation through Dynamic
Identification

This section is intended as an outline of the concepts based on which proprioceptive force
estimation can be performed independent from external sensory devices using dynamic
modeling techniques. Beginning with a description of the formalisms involved, this is then
concluded by the presentation of different classes of model-based techniques applicable for
the solution of the general force estimation problem in robotics that form the basis on which
the methods proposed and evaluated in this thesis were developed.

3.1 Dynamics of Serial Robots

When considering a robot with an open-loop serial kinematic chain composed of n rigid
rotational joints with respectively adjacent links, its dynamic model DRBD is commonly
formulated by expressing the occurring total joint torques τ ∈ Rn as a function of gener-
alized coordinates of the kinematic state, i.e. joint positions and their respective temporal
derivatives q, q̇, q̈ ∈ Rn

τ = DRBD(q, q̇, q̈) (3.1)
τ = H(q)q̈ + C(q, q̇)q + g(q) (3.2)
τ = τRBD , (3.3)

where H(q) ∈ Rn×n denotes the symmetric and positive-definite joint-space inertia matrix
describing the robot’s inertia for a given joint-space configuration q; C(q, q̇) ∈ Rn×n collec-
tively expresses the Coriolis and centripetal forces depending on the vectors of joint position
q and velocity q̇; the torques arising due to the influence of gravitation for any configuration
q are represented by the term g(q) (Featherstone and Orin, 2016). In other words, DRBD

establishes the mapping between a the kinematic state (q, q̇, q̈) and the dynamic state τ

based on the inertial properties of the rigid robot links, i.e. the rigid body dynamics.
As discussed in Section 1.3 on page 8, the state of the robot can only be assessed on

the basis of observations made by sensory elements, i.e. joint torque or position sensors
in the proprioceptive sensing approach. The state variables τ , q, q̇ and q̈ are therefore
only observable with some uncertainty and residual error, which is why in the case of
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applying the dynamic equations on a real system, the used state variables only resemble an
imperfect representation of the respective true values. Moreover, there is no certitude over
the completeness of the model formulation. Accommodating for these sensory inaccuracies
and additional otherwise unmodeled factors that affect the dynamic model, an error term
ε(q, q̇, q̈,?) is introduced:

τ = H(q)q̈ + C(q, q̇)q + g(q) + ε(q, q̇, q̈,?). (3.4)

Please note that ε, being a collective error function, does not necessarily depend on q,q̇
and q̈ alone but also on an undetermined set of other variables ? possibly influencing the
dynamics or measurement of the model inputs. In order to semantically structure ε, i.e.
the deviation from pure rigid body dynamics, the torque contributions of additional effects
can be denoted separately according to their origin either as a function of internal joint
dynamics i(q, q̇, q̈,?) = τint or torques τext resulting from external mechanic influences,
e.g. due to attached payloads, collisions or, in the context of this thesis, intentional physical
human-robot interactions, as in

τ = H(q)q̈ + C(q, q̇)q + g(q) + i(q, q̇, q̈, ?) + τext , (3.5)

where i(q, q̇, q̈,?) itself can be, in analogy to ε(q, q̇, q̈,?), interpreted as a placeholder
for an arbitrary number of additional functional terms further compensating for otherwise
unmodeled phenomena. In the following, this term is primarily used in collective reference
to the joint dynamic model describing torque contributions that emerge from within the
joints and exceed the model assumption of joint rigidity. With the inclusion of i(q, q̇, q̈,?)
in DRBD, the dynamic model can be augmented to account for flexible joints and related
complex perturbations such as friction, backlash and vibrations originating either on the
motor, transmission or link side of the joint (Haddadin, De Luca, and Albu-Schäffer, 2017;
Chawda and Niemeyer, 2017; Albu-Schäffer et al., 2007). A commonly applied formalism
to phenomenoligcally represent joint flexibility is to introduce a second set of generalized
kinematic state coordinates θm ∈ Rn representing the joint rotations that are incongruent
with the link rotations θl = q because of a displacement δ = θm−θl due to flexibility within
the joint. Due to the availability of joint torque and position sensors respectively located
at the joint output side in the case of the KUKA LBR iiwa and similiar robots, τ on the
left and (q, q̇, q̈) on the right side of Equation (3.5) can be considered directly observable
and mostly exempt from mechanical disturbances and flexibility effects originating from
the motor or transmission. For this reason, i(q, q̇, q̈, ?) predominantly accounts for residual
flexibility and friction phenomena after the transmission that arise from the the joint torque
sensors and their respective mechanic connection to their distally attached links. Under the
assumption that there is no inertial coupling between the joint and link bodies, and the
dynamic effect of joint friction and flexibility contained within the term i(q, q̇, q̈,?) can be
assumed to be causally restricted to the link side or output side of the transmission

i(q, q̇, q̈,?) = K(θl − θm)− V (θ̇j − θ̇l) + τf,l + iε(q, q̇, q̈,?) , (3.6)

where K = diag{Kj} ∈ Rn×n is the joint series elastic stiffness matrix and V = diag{Vj} ∈
Rn×n is the joint damping matrix, each respectively describing the torque contributions
occurring due to the torsion between the link and motor rotations; τf,l are the torques
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due to link side friction (Spong, 1987; Albu-Schäffer, Ott, and Hirzinger, 2007). Following
Equation (3.5) on the preceding page, the dynamics model DRBD in Equation (3.1) on
page 19 can be modified as

τ = D(q, q̇, q̈,?) + τext . (3.7)

Provided that for a given robot the values of the functional expressions on the right-
hand side of Equation (3.5) on the preceding page are known along with measurements of
q, q̇, q̈ and τ , the equation can be rearranged to isolate the external torques, such that

τext = τH + τC + τg + τint − τ (3.8)
τext = τrgb + τint − τ (3.9)
τext = τdyn − τ (3.10)

which allows inferring an external interaction in terms of the deviation of the measured
torques τ from the torques τdyn obtained through the dynamic model for the respective
kinematic state of the robot without external influences. The torques τext can be traced
back to the causal external interaction, by establishing a relation between the wrench wext =[
fext
next

]
∈ R6, composed of a force component fext ∈ R3 and a moment next ∈ R3 acting on

the robot at a point of contact due to the external interaction, via the geometric Jacobian

J(q) =

[
Jlin(q)

Jang(q)

]
of the manipulator associated with the location of contact on the robot,

which, for simplicity, is assumed to be restricted to the robot end-effector in the course of
this thesis:

wext = J−>(q) τext (3.11)
wext = J−>(q) [τdyn − τ ] (3.12)
wext = J−>(q) [D(q, q̇, q̈,?)− τ ] (3.13)
wext = J−>(q) [H(q)q̈ + C(q, q̇)q + g(q) + i(q, q̇, q̈,?)− τ ] . (3.14)

J(q) can be constructed based on the geometric description of the robot, where the explicit
derivation for redundant kinematic structures as investigated in this thesis follows the for-
mulation in (Schweikard and Ernst, 2015) that mitigates the problem of rang deficiency in
the Jacobian matrix arising for redundant kinematics.

3.2 Dynamic Modeling as a Statistical Regression Task

Based on this relationship, the task of estimating external forces, e.g. those due to physical
human-robot interactions, is tantamount to the identification of the dynamic model D on
the right-hand side of Equation (3.13), which can be used to infer the expected dynamic
state given a set of motion measurements, i.e. the inverse dynamics. As a robot constitutes a
highly complex dynamic system under the influence of possibly an indefinite number of phys-
ical effects, the exhaustive characterization of its true dynamics D may be intractable due to
its high dimensionality. Therefore, the aim is to identify the model τest = F (q, q̇, q̈,?) that
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approximates the real dynamics τdyn = D(q, q̇, q̈,?) to infer with maximum accuracy how
the dynamic state of the robot would be if there was no external influence, given multiple
measurements of (q, q̇, q̈,?) made by the available sensory elements, such that

||D(q, q̇, q̈,?)− F (q, q̇, q̈,?)|| → 0 (3.15)
||τdyn − τest|| → 0 (3.16)

over a maximum range of possible kinematic states (q, q̇, q̈). This is generally accomplished
by constructing F as a finite parametric representation of D. Probing the input-output
relation of F for a given input (q, q̇, q̈,?), the parameters of F are adapted, such that the
output approximates that of D for the same input:

arg min
F

||D(q, q̇, q̈,?)− F (q, q̇, q̈,?)||2 . (3.17)

In order to ensure good approximation for a wide variety of inputs, this step is repeated for
multiple data pairs of inputs (q, q̇, q̈,?) and targeted outputs τ . This results in a statistical
regression task in pursuit of those functions and function parameter values, yielding the
best approximation of the target data. Put differently, we are facing a supervised machine
learning problem, where the joint torque measurements that occur under a kinematic state
are defined as the supervision signal. Accordingly, the performance of any functional model
representation F is evaluated with respect to the similarity of its estimation τest to the
observed dynamic torque τdyn given a particular observation of the kinematic state. A
commonly utilized metric to statistically assess the model performance over m kinematic
states is the mean squared error (MSE) or root mean squared error (RMSE), respectively:

MSE =
1

m

m∑
i

(D(qi, q̇i, q̈i, ?i)− F (q, q̇i, q̈i, ?i))
2 (3.18)

RMSE =

√√√√ 1

m

m∑
i

(D(qi, q̇i, q̈i, ?i)− F (q, q̇i, q̈i, ?i))
2 . (3.19)

With regards to the parametric representation of the true dynamics, there are generally
two model paradigms to be followed: parametric and non-parametric modeling, where the
exact definition of these terms varies according to the context they are used in. For the
purpose of this work, consider the notion that dynamic models exhibit a spectrum of varying
levels of parameterization and a model F is denoted as tending towards being parametric, if
its approximation of the true dynamics D is conceived by formulating an explicit expression
that relates a small set of semantically predefined parameters to each other to infer the
dynamic state, given an observation of the kinematic state. The prerequisite for this is the
ability to characterize the majority of the dynamic effects as a well-defined interrelation
of those parameters, e.g. real physical quantities, that have the highest influence on the
dynamics. Contrary to this, in models that can be classified rather non-parametric, no such
a priori information, regarding the expected relationship and meaning of those parameters
that the model depends on, is applied. Instead, the model is structured to contain a rather
large set of semantically undefined and initially unspecifically interrelated parameters, where
their values and mutual influence are adapted solely based on the observed input-output

– 22 –



3 Force Estimation through Dynamic Identification

relations. In fact, no strict assumption on the dimensionality of the parameter space is made
in advance at all; but it is rather implicitly defined by the statistical data distribution.

These two model paradigms can be thought of as representing two extremes on the
spectrum of model parameterization, often termed white- and black-box models, where the
level of parameterization structurally affects the prediction accuracy obtainable by model:
A highly parameterized white-box model, i.e. one that assumes D to be the described by
a well-defined, analytic relationship of semantically specified parameters, imposes a strong
limitation on the possible model output. If the a priori defined model structure sufficiently
reflects the true dynamics, the high degree of parameterization averts an undesired variance
in the model predictions, leading to robust predictions over a wide range of inputs. At the
same time, however, the formulation of such a rigid model, comes with the risk of introducing
a prediction bias, by completely disregarding dynamic effects that have not been considered
beforehand out of unawareness about their existence or because their complexity prevented
them to be formulated mathematically.

Conversely, with a low level of parameterization in black-box models, the increase in
model expressiveness introduces the possibility of high variance in the model predictions, as
the model’s parametric structure is not handcrafted to resemble specific dynamic effects from
the outset. A benefit of the low parameterization that accompanies this disadvantage, is the
simultaneously diminished susceptibility towards prediction biases caused by the otherwise
strong model assumptions.

Figure 3.1: Qualitative relation between the level of parameterization of a dynamic model
and its prediction characteristics.

From this consideration, it can be conjectured that a balanced level of parameterization
is potentially desirable to ensure both good prediction robustness against statistical outliers
in the kinematic input state by incorporation of enough a priori knowledge, as well some
degree of model flexibility to account for dynamic effects that are difficult to capture. From
another perspective, this trade-off between model bias and variance can be regarded as a
particularity of the superordinate, and often sought-after generalization ability in statisti-
cal learning. Considering the task of modeling robot dynamics, model generalization is of
special importance, as the high dimensionality of the kinematic and dynamic space pre-

– 23 –



3 Force Estimation through Dynamic Identification

vents carrying out an exhaustive regression on the complete input space. For this reason,
the following sections cover the fundamentals of parametric robot model identification on
one hand and the application of various artificial neural network-based machine learning
techniques for dynamic identification on the other.

3.3 Parametric Dynamic Model Identification

Disregarding the influence of possible perturbations and other complicating effects sub-
sumed under i(q, q̇, q̈,?) (see Equation (3.5) on page 20), the dynamics of a robot can be
described by the collective mechanic properties of its links, i.e. the position, connectivity,
movement and distribution of mass of the respective rigid bodies representing those links,
which constitutes the eponymous rigid body dynamics. This follows immediately from the
model defined in Equation (3.3) on page 19, which regards only forces and physical effects
pertaining to the motion of bodies with mass, i.e. phenomena mediated by the inertial
effects of those bodies.

As such, it appears convenient to reformulate the physical properties implicitly em-
bedded in the terms of the dynamic model of the robot (Equation (3.3) on page 19) to
relate the joint torques to an explicitly stated, finite set of parameters. This exploitation
of the dependency of a rigid body system’s dynamics on a predefined limited number of
parameters greatly simplifies the problem of parameter identification, and consequently the
estimation of external forces. A related benefit of this bounded model complexity is the
reduction of variability in the model predictions. However, it has to be kept in mind, that
such a simplification is inevitably tantamount to a concurrent restriction of the model’s
overall representative capacity.

The necessary parameters to describe the dynamic system model of a robot can be di-
vided into kinematic and inertial parameters (Hollerbach, Khalil, and Gautier, 2016). The
kinematic parameters, especially in the case of mass-produced robots, are usually readily
accessible with sufficient accuracy via technical documentation or construction data pro-
vided by the manufacturer, because of which it is often not required to perform dedicated
kinematic identification experiments to obtain the geometry of the individual links of the
robot. Referring to the kinematic description of the robotic reference system in Section 2.1
on page 12, the further examination of this otherwise important preliminary step is omitted
with regards to the scope of this work. The inertial parameters of a given robot, however,
are rarely published and only obtainable from CAD data with great uncertainty, which ne-
cessitates the experimental identification of those parameters (Khalil and Dombre, 2002),
the methodological outline of which is presented in the following.
Extending the notation used so far, each link i is equipped with reference frames and po-
sitioned relative to the origin during motion as shown in Figure 3.2 on the following page,
where Oi denotes the reference frames of the links which are connected by the vector si
with their respective distally following link i+ 1. The link frames Oi are positioned in the
origin of their proximal joints relative to the global frame O0 by the vector pi, where its
derivatives also describe the linear motion of link i. Ci denotes the location of the center of
mass of link i and is located by ci with respect to Oi and ri in global coordinates respec-
tively. The linear forces acting upon the link i are represented by the gravity vector g and
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an arbitrary force vector ff (see Figure 3.2);.

Ci

O0

Oi

pi

ri

link i

ci

Oi+1

si

g

fi

joint i

joint i+ 1

z

Figure 3.2: Location of the reference frames and vectors of an intermediate link. Adapted
from (Atkeson, An, and Hollerbach, 1986)

Based on this assignment of reference frames and vectors, these inertial parameters can
be arranged in a parameter matrix Φ ∈ Rp×n composed of n columns of p parameters for
each link i = 1, . . . , n, where Φi denotes the i-th column and is commonly defined to include
10 inertial parameters and 2 friction parameters (Khalil and Dombre, 2002) for link i as in

Φi =
[
mi mic

x
i mic

y
i mic

z
i Ixxi Ixyi Ixzi Iyyi Iyzi Izzi F v

i F c
i

]>
.

(3.20)

For the utilization of Φ within linear equations in the following passages, the notation Φ

is overloaded to, if necessary, also refer to the vectorized form of Φ following column-major
order. mi denotes the mass of link i, c∗i is the ∗-component of the vector pointing at the
center of mass of link i with respect to the link’s center of mass Ci. I?,∗i represents an
element of the symmetric inertia tensor of link i

Ii =

Ixxi Ixyi Ixzi
· Iyyi Iyzi
· · Izzi

 ,

again, in relation to Ci (see Figure 3.2). F v
i and F c

i respectively designate parameters for
the viscous and Coulomb frictions impeding the free motion of link i with respect to link
i − 1. The influence of actual joint dynamics on the total robot dynamics observable by
the aforementioned availability of sensors on the joint output side is obviously minimal.
Because of this, the robot dynamics could be solely expressed in terms of link body pa-
rameters. However, due to the ease of integration of, strictly speaking, joint parameters of
friction within a linear model formulation mentioned in the following, these parameters are
commonly included.
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Supposing the existence of a model that describes the dynamic behavior of a robot
with link parameters Φ, the identification of Φ can in general be performed by using two
structurally different formulations, beginning with

τ = f(x,Φ) , (3.21)

where f = {f1, . . . , fn} is an arbitrarily complex but explicit expression that evaluates
for the joint torques τ given the input variables x ∈ Rn×∗ that are directly available by
measurement, i.e. at least q, q̇, q̈ and the linkage structure, and the sought link parameters
Φ. Because elements of Φ themselves may appear non-linearly in the functional terms of f ,
this model formulation is accordingly called a nonlinear model. As such, it is evident that
to solve the model equation for Φ a likewise non-linear solving technique is required, which
in consequence entails the usual challenges of non-linear optimization, revolving around e.g.
convergence, optimality and computational complexity. In avoidance of this, the model may
also be constructed as a linear equation system

τ = F (x) Φ , (3.22)

in which Φ appears linearly with respect to a model matrix F (q, q̇, q̈, ?)) ∈ Rn×p (Atke-
son, An, and Hollerbach, 1986), again containing arbitrarily complex expression, that now,
however, only depend on the input variables x. The actual internal structure of X can the-
oretically incorporate an arbitrary amount of complex, nonlinear functions, which likewise
use an indefinite number of inputs, to model the dynamics of the robot. The derivation of
the internal structure of the model matrix is commonly based on the equivalent classical
formulations of either Lagrangian (Stürz, Affolter, and Smith, 2017b) or Newtonian me-
chanics (Atkeson, An, and Hollerbach, 1986). Due to reasons of computational efficiency
(Featherstone, 1987) regarding the algorithmic implementation (Section 4.1 on page 46),
the Newtonian formulation is chosen in the following. As proposed initially by (Atkeson,
An, and Hollerbach, 1986), the internal structure of X is derived from the Newton-Euler
formulation of the rotational dynamics of rigid bodies, which shall be presented next.

During motion, each link i is acted upon by a net wrench wi composed of a net force fi
and torque ni about the center of mass Ci defined by the classical Newton-Euler equations
as

fi = fi,i +mig = mir̈i (3.23)
ni = ni,i − ci × fi,i = Iiω̇i + ωi × (Iiωi) , (3.24)

where fi,i and ni,i designate a force and torque, respectively, acting at joint i solely due to
the motion of link j. Accordingly, let wi,i be the wrench acting upon link i that is composed
of the force and torque vectors occurring solely due to the motion of link i. ωi =

[
0 0 qi

]>
denotes the vector describing the angular velocity qi by which link i is rotating around the
z-axis share by joint i and link i denoted by ωi.

Because the exact location of the center of mass Ci may not be determinable, the
acceleration of Ci with respect to O0 denoted by r̈i may be expressed in terms of the
acceleration of pi pointing at the reference frame of joint i which is known from the kinematic
structure:

r̈i = p̈i + ω̇ × ci + ωi × (ωi × ci) (3.25)
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Updating the formulation of the Newton-Euler equations in Equation (3.23) on the preceding
page and Equation (3.24) on the previous page with this expression of r̈i yields

fi = mi(p̈i − g) + ω̇i ×mici + ωi × (ωi ×mici) (3.26)
ni = (g − p̈i)×mici + Iiω̇i +mici × (ω̇i × ci) + ωi × (Iiωi)+ (3.27)

mici × (ωi × (ωi × ci)) .

As the unknown location of Ci is still present in the form of ci appearing quadratically in
the terms ci× (ω̇i×ci) and ci× (ωi× (ωi×ci)), this factor of uncertainty can be mitigated
by substituting the inertia tensor Ii defined about the center of mass with the inertia tensor
pIi, which is defined about the center of the joint i, using the relation

pIi = Ii +mi[(c
>
i ci)1− (cic

>
i )] , (3.28)

with 1 being the three-dimensional identity matrix, and substituting into Equation (3.28):

ni =(g − p̈i)×mici + Iiω̇i +mi[(c
>
i ci)1− (cic

>
i )]ω̇i + ωi × (Iiωi)+ (3.29)

ωi × (mi[(c
>
i ci)1− (cic

>
i )]ωi)

ni =(g − p̈i)×mici + rIiω̇i + ωi × (rIiωi) . (3.30)

Building on this formulation of (Atkeson, An, and Hollerbach, 1986), the effect of the addi-
tional set of the two frictional parameters F v

i and F c
i on ni (see Definition Equation (3.20)

on page 25) can be included, yielding:

ni =(g − p̈i)×mici + rIiω̇i + ωi × (rIiωi) + F v
i ω̇i + F c

i sign(ω̇i) . (3.31)

The finally derived forms of the wrench wi,i composed of fii and nii that is acting upon
link i is now transformed into a matrix formulation, where motion parameters g, p̈i, ωi

and ω̇i appear in the matrix Fi and inertial parameters mi, ci and rI in the matrix Φi

respectively:

wi,i = FiΦi . (3.32)

To do so, the operands in terms containing the matrix operations of the cross- and dot-
products have to be adapted to the matrix formulation first, such that the respective op-
erations can be equivalently expressed by matrix multiplication in the order of operands
permitted by the linear equation system:

ω × c = [w×]c =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

cxcy
cz

 , (3.33)

Iω = [·ω]I =

ωx ωy ωz 0 0 0

0 ωx 0 ωy ωz 0

0 0 ωx 0 ωy ωz




Ixx
Ixy
Ixz
Iyy
Iyz
Izz


, (3.34)
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where [w×] and [·w] respectively express the cross- and dot-product between w and an-
other matrix as a matrix multiplication. Using these operators, the linear equation in
Equation (3.32) on the preceding page can be formulated as

wii =

[
fii
nii

]
=

[
p̈i − g [ω̇i×] + [ωi×][ωi×] 0

0 [(g − p̈i)×] [·ω̇i] + [ωi×][·ω̇i] ω̇i sign(ω̇i)

]
×



mi

mici
Ixx
Ixy
Ixz
Iyy
Iyz
Izz
F v
i

F c
i


,

(3.35)

which for the moment only relates the wrench wi,i acting upon link i as a result of its
own motion and the influence of gravity to its inertial parameters. However, as the robot is
composed of n connected links, the total wrench wi arising at link i is the combined effect of
wi,i, i.e the wrench due to its own motion Fi and inertial parameters Φi, and the wrenches
wij , . . . ,wi,n, which, in turn, denote the contributions of the wrenches wi+1i+1 . . .wn,n

transmitted onto link i, occurring solely due to their own respective motion at the links
i+ 1, . . . , n:

wi =

n∑
j=i

wij . (3.36)

The wrench contribution wi.i+1 transmitted from the distal link i + 1 onto the proximal
link i is calculated by pre-multiplication with a screw transformation matrix Ti as in

wi,i+1 = Ti wi+1,i+1 (3.37)[
fi,i+1

ni,i+1

]
=

[
Ri 0

[si×]Ri Ri

] [
fi+1,i+1

ni+1,i+1

]
, (3.38)

where Ri is the rotational part of the homogeneous transformation matrix Mi that locates
the reference frame of link i + 1 relative to the reference frame of link i. Mi may be con-
structed in accordance with the parameters ki = [ai, αi, di, θi] of the Denavit-Hartenberg
convention, defining the relative position and orientation link i within the kinematic struc-
ture of a given manipulator (Denavit and Hartenberg, 1955) as follows:

Mi =


cos(θi) − sin(θi) 0 ai

sin(θi) cos(αi) cos(θi) cos(αi) − sin(αi) − sin(αi)di
sin(θi) sin(αi) cos(θi) sin(αi) cos(αi) cos(αi)di

0 0 0 1

 . (3.39)

It should be noted that through the integration of Ri containing the kinematic parameters,
and especially the variable DH-parameter θi = qi, the transmitted wrench becomes a func-
tion of the the robot’s geometry and joint configuration. The same applies for the motion of
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the links, mutually affecting each other, where Ri can be utilized together with the trans-
lational part si =

[
ai − sin(α)di cos(αi)di

]> of Mi (see Figure Figure 3.2 on page 25)
to relate the motion of the distally neighboring link i+ 1 to the one of its predecessor link
i:

ωi+1 = R>
i ωi + q̇i+1

[
0 0 1

]> (3.40)

ẇi+1 = R>
i ω̇i +R>

i ωi × q̇i+1

[
0 0 1

]>
+ q̈i+1

[
0 0 1

]> (3.41)
ṗi+1 = R>

i [ω̇i × si + ωi × (ωi × si) + ṗi] . (3.42)

Now, in order to transmit the wrenches from a distal link j over multiple intermediate links
to a proximal link i, the wrench transmission operation T decalred above can be applied
sequentially to cover all of the link frame transformations occurring between links i and i,
as in the following:

wi,j = TiTi+1 . . .Tjwj,j (3.43)
wi,j = TiTi+1 . . .TjFjΦj (3.44)
wi,j = Ui,jΦj . (3.45)

Due to the sequential transmission of wrenches from distal to proximal links, and from
proximal to distal links for the transmission of motion, the Equations (3.40) to (3.42)
have to be computed recursively along the forward direction of the kinematic chain, and
the Equation (3.43) has to be computed in the backward direction to obtain the values
for every link. For this purpose the Recursive Newton Euler Algorithm has been developed
(Luh, Walker, and Paul, 1980), essentially unifying the expressions presented so far within an
algorithm that lends itself to be implemented with high computational efficiency. The details
of implementation are discussed in Section 4.1 on page 46. The total wrench transmitted
onto every link (see Equation (3.36) on the previous page) of a serial kinematic chain of
arbitrary link count n can be obtained at once by using a linear equation system

w1

w2

w3
...

wn

 =


U1,1 U1,2 U1,3 . . . U1,n

0 U2,2 U2,3 . . . U2,n

0 0 U3,3 . . . U3,n
...

...
... . . . ...

0 0 0 . . . Un,n




Φ1

Φ2

Φ3
...

Φn

 (3.46)

w = UΦ (3.47)
w = U(q, q̇, q̈,k)Φ (3.48)

The functional expression U(q, q̇, q̈,k) emphasizes that the elements of U are fully deter-
mined by the kinematic parameters k and the kinematic state (q, q̇, q̈). The parameter
matrix Φ appears in vectorized form, where its columns pertaining to the respective links
are stacked beginning with the first link’s parameters on top. As the entries of w and
U in this linear system are three-dimensional wrenches of which only the torques around
the respective joint axes can be observed with uniaxial joint torque-sensing, the force and
torque components of those wrenches are discarded except for the last rows of the torque
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components, such that the final parametric model equation

τ = τRBD = K(q, q̇, q̈,k) Φ , (3.49)

with τi =
[
0 0 0 0 0 1

]
·wi and Ki,j =

[
0 0 0 0 0 1

]
·Ui,j , is obtained, bear-

ing close resemblance to the linear model equation initially defined in Equation (3.22) on
page 26. The model matrix F is represented by the kinematic observation matrix K, which
defines the kinematic state according to the Newton-Euler equations for one observation of
the kinematic parameters. As the model assumptions encoded in the model matrix K are
all made within the framework of the equations of motion for rigid bodies, the model predic-
tions made by this formulation are denoted as τRBD = K(q, q̇, q̈,k) Φ when it is necessary
to distinguish them from predictions made on the basis of different model assumptions.

For the purpose of dynamic identification of a robot, this linear equation can now be
solved for Φ, given n measured joint torques to be inserted for τ on the left-hand side of
the equation. On the right-hand side, we find that K is known as well by being essentially
a function of the robot’s kinematic parameters k and the temporally differentiated joint
position measurements q, q̇, and q̈. However, because the linear system is overdetermined as
shown by the dimensions of the system’s variables τ ∈ Rn×1, K ∈ Rn×12n and Φ ∈ R12n×1

and the measurements of the model inputs are further corrupted by noise, it is necessary to
solve Equation (3.22) on page 26 for multiple input-output pairs of τ and q, q̇, q̈ to ensure
statistical validity over a wide range of inputs for the model parameters identified by this
linear regression.

Therefore, after the acquisition of N data pairs composed of dynamic state measure-
ments of τmeas and kinematic state measurements (qmeas, q̇meas, q̈meas,k), a model equation
is constructed for each observation, which are then stacked, such that the stacked linear
equation system

τmeas = K(qmeas, q̇meas, q̈meas,k) Φ (3.50)
τ 1
meas

τ 2
meas
...

τN
meas

 =


K(qmeas, q̇meas, q̈meas,k)

1

K(qmeas, q̇meas, q̈meas,k)
2

...
K(qmeas, q̇meas, q̈meas,k)

N



Φ

Φ
...
Φ

 , (3.51)

where τmeas ∈ RN ·n×1, K(qmeas, q̇meas, q̈meas,k) ∈ RN ·n×12n and Φ ∈ RN ·12n×1 is ob-
tained.

3.4 Artifical Neural Networks for Dynamic Model
Identification

Although models based on neural networks, strictly speaking, still constitute parametric
models in the narrow sense, they can be regarded to effectively behave in a fashion similar
to proper non-parametric models, due to the, usually high parameter count and absence of
specifically defined, rigid parameter relationships (Lee et al., 2018). In fact, the property of
approximating non-linearity can be seen as a result of the indefinitely extendable parameter
count of an artificial neural network. This low degree of parameterization, i.e. dependence
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on predefined semantic model structure, allows for a model identification purely based on
dynamic measurement data without imparting of any prior model knowledge in terms of an
analytical decomposition of the dynamics into interrelated physical effects and quantities
as is the case with parametric modeling. While this naturally entails the risk of failing
to extract an adequate dynamic model representation from data alone, at the same time,
the opportunity to capture phenomena outside of the preset borders of dynamic model
formulations arises. In view of the complexity of robot dynamics itself on one hand and of
the multitude of perturbating effects on the sensory observation of it, it appears desirable to
investigate more flexible model identification techniques, such as artificial neural networks.
Given the vastness of the field of neural network-based machine learning techniques, the
following is intended as a concise overview of the architectural and functional fundamentals
with a focus on the application of dynamic identification and modeling. In awareness of
the multitude of developed variations and different flavors regarding the design and use of
the techniques to be discussed, primarily, the architectural and functional design choices
investigated in this thesis are considered to be succinct.

Leaving the fundamental task defined in Equation (3.21) on page 26 unchanged, the
approximation of the true robot dynamics does not necessarily require an underlying model
formulation that is derived from physical insight. Instead of incorporating hand-crafted
functional, possibly nonlinear inter-parametric relationships (see Newton-Euler formulae in
Equations (3.23) and (3.24) on page 26) in hope of representing the majority of dynamic
effects, an arbitrarily complex parametric relationship can be distilled from observations of
the dynamic behavior by courtesy of the functional properties of certain types of artificial
neural networks.

Multilayer Perceptrons

Multilayer perceptrons (MLP’s) arguably constitute the archetypal neural network models
to be utilized for function approximation purposes. As such they can also be applied
on the same fundamental task defined in Equation (3.22) on page 26 to define a mapping
τ = f(x,θ) between observations of the joint torques τ and other available sensory inputs x
within a supervised regression framework, wherein the joint torque measurements represent
the supervision signal, i.e. label data. This mapping is again established via a collection of
parameters, here denoted as θ to avoid ambiguity with regards to the semantically defined
parameters from before.

In accordance with associated standard theory, the mapping is composed of multiple
interconnected chains of parallel functional units or neurons arranged in a network, where
the number and connectivity of these units is dictated by a layered corresponding directed
acyclic graph that is m(l) units wide and l+2 unit layers deep.2 The first layer, also known
as input layer, accepts the inputs of the dynamic model consisting of an vector x ∈ Rn·p×1

containing an arbitrary set of p observable quantities (see Section 3.1 on page 19), i.e.
features, for every joint j = 1, . . . , n, most commonly in form of a concatenation of the

2 For the sake of completeness, it should be pointed out that the overall topology and functional behavior
of artificial neural networks are inspired by neuroscientific observations of biological nervous systems
(McCulloch and Pitts, 1943), which is also why the associated terminology is pervaded by biological
metaphors.
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Figure 3.3: Network graph of a (l + 1)-layer perceptron with p · n input and n output
units. The lth hidden layer contains m(l) hidden units.

usual joint-wise kinematic parameters plus any other observable quantity (q, q̇, q̈,?), such
that x = vec(q, q̇, q̈,?). The input is fed forward through the network over multiple paths
in l hidden layers towards the n units in the output layer corresponding to the target
vector τ ∈ Rn. Along this path consisting of a sequence of connected units, the inputs are
subjected to a chain of elementary operations occurring at the respective units as illustrated
by Figure 3.3.

The layer-wise operations up until the output layer are collectively defined as

h(1) = f (1)(x,W (1), b(1)) = a(W (1)>x+ b(1)) (3.52)

h(2) = f (2)(h(1),W (2), b(2)) = a(W (2)>h(1) + b(2)) (3.53)
...

h(l) = f (l)(h(l−1),W (l), b(l)) = a(W (l)>h(l−1) + b(l)) , (3.54)

where h(1) denotes the vector of the state of the units in the first hidden layer as the result
of the application of the function f (1)(x,W (1), b(1)) on the input vector x; h(l) denotes the
units’ values in hidden layer l due to the application of f (l)(h(l−1),W (l), b(l)) on the previous
hidden layer h(l−1). The parameters of those respective layerwise transformationsf (l) are
the weight matrix W (l), which defines the scaling factors to be applied on the output values
of the previous layer’s units when they are fed forward to a particular unit of the following
layer, and the bias vector b(l) denoting an additional offset value to be added to the unit. As
these two parameters define affine transformations on the respective layer inputs that are
incapable of approximating non-linear relations present in the data, an activation function a
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is subsequently applied on every hidden unit to introduce a non-linearity into the network.
Otherwise, a sequence of linear transformations could be expressed with a single affine
transformation in one layer anyway, defying the need for multiple layers. Here, the rectified
linear unit activation function

a(z) = max(0, z) (3.55)

is a common choice (Nair and Hinton, 2010) because of its piecewise linearity still preserves
some desirable properties of linear models with regards to their ease of optimization and
good generalization capabilities (Goodfellow, Bengio, and Courville, 2016). Within the

−4 −2 0 2 4

z
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2

3

4

a
(z
)

Figure 3.4: Plot of the rectified linear unit activation function (ReLU).

context of regression, after sequentially performing these operations for every layer, the
values of the last hidden layer are then again fed into a purely linear function to avoid
non-linear distortions in the output:

τ = f (l+1)(h(l),W (l+1), b(l+1)) = W (l+1)>h(l) + b(l+1) (3.56)

The totality of the network, and thus the dynamic model function, can be expressed as

τ =W (l+1)>
[
f (l) ◦ f (l−1) ◦ . . . ◦ f (1)

]
+ bl+1 (3.57)

=W (l+1)>
[
a(W (l)>h(l) + bl) ◦ a(W (l−1)>h(l−1) + b(l−1)) ◦ . . .

◦ a(W (1)>x+ b(1))
]
+ b(l+1) (3.58)

= f(x,W , b) = f((q, q̇, q̈,?),W , b) , (3.59)

where the torque predictions of the model for a given observation now only depend on
the weights W and biases b of the respective neurons within a defined network topology of
depth l and layerwise width m(l), which constitute the model parameters to be identified, or
learned, when applying the technical terminology common in the related research field. By
courtesy of the nonlinearity introduced through the activation function, it is then eventually
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possible to define a topology of sufficient width or depth, depending on the complexity of
the real dynamics, which is in theory capable of fully approximating that true underlying
dynamics. This is a reduced formulation of the fundamental statement of the theorem
(Cybenko, 1989; Hornik, Stinchcombe, and White, 1989). As a sufficient topology cannot
be determined exactly in advance, one is left to rely on existing experience, experimentation,
and other heuristics.

Please note, however, that the universal approximation capability is guaranteed only in
terms of the model structure, i.e. in the sense that MLP’s provide the necessary framework
to represent any function with the condition that its corresponding model parameters are
known. In combination with the generic or non-task-specific structure of an MLP, in contrast
to the physical parametric formulation from before, the number of model parameters usually
is drastically increased to capture the observed dynamic effects. Therefore, the regression
task for the identification of the model parameters is complicated by an increase in the
required amount of training data and an aggravation of the optimization of the model
parameters. Essentially, this results in a trade-off between the enhancement of a network’s
representative potential through an increase in model size on hand and the difficulty of
parameter tuning, i.e. model training, on the other.

Regardless of the specific network topology, the goal of the training process is to adjust
the network parameters θ = (W , b) such that a network f(x,W , b) is obtained that out-
puts torque predictions τest that minimize the loss function L(τest, τmeas) , i.e. the scalar
prediction error, with respect to the measured target torques τmeas resulting from the true
dynamics, which is commonly defined as the mean squared error over i samples

L(τest, τmeas) = MSE =
1

m

m∑
i

||(τest − τmeas)
2
i || . (3.60)

In order to optimize the parameters to yield minimum loss, the prediction loss of network
function f(x,W , b) has to be evaluated with respect to its optimization parameters θ.
This process is conceptually divided into the two steps of forward and back-propagation.
Following a random initialization of the network parameters, the inputs xi are fed into
the network and propagated forward through the layers, producing the output torques for
which the loss L(τest, τmeas) is computed. The influence of the parameters of the network
on the prediction accuracy is then retrieved by the back-propagation of the loss through
the network to compute the gradient of the loss with respect to the network parameters
∇θJ , where the cost J = L(τest, τmeas) is introduced as a shorthand for the loss. As J

is the result of a chain of elementary operations defined by both the computational graph
(see Figure 3.3 on page 32) and the Equations (3.57) to (3.59) on the preceding page,
the initially unknown total gradient ∇θJ likewise can be represented as a composition of
separate gradients, as stated by the chain rule of calculus. A minimal example can be
construed by letting y = g(x) be a function that maps from Rm to Rn and z = f(y) be a
function that maps from Rn to R. According to these relations, z can also be represented
as a composition z = f(y) ◦ g(x), where the gradient ∂z

∂xi
can be written as a product of
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two gradients as in

∂z

∂xi
=

∑
j

∂z

∂yj

∂yj
∂xi

(3.61)

∇xz =

(
∂y

∂x

)>
∇yz. (3.62)

This basic rule can then be applied to recursively express∇θJ as a multiplicative chain of the
gradients of the operations occurring in the network from the output layer towards the input
layer using the back-propagation algorithm shown in Algorithm 3.5. Thus, the computed
gradient is utilized in conjunction with an optimization algorithm belonging to the family
of iterative gradient descent algorithms, which eponymously leverage the multidimensional
direction along which the parameters have to be changed to reduce the loss, as the extremely
high dimensionality of the network renders a direct optimization intractable.

Algorithm 3.5: Computation of the gradient ∇θJ for a MLP with l hidden layers. After
forward propagation of the input, ∇θJ is determined by recursively extending a gradient
expression with the gradients of the layer-wise operations by courtesy of the chain rule
while back-propagating towards the input layer (Rumelhart, Hinton, and Williams, 1986).
Adapted from (Goodfellow, Bengio, and Courville, 2016).

algorithm back-propagation
inputs: x, τmeas, W , b, l
outputs: J , ∇θJ

// forward propagation
h(0) = x

for k = 1, . . . , l do
a(k) = W (k)h(k−1) + b(k)

h(k) = f(a(k))

end for
τest = h(l)

J = L(τest, τmeas)

// back-propagation
compute gradient on output: g ← ∇τest

J = ∇τest
L(τest, τmeas)

for k = l, l − 1, . . . , 1 do
compute gradient on activations: g ← ∇a(k)J = g � f ′(a(k))

compute gradient on biases: ∇b(k)J = g

compute gradient on weights: ∇W (k)J = g h(k−1)>

compute gradient on total layer: g ← ∇h(k−1)J = W (k)>g

end for
∇θJ← g

return J , ∇θJ
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Algorithm 3.6: Stochastic gradient descent for one training iteration k. Adapted from
(Goodfellow, Bengio, and Courville, 2016).

algorithm stochastic gradient descent
inputs: εk, θ
output: θ

while stopping criterion not met do
get minibatch with m input-label pairs: {(x1, τ 1

meas), . . . , (x
m, τm

meas)}
back-propagation over minibatch: g← 1

m∇θ

∑m
i L(f(x(i),θ), τ

(i)
meas)

update parameters: θ← θ − ε g

end while
return θ

As a consequence of the inherent model flexibility and a high number of parameters,
there is a need to optimize the network parameters, i.e. train the network on a large data set
including as many samples as to sufficiently resemble the data encountered in practice and
ensure good generalization of the model. One may argue, that it would be beneficial to then
to sequentially compute the loss gradient and adjust the network parameters accordingly
for every training sample. The sheer size of the training set in almost all cases, however,
prevents the repeated computation of the gradient for every sample due to the infeasibly high
computational time requirements. Therefore the algorithmic foundation for the adjustment
of the network parameters is almost exclusively derived from the basic algorithm of stochastic
gradient descent (see Algorithm 3.6), which makes use of an estimate of the loss gradient
based on a randomly sampled subset of the training set. The network parameters are then
updated according to this estimate, where a preset learning rate ε dictates step size with
which the parameters are adjusted descent direction. In order to realistically assess the
benefit gained from the parameter updates, and especially its generalization capability, the
available data are split into a training set on the data of which the network parameters are
optimized, and a validation set which is solely used to obtain an unbiased evaluation of the
network’s prediction accuracy on unseen data.

Recurrent Neural Networks

As the defining property of any dynamic system like a robot is the time dependence of its
state, there is a natural incentive to incorporate temporal information within the general
framework of artificial neural networks for dynamic modeling. The network architecture of
conventional feedforward MLP’s presented so far, however, is designed to learn on data con-
taining single, temporally disjunct relations between an input and target output. Although
in the case of robot dynamic modeling, some temporal effects are already embedded in the
common input quantities that consist of temporal derivatives, the opportunity to encode
information on dynamic effects that emerge as the result of a longer history of system and
motion states, which may e.g. be grouped under the term of hysteresis, is still neglected.

In order to leverage the temporal information for dynamic modeling, the computational
graph of a feedforward network such as the MLP (see Figure 3.3 on page 32) can be modified
to form a cyclic connection between its output and input, transforming it into a type of
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recurrent neural network (RNN), whereof many architectural variants exist (Elman, 1990;
Lang, Waibel, and Hinton, 1990; Hochreiter and Schmidhuber, 1997). The underlying idea
is to abstract a dynamic system as a time series of system states of length T , for which a
model can be approximated by a recurrent network function accepting a new input x(t) at
every time step t:

h(t) = f(h(t−1),x(t),θ) , (3.63)

where in case of a simple recurrent networks (SRN), the hidden states h functions may be
defined as

h(t) = tanh(Wh(t−1) +Ux(t) + b) (3.64)

o(t) = c+ V h(t) . (3.65)

Here, o(t) denotes the output of the SRN at time step t that in our case constitutes the
torque prediction τest for that particular time step based on which the prediction loss with
regards to the label τmeas will be determined. The recurrence extends the conventional
neural network function in Equation (3.59) on page 33 to also refer back to the inputs and
states of the hidden units of a previous forward pass. As such, the network function of
an RNN is able to encode a complete input history into its hidden units and essentially
build a memory of past inputs based on which model predictions can be made. By means
of this added recurrence, the universal approximation theorem for feedforward networks
can similarly be expanded to imply the capability to approximate any time-sequence map-
ping with a sufficient number of hidden units (Hammer, 2000). The training of an RNN is
only marginally different from that of a feedforward network, as RNN’s can be considered
equivalent to deep feedforward networks when unfolded in time, with the only distinction
being the cyclic repetition of the network parameters. Similarly to feedforward networks,
the gradients are computed by back-propagation through the time-unfolded network, which
commonly is referred to as back-propagation through time (BPTT) (Williams and Zipser,
1995)). However, depending on whether an RNN is employed to map a sequence to a single
time-step output or another sequence, a single loss gradient or multiple loss gradients for
each prediction within a defined time window must be back-propagated to determine the
total gradient (truncated back-propagation through time). Regardless of the specific design
of the inner workings of a RNN, the recurrent execution of a network function inevitably re-
stricts the choice of nonlinear activations to squashing functions, such as the sigmoid logistic
function σ(x) = 1

1+e−x → (0, 1) or the hyperbolic tangent tanh(x) = ex−e−x

ex+e−x → (−1, 1), to
regularize the returned intermediary hidden states (exploding gradients problem). This has
a negative impact on the training process which manifests itself in the computation of the
loss gradient: When unfolding the network over multiple time steps, due to the repeated
execution of the network function during the successive forward propagation of an input
sequence, the gradient of the loss becomes the product of a long chain of back-propagated
gradients (back-propagation through time, that are ≤ 1. Therefore, with increasing sequence
length, i.e. distance to the first layers, the gradients tend to exponentially decrease. Among
other reasons, this issue, commonly known as the vanishing gradient problem (see Figure 3.8
on page 39), leads to a significant stagnation of the parameter optimization via stochastic
gradient descent for long sequences as well as difficulties with the learning of long-range
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Figure 3.7: A time-unfolded computational graph for an RNN that maps a sequence of
inputs onto single output. For every time step t an input x(t) weighted by U is fed into the
hidden unit h(t) together with the output of the previous hidden unit h(t−1) weighted by W .
At the end of the input sequence, the last hidden state undergoes an affine transformation
parameterized by V into the final output vector o based on which the loss L with respect
to a label vector for that time step is calculated. This type of configuration is a natural
choice for the purpose of dynamic modeling, as all information of contained within the
sequence can be condensed in one prediction, which is in contrast to sequence-to-sequence
mappings, where earlier hidden states experience a reduced history of inputs. Adapted from
(Goodfellow, Bengio, and Courville, 2016)

dependencies (Hochreiter et al., 2001), which is especially detrimental for applications such
as the dynamic modeling of robots.

This problem inherent to RNN’s is alleviated by gated RNN’s such as the long short-
term memory (LSTM) architecture (Hochreiter and Schmidhuber, 1997), which nowadays
constitutes the most prominently utilized RNN type. Inside of an LSTM block, multiple
gates, that are controlled by learnable parameters, dictate the passage and transformation of
the incoming inputs and recurrently connected outputs. This allows an adaptive regulation
of the information flow during a input sequence in order to preserve long-term contextual
information. A canonical configuration of an LSTM cell (Sak, Senior, and Beaufays, 2014)
depicted in Figure 3.9 on page 40, commonly accepts an input vector x(t) ∈ Rn×1 and
recurrently fed-back hidden state vector h(t−t) ∈ Rm×1, of which four copies each are pair-
wise directed towards four non-linearly activated gates respectively, i.e. an input-gate i,
forget-gate f (Gers, Schmidhuber, and Cummins, 1999), cell gate c̃ and output gate o.
These output gate determines the output hidden state h(t) based on an recurrently fed-
back, auxilliary cell state c(t−1) that is computed in parallel by the forget, input and cell
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Figure 3.8: The vanishing gradient problem. The shading indicates the decrease of the
gradient towards the end of an input sequence. From (Graves, 2012)

states according to following formal definition:

i(t) = σ
(
Wxix

(t) +Whih
(t−1) + bi

)
(3.66)

f (t) = σ
(
Wxfx

(t) +Whfh
(t−1) + bf

)
(3.67)

c̃(t) = tanh
(
Wxcx

(t) +Whch
(t−1) + bc

)
(3.68)

c(t) = f (t) � c(t−1) + i(t) � c̃(t) (3.69)

o(t) = σ
(
Wxox

(t) +Whoh
(t−1) + bo

)
(3.70)

h(t) = o(t) � σ
(
c(t)

)
. (3.71)

The diminished susceptibility of LSTM’s against gradient instabilities stems from the
cell state’s general independence from the direct influence of adaptable parameters. Because
this cell state is fairly consistent over time and is intimately involved in the computation
of the subsequent hidden state, i.e. output, the information contained in past time steps
is preserved and can exert significant influence on the current predictions. The negative
implication following from this, i.e. that possibly irrelevant historic information is conser-
vated is mitigated by the learnable forget gate (Gers, Schmidhuber, and Cummins, 1999),
which can eponymously forget, i.e. reset, the cell state if necessary to remove the perhaps
disadvantageous influence of past inputs.
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σ σ tanh σ

× +

× ×

tanh

c(t−1)

h(t−1)

x(t)

c(t)

h(t)

h(t)

f (t)

i(t)

c̃(t)

o(t)

Figure 3.9: The internal structure of a common configuration of an LSTM cell. In contrast
to an SRN, the input x(t) is not solely concatenated with the previous hidden state h(t−1)

and fed through a non-linearity. The processing of x(t) is further orchestrated by a separate
recurrently connected, linearly activated cell state c(t) and three multiplicative non-linear
gates.
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Hybrid Models for Torque Estimation

Generally speaking, techniques for dynamic modeling may be classified according to their
respective level of semantic parameterization and incorporation of a priori model knowledge
(see Section 3.2 on page 21) as either white- or black-box models. The benefits and drawbacks
of the respective modeling approaches alluded to in Section 3.2 on page 21, become apparent
in view of the dynamic complexity of robots. On one hand, the complexity manifests itself
phenomenologically in a high number of interacting effects and influences pertaining to the
dynamics of link bodies and joints, and on the other, in the high dimensionality of the
dynamic system reflected in the multiplicity of mechatronic components and operational
parameters.

Utilizing a white-box approach by tracing the observable dynamic phenomena back to a
succinct, analytical expression describing the interplay of physically meaningful quantities,
e.g. the Newton-Euler equations of motion as described in Section 3.3 on page 24, has the
desirable advantage of providing a model regression framework that is exclusively rooted
in fundamentally verifiable, compact physical laws. Accordingly, the model predictions are
explainable, guaranteed to generalize beyond the regression data set, and sample-efficient.
The main disadvantage, however, originates from the limited expressiveness of the used
model formulation. Although the mutually equivalent formulations of classical mechanics
provide the necessary theoretic basis to macroscopically describe any mechanical system,
the conception of a model expression that augments the Newtonian or Lagrangian equa-
tions of motion for rigid bodies to accommodate for every additional significant dynamic
effect, e.g. due to joint flexibility, dissipative forces or mechanic hysteresis, is, depending on
the intended model accuracy, a non-trivial or even impossible task. Inevitably, this leads
to prediction errors due to model bias, as unmodeled effects exceeding any prior model
assumptions confound the model output.

The black-box approach, e.g. via universal function approximators such as artificial
neural networks, naturally mitigates the problems related to expressiveness and the design
of sufficiently representative model formulations. As discussed in Section 3.4 on page 30,
this is achieved by a high amount of semantically weakly defined model parameters that are
interrelated through a generic network structure, which in theory allows for the replication
of the true dynamics with arbitrary fidelity, given sufficient training data and topological
complexity. The great advantage of potentially unbound model expressiveness is traded
with a lack of model explainability, lower sample efficiency, and a limited generalization
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capability resulting in the risk of prediction errors due to model variance.
Hence, we face the recurring challenge in model characterization tasks of whether to

choose a white-or black-box model approach, i.e. the fundamental choice to be made re-
volves around the question of whether one can tractably incorporate the entirety of dynamic
and perturbating effects into a closed model formulation. While the white-box approach of
the parametric model identification scheme (see Section 3.3 on page 24) can certainly be
extended to identify a multitude of parameters describing additional effects, e.g. through
various non-linear friction and hysteresis model identification techniques (Ruderman and
Bertram, 2012; Kircanski and Goldenberg, 1997), this is often concomitant with the labo-
rious design and execution of a series of statistical parameter excitation experiments along
with the associated regression process for each actuator, as well as the constant possibil-
ity of neglected model components (see Section 3.3 on page 24). An alternative approach
may be to exploit the universal function approximation capabilities of neural network-based
techniques, and shift the problem towards the design of suitable network architecture and
the acquisition of representative training data (see Section 3.4 on page 30).

In an effort to balance the individual advantages and disadvantages of the paradigms of
white- and black-box modeling, a gray-box approach was taken for the model-based torque
prediction technique developed as part of this thesis. With the aim to adhere to customary
argumentative order, the developed methodology is presented in the following before the
evaluation, albeit it is worth mentioning that the general idea and conceptional phase of the
development of this method was intimately related with the preliminary experimentation
with and evaluation of the classic parametric and neural network-based techniques described
in Sections 3.3 and 3.4 on page 24 and on page 30. Consequently, the observation of the
strengths and weaknesses of the respective approaches inspired the very design choices made
with respect to the taken approach.

The rationale behind the utilization of a hybrid model approach can be illustrated in-
tuitively by examination of the expected properties of the motion to be executed by the
robot. As mentioned in the introductory remarks, the thematic focus of this thesis lies
on the model-based estimation of external forces during continuous contact human-robot
interaction tasks, especially in the medical field for the robotic replication of physically inter-
active motions that are conventionally carried out by a healthcare professional on the patient
anatomy. The defining characteristics of robotic motion that are intended for these purposes
are a comparatively low dynamic range and intensity as well as an inherent irregularity of
motion direction. Primarily, this is due to safety reasons and functional requirements with
regard to robotic motion in such tasks. During continuous contact of the robot with the
human body, the occurring interaction forces have to be precisely regulated to compensate
for human counter motion and maintain desired interaction force levels while reaching a
task-specific goal. This often results in a motion sequence composed of multiple intermit-
tent fine-scale positional changes and frequent alternations of the motion direction, i.e. when
performing heuristic, explorative motions, reacting to external physical interactions, or ma-
nipulating anatomic target regions. With regards to the applicability of different dynamic
modeling techniques, these motion properties have several implications.

During the execution of motion sequences that incorporate comparatively higher dy-
namic intensity, i.e. greater joint velocities and accelerations, and consistency of move-
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ment direction over longer kinematic distances3 the induction of measurement signals in
the torque sensors can be assumed to be dominated by proper dynamic effects pertaining
to rigid body dynamics caused by the acceleration of the link inertias resulting in gravita-
tional and motion-dependent torques. Due to the structural location of the sensory elements
on the joint output side, the influence of motor friction and flexibility is greatly reduced.
A relative minority can be attributed to joint velocity-dependent vibrational disturbances
originating from the strain wave gearing transmission (Chawda and Niemeyer, 2017), joint
flexibilities, and sensor noise.

In the case of low velocities, accelerations, and the operation in the vicinity of a quasi-
static state, however, the rigid body dynamics simplifies to primarily gravitational and
frictional influences. If the motion is further composed of small positional but frequent
directional changes, there is a relative increase in torque signal contribution of complex
phenomena, which are conjectured to originate from compound mechanic effects that nor-
mally contribute linearly to the dynamics when they are saturated. For instance, the torque
contributions due to joint friction exhibit a pronounced nonlinearity around joint velocities
close to zero (Kircanski and Goldenberg, 1997) and at the reversal of motion direction (Sw-
evers et al., 2000), which cannot only be approximated by parametric joint friction models
such as the viscous Coulomb-friction (Khalil and Dombre, 2002) or Stribeck friction model
(Olsson et al., 1998) with limited accuracy.

y

x

Saturation

Saturation

Figure 4.1: A generic hysteresis loop that can be associated with the dependency of an
arbitrary state variable y upon the histories of both the past input values xhist and state
values yhist.

Similarly, effects pertaining to mechanic hysteresis (see Chapter 4) primarily caused
joint flexibility, e.g. mechanical loss of motion due to transmission backlash (Ruderman and
Bertram, 2012) or torque sensor hysteresis due to rotational strain gauge elasticity (Allgeier
and Evans, 1995), further exert nonlinear influences complicating the dynamic model in case
of frequent changes of joint rotation direction. A descriptive example for the occurrence
of hysteresis in robot dynamics is the change of measurable joint torques τ in relation to

3 Motions occurring during rapid pick-and-place task, for example, could be considered to fall under the
category of highly dynamic motions with frequent directional changes. However, the kinematic distance,
within which the directional changes take place, is quite large in comparison to fine-scale motions that
are the main focus of this thesis.
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the history of joint positions q as has been observed during the experimentation with the
KUKA iiwa 14 for this thesis (see Section 2.1 on page 12). For a sequence history of S

joint position inputs qhistj = {q1j , . . . , qSj } for joint j where the respective changes between
successive joint positions ∆qsj = qsj−q

s−1
j have fairly consistent sign and the net change over

the total sequence ∆qSj = qSj −q1j is sufficient large, the hysteretic behavior of the measured
joint torque τj may saturate and transition into an approximately linear dependence of τj
on the respective current value of qj subsequent to qhistj . In the inverse case however, i.e.
when sign(∆qsj ) fluctuates due to changes in rotational direction, hence ∆qSj as the net total
rotational displacement with respect to the joint position at sequence start remains small.
Thereby the joint torque transitions along a multitude of minor loop paths depending on the
specific sequence history and properties of the actual underlying hysteretic behavior, which
can be approximate e.g by a so called Preisach-Model (Ruderman and Bertram, 2012).

Mechanically, the hysteresis of the measured joint torques with respect to the joint
position history appears to be consistent with effects of plastic deformation or backlash,
where following causal mechanisms are proposed: Assuming that some mechanical compo-
nents within a joint are subject to plastic deformations due to a torsional stress transmitted
through friction between the parts rotating in one direction and reach a maximum defor-
mation due to strain hardening (Ruderman and Bertram, 2012), then a part of the torque
generated for the counter rotation is spent on the back-torsion of those components. A
similarly hypothesis can be made with regards to backlash. A small bidirectional rotational
play between the movable components is held constant due to internal friction until a torque
is generated that overcomes this internal friction to set the joint into rotation, leading to
the inertia-mediated, eponymous backlash that reduces the rotational play in the counter-
direction of the respective rotation, which is equivalent to the hardening effect in particular
or hysteretic saturation in general. If afterwards the rotation is reversed, a certain amount
of generated torque is again lost during the backlash until the joint flexibility locks-out
anew. Such lost torques are observable in the case of the KUKA iiwa as well, i.e. in the
form of absent changes in torque measurement within an angular window of the magnitude
of approximately 1° after joint rotation reversals. If we now suppose the presence of a com-
bined effect of multiple hysteretic effects on the dynamics, then the reason for the enhanced
influence of such nonlinear effects at the quasi-static state is that the hysteresis loops of the
respective effects are not quickly traversed until loop saturation is reached.

In summary, it is hypothesized that, as a multitude of mechanic effects are not suffi-
ciently excited during the execution of low velocity and directionally inconsistent motions
as to reach hysteretical saturation, an adversarial amplification of nonlinear and hystereti-
cal torque contributions is induced, which aggravates the option of identification of the
underlying parameters due to the difficulties in the associated analytical formulations and
the possibility to establish experimental conditions to sufficiently excite those parameters.
Whereas under ”normal” operational conditions allowing for a more consistent attainment
of saturation, e.g. linear friction at higher joint velocities and deformational hardening at
rotational consistency, the respective effects may be approximated by piecewise linear func-
tions (Tjahjowidodo, Al-Bender, and Van Brussel, 2013) or even outright omitted. By
virtue of joint torque and position sensors that are moreover attached at the transmission
output side, the joint torque and position measurements are almost exempt from the effects
of friction and inherent flexibility arising in the actuation itself. This has lead to the dy-

– 44 –



4 Hybrid Models for Torque Estimation

namic model simplification of joint rigidity being commonly considered well acceptable for
dynamic identification (Jubien, Gautier, and Janot, 2014; Gaz, Flacco, and De Luca, 2014)
and external torque estimation purposes (Haddadin, De Luca, and Albu-Schäffer, 2017).
Nonetheless, the insufficiency of a simplified rigid body model is still very noticeable from
measurements and performance evaluations. This is evident from the fact that obvious
prediction error patterns, e.g. in the form of characteristic joint torque over- and underes-
timations around motion turning points (Rueckert et al., 2017), still persist. At the same
time, one can observe causally rather obscure prediction inaccuracies, which may in part
result from stochastic outliers and other missing model assumptions as well (see Chapter 5
on page 68).

Under these aspects, the dynamics to be modeled are assumed to arise from a composite
type of motion, that consists of interweaved phases with low and high kinematic inten-
sity and directional regularity that provoke generalized mechanic hysteresis and quasi-static
nonlinearities to a higher or lower degree respectively. Accordingly, this implies that such
a composite motion may in part sufficiently comply with basic model assumptions of linear
joint friction, joint rigidity and independence from past system states integrable into the
common rigid body dynamics formulation4 (see Equation (3.31) on page 27). The complex-
ity of the other motion components exceeding the simplifications of rigid body dynamics
can in theory be accommodated for by multiple extensions of the parametric identification
scheme, provided that the knowledge about the existence and nature of sufficiently many of
those additional factors is available and can be cast into a analytical formulation that lends
itself to the parametric regression from observable data. From a practical point of view, this
approach may be considered rather detrimental, as extensive domain expertise is required
and the risk of unintentionally neglecting minor but nonetheless significant dynamic effects
cannot be precluded with certainty. Therefore it seems advantageous to utilize a weakly
parameterized, data-driven approach, e.g. via artificial neural networks by leveraging the
universal approximation capability with the hope of possibly extracting a near-complete,
albeit hardly model directly from observable dynamic input-output relations.

In this sense, the proposed dynamic modeling technique is equally conceived as a hybrid
composed of the white-box approach of parametric identification based on rigid body dy-
namics and a black-box component employing artificial neural networks. Generally speak-
ing, the proposed model approximation technique is devised as a hybrid dynamic model
architecture Dhyb that utilizes a backbone model K(q, q̇, q̈,k) Φ = τRBD based on rigid
body dynamics (see Section 3.3 and Equation (3.49) on page 24 and on page 30) and a
downstream neural network fNN (τRBD, q, q̇, q̈) = τNN trained to predict a compensatory
torque that is added onto the backbone prediction τRBD such that the error with respect
to the measured torques is minimized. The basic structure of the associated model function

4 Strictly speaking, the kinematic state parameters obtainable from the temporal differentiation of the
joint positions, i.e. commonly the joint velocities and accelerations, naturally incorporate information
with regards to the immediately recent kinematic state history.
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is thus defined as

τHY B =DHY B (4.1)
τHY B =K(q, q̇, q̈,k) Φ+ fNN (τRBD, q, q̇, q̈) (4.2)
τHY B =τRBD + τNN , (4.3)

with the optimization goal for the parameters of fNN being the minimization of

L(τHY B, τmeas) =
1

m

m∑
i

||(τHY B − τmeas)
2
i || . (4.4)

The rationale behind this gray-box strategy follows from the hypothesis that the physics-
based framework provided by rigid body dynamics is capable of robustly predicting a large
majority of dynamic effects, as the occurrence of joint torques is predominantly governed by
the motion and inertial properties of the robot links, with the exception of the highly non-
linear and hysteretical phenomena that are assumed to be exaggerated when approaching
a quasi-static kinematic state and the joint motion direction oscillates within small angular
ranges. Considering that the adequate analytical characterization and identification of the
entirety of the contributing effects under these operational conditions is non-trivial, neural
network architectures, due to their expressive power„ constitute a valid option for the com-
pensation of the shortcomings of rigid body dynamics, which is as are a manifestation of the
inherently high model bias. Conversely, this bias caused by the strong model assumptions
of rigid body dynamics exerts a beneficial effect in combination with neural networks, as
their inherent variance is thus balanced by the neural network predictions being guided
by the rigid body model predictions, leading to a mutual optimization of the bias-variance
trade-off. These presumable synergies between two model components are intended to be
exploited especially in view of the high dimensionality of both the joint dynamic and kine-
matic state-space comprised of (τ , q, q̇, q̈) ∈ R7×4 for a 7-joint robot, where achieving global
reliability similar to rigid body dynamics models over the total input space using neural
networks without physical prior knowledge would at least presuppose an exceptionally large
and rich data set as well as numerous optimizations of the network topology and training
parameters. Lastly, this approach guarantees a certain degree of model explainability, as
the final model predictions are based on a physically consistent foundation. The actual pa-
rameter identification for the rigid body dynamics model as well as the architecture, feature
space design, and training scheme of the neural network component fNN to be utilized are
the subject of the following sections of this chapter.

4.1 Parametric Backbone Model

The development of the backbone model

τRBD = K(q, q̇, q̈,k) Φ (4.5)

is directly derived from the basic theory of parametric identification within the framework
of rigid body dynamics described in Section 3.3 on page 24. Due to the inevitable presence
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of linear dependencies between the terms of the Newton-Euler equations embedded in the
columns of the stacked observation matrix K(qmeas, q̇meas, q̈meas,k) obtained from multiple
measurements (see Equation (3.51) on page 30), this matrix is rank deficient, i.e. rank(K) <

84 for Φ ∈ Rp×n, containing 12 parameters for each of the 7 link bodies in the case of the
KUKA iiwa platform. From a kinematic perspective, this is a consequence of the restriction
of the kinematic degree of freedom of the motion of proximal links (Atkeson, An, and
Hollerbach, 1986; Gautier and Khalil, 1988), which prevents the appear. Hence, the least
squares solution of Equation (3.51) on page 30, i.e.

τ 1
meas

τ 2
meas
...

τN
meas

 =


K(qmeas, q̇meas, q̈meas,k)

1

K(qmeas, q̇meas, q̈meas,k)
2

...
K(qmeas, q̇meas, q̈meas,k)

N



Φ

Φ
...
Φ

 , (4.6)

by simple pseudo-inversion

ΦLS =
(
K

>
K

)−1
K

>
τmeas . (4.7)

is not viable, which is why the rank-deficiency of K has to be mitigated, e.g. through sin-
gular value or QR decomposition. Using the QR decomposition of K at the same time
allows for the simultaneous elimination of the linear dependent columns in the model ma-
trix yielding Kb and thus the isolation of the parameters corresponding with the remaining
columns that are actually identifiable (Khalil and Gautier, 1991). Although a virtually
equivalent, geometrically justified determination of the identifiable parameters is possible
(Khalil and Dombre, 2002), the purely numerical parameter reduction is preferred for the
purposes of this thesis, due to its independence from kinematic considerations. These iden-
tifiable parameters, often referred to as base parameters Φb, constitute a subset of the full
parameter vector Φ that contains the entirety of the link parameters. Thus, ΦLS and K

in Equation (4.7) are substituted with their reduced counterparts Φb and Kb, yielding

ΦLS
b =

(
Kb

>
Kb

)−1
Kb

>
τmeas , (4.8)

which can be readily solved to obtain the parameters ΦLS
b numerically determined to be

identifiable for the measured data.

Optimal Dynamic Excitation

In order to maximize the number of identifiable parameters and thus the fidelity of the model
and robustness of the identification process against measurement noise, the kinematic states
based on which K(qmeas, q̇meas, q̈meas) is constructed, i.e. the reference motion trajectory
(q(t), q̇(t), q̈(t)) which the robot will be commanded to track during a statistical data
acquisition experiment, can be optimized. A common optimization criterion for this purpose
is the minimization of the condition number of the observation matrix cond(K) (Gautier
and Khalil, 1992). From a phenomenological perspective, such an optimization has the
effect of maximally exciting the influence of the dynamic effects included in the model on
the robot, which is reflected in the appearance of the maximum number of independent
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columns in K(qmeas, q̇meas, q̈meas). For this purpose, each joint i is assigned an excitation
trajectory qi(t) that is defined as a parameterized finite Fourier series composed of L sums
of harmonic sine and cosine functions (Swevers et al., 1997)

qi(t) =

L∑
l=1

ai,l
ωf l

sin(ωf lt)−
bi,l
ωf l

cos(ωf lt) (4.9)

with

q̇i(t) =

L∑
l=1

ai,lcos(ωf lt) + bi,lsin(ωf lt) (4.10)

q̈i(t) =

L∑
l=1

−ai,lωf lsin(ωf lt) + bi,lωf lsin(ωf lt) , (4.11)

where L = 5 and the angular frequency ωf = 0.1π which yields a duration of 20 seconds
for one period of the sinusoidal trajectory. The variables ai,l and bi,l parameterizing the re-
spective joint trajectories constitute the variables of the constrained nonlinear optimization
problem (Stürz, Affolter, and Smith, 2017a) for the determination of the total trajectory
q(t) = {q1(t), . . . , qn=7(t)} based on which the observation matrix Kb with the lowest
condition number can be constructed, i.e.

min
ai,l,bi,l

cond(Kb) (4.12)

s.t. qi(t) =

L∑
l=1

ai,l
ωf l

sin(ωf lt)−
bi,l
ωf l

cos(ωf lt) , (4.13)

L∑
l=1

ai,l
l
,

5∑
l=1

ai,l
l
,

5∑
l=1

ai,l
l

= 0 , (4.14)

L∑
l=1

1

l
‖ai,l + bi,l‖ ≤ ωfqi,max , (4.15)

L∑
l=1

1

l
‖ai,l + bi,l‖ ≤ q̇i,max , (4.16)

[ai,l bi,l]
> ≤ min

(
2πlf

L
qi,max, q̇i,max

)
[1 1]> , (4.17)

[ai,l bi,l]
> ≤ −max

(
2πlf

L
qi,min, q̇i,min

)
[1 1]> , (4.18)

∀i = 1, . . . , 7 , ∀l = 1, . . . , 5 , (4.19)

where the respective motion limits qi,min, qi,max, q̇i,min, q̇i,max are those specified in Table 2.3
on page 14. Please note, that the upper and lower bounds on qi have been decreased and
increased respectively by 2◦. Because of link inertia and the joint flexibility, the commanding
of joint positions at the limit of the range of motion limit of the respective joint at times
results in a slight overshoot of the link position sensed by the link-side position sensors,
causing the controller to trigger a safety mode that locks all joint breaks in order to prevent
the forceful exceedance of the mechanical joint limits. Equations (4.14) to (4.16) on the
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previous page respectively denote constraints that ensure the trajectory to be initialized
with zero joint position, velocity, and acceleration for every joint to prevent self-collisions
during execution and provide a smooth commencing of the trajectory as to allow for a close
tracking by not provoking overshooting control responses due to abrupt start accelerations.
Equations (4.17) and (4.18) on the preceding page impose general feasibility upon the
trajectory with regards to the specifications of Table 2.3 on page 14. The optimization
problem is implemented in MATLAB and solved by the interior point optimization algorithm
fmincon, which is run from multiple random initial points in the 70-dimensional search space
using the MultiStart function (MATLAB, 2020). After optimization, the obtained trajectory
is executed in a simulation using the robotics simulation software CoppeliaSim (Rohmer,
Singh, and Freese, 2013) and checked for feasibility with regards to the occurrence of self-
collisions or collisions with the environment. To this end, a geometric collision detection
is performed at each simulation timestep using the internal Coppelia Geometric Routines
function collection, where the collidable entities are defined as a CAD-model of the KUKA
LBR iiwa 14 and a manually designed arrangement of primitive shapes that approximate
the geometry of the obstacles surrounding the robot in the real experimental setup. After a
few reiterations of the optimization process, an optimal trajectory yielding cond(Kb) = 68

was obtained (see Figure 4.2).
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Figure 4.2: (Left) Cartesian path traversed by the end-effector during the execution of
the optimized excitation trajectory motion, beginning and ending at the joint configu-
ration q = (0, 0, 0, 0, 0, 0, 0), which is equivalent to the Cartesian end-effector position
(0 m, 0 m, 1.306 m). The coloring of the line denotes the linear velocity of the end-effector
at the respective location on the motion path. (Right) The excitation trajectory depicted
in the configuration space, where each curve shows the temporal angular position of the
respective joint.

As described in the introductory remarks of Chapter 4 on page 41, the main focus of
this thesis with respect to dynamic modeling is the identification of a model dedicated to
motions with lower dynamic range and frequent directional reversals due to the increase
in complex nonlinear effects under these operational conditions, which at the same time
are characteristic for continuous contact human-robot interactions applications. In order
to incorporate the associated dynamic phenomena, especially regarding low-velocity fric-
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tion, within the extended rigid body dynamics formulation which also entails a viscous
and Coulomb friction model Equation (3.35) on page 28, the optimized trajectory is exe-
cuted repeatedly with decreasing trajectory velocity per repetition. This is accomplished
by the repeated concatenation of the original excitation trajectory (see Figure 4.2 on the
previous page) with itself, where the trajectory point of every concatenated version of the
original trajectory are interpolated, i.e. resampled with the MATLAB function resample
with a gradually increasing sampling rate. After interpolation of the trajectory points ac-
cording to the desired sampling rate, resample applies a low-pass anti-aliasing filter on the
resampled trajectory. Due to the periodicity of the trajectory, the concatenation does not
introduce any discontinuities between the respective end- and start-points of the concate-
nated segments. For the construction of the stacked observation matrix to be used for
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Executed Joint Trajectories

Figure 4.3: (Top) The excitation trajectory depicted in Figure 4.2 on the previous page
is concatenated 9 times with itself, where each concatenated sub-sequence represents an
resampled version of the original trajectory with sampling rates of 100 Hz, 150 Hz, 200
Hz, 250 Hz, 300 Hz, 400 Hz, 500 Hz, 600 Hz and 700 Hz respectively. The concatenated
segments are demarked by vertical dashed lines at their respective temporal endpoints.
(Bottom) The same trajectory tracked by the robot during the dynamic excitation experi-
ment. For higher accelerations and frequencies of directional reversal in the earlier segments
of the concatenated trajectory, the actually executed trajectory shows more pronounced de-
viations from the reference. This is attributable in part to the limited attainable control
frequency and unidentified processes within the low level controller, likely altering the com-
manded trajectory to ensure kinematic feasibility of motion at high joint velocities.
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the parameter regression, the concatenated excitation trajectory is executed on the robot
by successively commanding the trajectory points in joint space with an average control
frequency of 150 Hz depending on some minor fluctuations of the network latency (see Fig-
ure 4.3 on the preceding page). The proprioceptive data consisting of (qmeas(t), τmeas(t))

is queried from the controller simultaneously with every motion command and recorded
with the corresponding timestamp, yielding a data set containing N = 64009 samples over
a total trajectory duration of T = 426 seconds. Although the joint position sensors yield
relatively precise measurements, they nonetheless are slightly perturbed by noise. Because
of this, the temporal derivatives of the joint position that are necessary for the construction
of the observation matrix cannot be obtained by simple numerical differentiation, as this
would drastically amplify the noise level for every subsequent derivative that would render
the equations of motions based on this data unusable for the parameter regression. Equa-
tions (4.10) and (4.11) on page 48 can be employed to determine the joint velocities and
accelerations analytically from the joint positions, provided that the reference trajectory
q(t) is tracked closely by the robot, which eliminates the complications associated with the
numerical differentiation of the joint position measurements to obtain the full kinematic
state for the construction of the observation matrix (Swevers et al., 1997), i.e. the strong
amplification of the joint position measurement noise in its derivatives and the resulting
necessity of signal filtering. However, the close trajectory tracking is oftentimes not guaran-
teed, like in the case of the experimental setup of this thesis, e.g due to low-level robot control
routines that alter the commanded trajectory (Schreiber, Stemmer, and Bischoff, 2010) and
variable network communication latency in teleoperation control (Salcudean et al., 1999).
Therefore, the trajectory is repeated 10 times and the obtained data (qmeas(t), τmeas(t))

are averaged over all of the excitation experiments according to

q̃meas(t) =
1

10

10∑
i=1

qmeas(t) , (4.20)

τ̃meas(t) =
1

10

10∑
i=1

τmeas(t) , (4.21)

for every time step t of the trajectory. Afterward, the averaged data (q̃meas, τ̃meas) are
subjected to Gaussian-weighted moving average filter with a window size of 10 time steps.
The temporal derivatives of the joint positions are then determined by numerical central
differentiation and then immediately filtered in forward and reverse direction by a first order
low-pass Butterworth filter with a cutoff frequency of 1.

Base Parameter Estimation

The resultant averaged and filtered data are used to construct K̃b(q̃meas, ˜̇qmeas, ˜̈qmeas,k)

and set up the linear regression equation

ΦLS
b =

(
K̃

>
b K̃b

)−1

K̃
>
b τ̃meas , (4.22)

where the rank revealing QR-decomposition of K̃ resulted in rank
(
K̃b

)
= 57 independent

columns of the observation matrix, or in other words, identifiable base parameters, which is
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in accordance with the previously reported number of base parameters for the KUKA LBR
iiwa 14 (Stürz, Affolter, and Smith, 2017b; Xu et al., 2020). The obtained estimates of the
base parameters Φb that now define the backbone dynamic model

τRBD = Kb(q, q̇, q̈,k) Φ
LS
b (4.23)

are given in Table 4.6 on page 54. Using ΦLS
b for the inference of the averaged and filtered

versions of the joint torques recorded during the execution of the excitation trajectory
depicted in Figure 4.3 on page 50 based on the corresponding averaged and filtered kinematic
data, a average mean squared error of 1

N

∑N
n=1||(τRBD(n)− τmeas(n))

2|| = 0.2543 Nm over
N = 64009 could be achieved; for the joint-wise mean squared errors, see Table 4.4.

Table 4.4: The statistical accuracy of the joint torque estimates for the filtered and aver-
aged joint torque measurements acquired during the execution of the concatenated excita-
tion trajectory (see Figure 4.3 on page 50). The average mean squared error and standard
deviation of the predictions is given separately for every joint as well as an total prediction
accuracy average over all joint torques.

Joint MSE (Nm) σ(Nm)

1 0.4926 0.7019
2 0.8015 0.8953
3 0.1168 0.3417
4 0.2068 0.4548
5 0.0721 0.2686
6 0.0656 0.2542
7 0.0255 0.1596

average 0.2543 0.4394

The statistical reliability of the parameters identified through the described process and
the acquired data, as well as the torque prediction accuracy following from this, can be
evaluated by means of their relative standard deviations σΦLS

b,p%
of the respective p-th base

parameters Φb,p, as proposed by (Khalil and Dombre, 2002). The computation of σΦLS
b,p%

is
defined as

σΦLS
b,p%

= 100

 σΦLS
b,p∣∣∣ΦLS
b,p

∣∣∣
 , (4.24)

σΦLS
b,p

=
√

CΦLS
b,p
(p, p) , (4.25)

CΦLS
b,p

= σ2
var

(
K̃

>
b K̃b

)−1

, (4.26)

σ2
var =

∣∣∣∣∣∣τ̃meas − K̃bΦ
LS
b

∣∣∣∣∣∣2
Nn− pb

, (4.27)

where N = 64009, n = 7, pb = are the numbers of joints, sampled time-steps and
base parameters respectively. It is worth pointing out that the obtained base parameters
along with their respective relative standard deviation (see Table 4.6 on page 54) result
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Figure 4.5: Comparison between the filtered and averaged joint torques τ̃meas recorded
during the execution of the concatenated excitation trajectory, and the model estimates
τRBD made based on the identified parameters. The absolute error between

from an unconstrained, ordinary least squares solution. As such, they are not strictly
physically consistent in the sense that the quantities expressed by the respective parameters
are not necessarily plausible with respect to the real-world link properties, e.g due to the
appearance of negative link masses or centers of mass outside of the actual link geometry.
Physical consistency can certainly be imposed upon the parameters, albeit one has to forfeit
the simplicity of the solution by inversion in favor of a constrained optimization problem
(Stürz, Affolter, and Smith, 2017b; Xu et al., 2020; Ledezma Díaz and Haddadin, 2018) to
enforce physical consistency, which yet at the same constrains the fitting of the observed
data by the model parameters. The knowledge of the true physical parameters, however,
is only of secondary importance for the purposes of this thesis, while the primary concern
is the estimation of the occurring joint torques, where the accuracy is generally unaffected
by the use of physically inconsistent, virtual link parameters (Díaz Ledezma and Haddadin,
2017). Therefore, the trade-off between parameter plausibility on one hand and the rapid
attainability of an effectively equivalent model on the other is decided in favor of the latter.

– 53 –



4 Hybrid Models for Torque Estimation

Table 4.6: The base parameters ΦLS
b identified via the least-squares solution of Equa-

tion (4.8) on page 47 for measurements obtained during the tracking of the excitation
trajectory depicted in Figure 4.3 on page 50. The parameters identified for each link are
grouped by the dashed lines; the number of identified parameters per link increases distally
along the kinematic chain approximately in accordance with the distally increasing degree
of motion of the respective links.

Φb,p ΦLS
b,p σΦLS

b,p%

Izz1 0.029 137.41
F v
1 -0.925 1.15

F c
1 0.002 18.48

m2c
x
2 0.066 3.33

Ixy2 0.006 342.12
Ixz2 -0.012 213.76
Iyz2 -0.371 8.77
Izz2 -0.154 40.08
F v
2 -0.920 1.11

F c
2 -0.019 2.89

m3c
x
3 -0.004 40.05

m3c
z
3 -5.823 0.02

Ixy3 -0.163 10.78
Ixz3 0.214 7.01
Iyy3 0.731 7.21
Iyz3 -0.424 4.42
Izz3 -0.187 22.95
F v
3 -0.280 2.90

F c
3 -0.002 17.54

Φb,p ΦLS
b,p σΦLS

b,p%

m4 -0.021 5.30
m4c

y
i 0.004 36.73

Ixx4 0.416 12.73
Ixy4 0.057 17.51
Ixz4 -0.116 -11.02
Iyy4 0.326 14.59
Iyz4 -0.042 31.33
Izz4 0.295 7.85
F v
4 -0.377 2.04

F c
4 0.007 6.09

m5c
x
5 0.006 17.61

m5c
z
5 -2.308 0.05

Ixy5 0.016 59.70
Ixz5 -0.011 98.25
Iyy5 0.113 10.44
Iyz5 0.051 49.96
Izz5 -0.116 6.52
F v
5 0.00 20.44

m6c
x
6 0.004 22.40

Φb,p ΦLS
b,p σΦLS

b,p%

m6c
z
6 0.074 1.31

Ixy6 -0.074 10.62
Ixz6 -0.126 6.10
Iyy6 -0.080 30.36
Iyz6 0.090 8.37
Izz6 0.007 288.00
F v
6 -0.271 2.27

F c
6 0.005 7.66

m7c
x
7 -0.012 5.94

m7c
y
7 0.002 39.78

m7c
z
7 -0.115 0.69

Ixx7 0.023 110.26
Ixy7 -0.019 28.90
Ixz7 -0.061 10.85
Iyy7 0.031 76.61
Iyz7 -0.008 68.70
Izz7 0.072 16.18
F v
7 -0.172 3.62

F c
7 -0.002 13.25

The preliminary validation of the model accuracy attainable through the virtual base
parameters is given in Table 4.6 and Figure 4.5 on the preceding page and on the current
page, where the torque prediction performance is evaluated on the same post-processed
proprioceptive data based on which the parameters were identified. These results show
that the rigid body dynamics framework is indeed capable of describing the majority of
the occurring dynamic effects, as there is a minor absolute deviation between the torque
predictions and measurements during the entire trajectory. Naturally, these results on
their own do not necessarily imply a global validity of the obtained model, for which a
more extensive performance evaluation is was carried out in unison with the training and
validation data sets used for the neural-network based models in the following sections.
Regardless, it is immediately visible from the temporal course of the torque predictions in
relation to the torque measurements, that there is a relative rise in the estimation error
||(τRBD(t)− τmeas(t))

2|| for time steps t at which a local torque peak was sensed, i.e. due
to a reversal of motion direction or acceleration (compare with Figure 4.3 on page 50). The
extent of these errors is less apparent in relation to the high torque ranges sensed at joints 2
to 4 caused by them bearing the torques occurring due to the summed weights of the distal
links. This does not apply for the remaining joints, including joint 1, which obviously,
although being the most proximal link, does not experience any gravitational torque load
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from the distal link due to the collinearity of its rotational axis with the gravity vector in
the upright mounting position (see Figure 2.1 on page 13). Instead, here one can recognize
significant relative prediction errors, that moreover exhibit an increase at the slower joint
velocities towards the end of the trajectory. Overall, these findings are consistent with
the hypothesis of the inherent insufficiency of rigid-body modeling at low velocities and
directional irregularity of motion.

Integration within Hybrid Model

The integration of the backbone model τRBD(q, q̇, q̈,k,Φ
LS
b ) = K(q, q̇, q̈,k) ΦLS

b within
the proposed hybrid model defined in Equation (4.3) on page 46 is accomplished via the
upstream pre-connection of an algorithmic version of the model components of rigid body
dynamics outlined in Section 3.3 on page 24 along with the associated model assump-
tions. Specifically, the Recursive Newton-Euler Algortithm (RNEA, see Algorithm 4.7)
(Luh, Walker, and Paul, 1980) derived from the Newton-Euler equations of motion has
been widely established as the computationally most efficient implementation of rigid body
dynamics known (Featherstone, 1987).

As already described, the underlying algorithmic principle is a two-part procedure be-
ginning with the propagation of the motion of a proximal link onto its distally following
link along the kinematic chain. In this sense, the motion of the most proximal link i is
only affected by the rotation of its own proximal joint; the motion of the succeeding link
i + 1 is then the combined result of both the rotation of its own proximal joint and the
motion of the preceding link i; the motion link i + 2 accordingly results from the rotation
of its own joint and the combined motion of both preceding link i and i+1 and so on. The
second stage of RNEA computes the torques acting on the links along their rotational axes
coinciding with their respective proximal joints, where the torques are propagated in the
opposite direction from the most distal link towards the proximal ones, i.e. the torque τi
occurring at the last link i = n is solely the result of its own motion and inertial properties
if we are to disregard any external influences or dynamic effects exceeding purely inertial
considerations; τi−1 arises due to the motion of the rigid body of link i− 1 as well as link i

and so on.

Algorithm 4.7: The Recursive Newton-Euler Algorithm for a robot with n revolute joints,
where the joint frames are oriented such as to ensure the coincidence between the respective
z-axis z =

[
0 0 1

]> and the axis of rotation. Based on the original efficient formulation of
the algorithm by (Luh, Walker, and Paul, 1980) and modifications from (Featherstone and
Orin, 2016). Please refer to Chapter 3 and Section 3.3 for the definition of the algorithm’s
inputs and outputs as well as the derivations of the remaining operations.

algorithm RNEA
inputs: n, q, q̇, q̈, R, s, // n,R, s are derived from the kinematic model k
m, c, I, g // m, c, I are the inertial parameters, g is the gravitational vector
output: τ
ω0 = 0

ω̇0 = 0

p̈0 = −g
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for i = 1 to n do
ωi = R>

i−1ωi−1 + q̇iz

ẇi = R>
i−1ω̇i−1 +

(
R>

i−1ωi−1

)
× q̇iz + q̈iz

// ṗi = 0 in next line for inertial identification without linear force sensing
ṗi = R>

i−1 [ω̇i−1 × si−1 + ωi−1 × (ωi−1 × si−1) + ṗi−1]

fi = mi (ṗi + ẇi × ci + ẇi × ẇi × ċi)

ni = Iiω̇i + ωi × Iiωi + ci × fi
end for
for i = n−1 to 1 do
fi = fi +R>

i fi+1

ni = ni +R>
i ni+1 + si ×R>

i fi
τi = z>ni

end for
return τ

4.2 Downstream Neural Networks

The parametric backbone model τRBD = Kb(q, q̇, q̈,k) ΦLS
b from Equation (4.23) on

page 52 is complemented with a sequential black box model approximator that is imple-
mented as a neural network due to their expressiveness (Hornik, Stinchcombe, and White,
1989) and scalability to large data-sets (Rueckert et al., 2017). Inserting Equation (4.23) in
Equation (4.3) on page 46, the hybrid model equation is restated for the identified inertial
parameters ΦLS

b as

τHY B = Kb(q, q̇, q̈,k) Φ
LS
b + fNN

((
Kb(q, q̇, q̈,k) Φ

LS
b

)
, q, q̇, q̈

)
, (4.28)

τHY B = τRBD + τNN . (4.29)

For the actual network architecture, several alternatives are proposed, taking inspiration
from a plethora of related previous research in the field of purely neural-network-based
or hybrid dynamic modeling of robots (Hitzler et al., 2019; Jiang, Ishida, and Sunawada,
2006; Wang et al., 2020; Liu, Wang, and Wang, 2021; Yilmaz et al., 2020; Smith and
Hashtrudi-Zaad, 2005). Rather surprisingly, only a fraction of the existing work on this
topic incorporates the influence of temporal effects in the respectively propose robot dy-
namic models that span a longer time frame than is already included in the trivial temporal
motion derivatives. The existing contributions in pursuit of learning robot dynamics as a
long(er) time-series model are predominantly based on a recurrent neural network architec-
ture (see Section 3.4 on page 36), which has been reported to yield a good model accuracy,
surpassing that of other state-of-the-art techniques learning single time-step dynamic re-
lations (Rueckert et al., 2017; Hirose and Tajima, 2017; Hanafusa and Ishikawa, 2019).
Thereby, the fundamental questions, for which an answer is attempted to be given, are 1)
whether the existing approaches yield satisfactory modeling performance for the irregular,
small-scale motions defined in the introduction of Chapter 4 on page 41, where the algo-
rithmic generation of an appropriate data set for this purpose is subject of the following
Section 4.3, and 2) whether the accuracy can be improved by the proposed hybrid model
approach. The investigated architectures are presented in the following sections.
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Rotational Displacement Encoding

The encoding of long-term temporal dependencies in the observations of the robot dynamics
can be accomplished by utilization of specialized sequence modeling network architectures
either through the exploitation of recurrence, e.g. RNN’s, LSTM’s, or on the basis of
an attention-mechanism, e.g. Transformer networks (Vaswani et al., 2017). Still, these
techniques have a practical upper limit for the temporal distance over which they can
effectively learn. Conversely, more generic feed-forward network topologies such as MLP’s
or CNN’s have no inherent architectural feature that makes them particularly applicable for
sequence learning. The Transformer architecture, developed for natural language processing,
compensates for the lack of recurrence by making use of a sequentially varying, sinusoidal
positional encoding that is summed with the input features to impose a more pronounced
temporal order on the input sequence.

Here, a similar approach is proposed, that is adapted to the particularities of the
robotics domain. With regards to the tentative causal effect for time-dependency effects
in robot dynamics, i.e. some manifestation of mechanical hysteresis, the temporal relations
pertain to the history of joint positions which defines the location on a hysteresis loop
Chapter 4 on page 43, where a sufficiently long rotational displacement in one direction lets
the hysteresis transition into linear saturation and frequent directional reversals confine the
associated dynamic effects to manifest with pronounced non-linearity. To abstractly express
the location on such a hysteresis loop in a form that is easily applicable as a numeric input
feature, the rotational displacement since the last directional reversal r ∈ [−10◦, 10◦] for
each joint is concatenated as a vector r ∈ Rnwith the remaining input features, yielding the
full feature space vec(τRBD, q, q̇, q̈, r) ∈ R35 such that Equation (4.28) on the preceding
page is changed to

τHY B = Kb(q, q̇, q̈,k) Φ
LS
b + fNN

((
Kb(q, q̇, q̈,k) Φ

LS
b

)
, q, q̇, q̈, r

)
. (4.30)

The rotational displacements since directional reversal ||r◦|| > 10◦ are replaced by the dis-
placement threshold of ±10◦, representing the area where any effect of mechanical hysteresis
is assumed to have reached saturation (see Figure 2.5 on page 16). In practice, the feature r

can simply be calculated by buffering the retrieved joint positions and triggering the joint-
wise measurement of the rotation since the last instance where the sign of the positional
change switched for the respective joints.

This auxiliary feature is hypothesized to guide the extraction of long-term dependencies
within the data for sequence modeling networks as well as augment the performance of non-
recurrent architectures for robot dynamics modeling. The evaluation of the influence of this
additional feature in the context of the obtained data set (see Section 4.3 on page 59) is
presented in Chapter 5 on page 68.

Mulilayer Perceptron

Derived from the network topologies proposed in (Hitzler et al., 2019; Yilmaz et al., 2020),
a multilayer perceptron (MLP) based approach is utilized as baseline neural-network ar-
chitecture. Using on the standard theory provided in Section 3.4 on page 31, one MLP is
constructed for each of the n = 7 joints, where each MLPj for the j-th joint consists of

– 57 –



4 Hybrid Models for Torque Estimation

– an input layer with 35 neurons accepting the same vectorized input x = vec(τRBD, q, q̇,

q̈, r) ∈ R35 consisting of all the observable data for each joint,
– one hidden layer with 100 neurons with ReLu activation,
– an output layer with 1 neuron corresponding to the torque prediction τ jHY B for the j-th

joint.

Each MLPj performing a single-joint prediction fMLPj
(x) = τ jNN , where τ jNN ∈ R1, is

arranged in a shared network topology where the respective outputs are concatenated, such
that the overall network function fMLP(x) = τNN , where τNN ∈ Rn=7, is obtained, where
the network parameters are learned jointly. For comparison purposes, this architecture is
abbreviated as MLP-7.

LSTM

Considering the discussed influence of effects with a pronounced time-dependency on the dy-
namic system, that cannot possibly be encoded by trivial temporal derivatives of positional
measurements, e.g. the entirety of hysteretic phenomena ranging from the nonlinearity of
unsaturated frictional effects, backlash and hypothetical minimal internal elastic deforma-
tions (see introductory remarks of Chapter 4 on page 41), the dynamic modeling problem is
extended from regarding single-time-step relations between kinematic and dynamic states
to the mapping of a time-series of kinematic states to a single dynamic state by using a long
short-term memory network (LSTM) (Rueckert et al., 2017; Wang et al., 2020). The LSTM
(see Section 3.4 on page 36) is utilized to establish a sequence-to-single-step mapping

fLSTM(x(t,...,T )) = τ
(T )
NN (4.31)

with T being the length of the sequence that contains observations x(t) = vec(τRBD, q, q̇, q̈,

r(t))(t) for every time-step t up until the prediction step Tt corresponding to the end of
the sequence. Two time-window sizes T = 100 and T = 500 are compared, in order to
investigate whether possible accuracy improvements can be gained from longer sequence
information, or put differently, whether the dynamic model is significantly influenced by
effects that exhibit a very long temporal dependency. Using the fundamental functions
governing an LSTM cell given by Equations (3.66) to (3.71) on page 39, the LSTM network
is implemented as two consecutive LSTM cells where

– the first LSTM cell has 35 input neurons accepting x(t) = vec(τRBD, q, q̇, q̈, r
(t))(t),and

35 hidden neurons h(t),
– the second LSTM cell has likewise 35 input neurons, which are connected to the hidden

neurons of the first cell, and 7 hidden neurons, corresponding to the individual joint
torques,

– the prediction is equal to the final states of the hidden neurons h(T ) of the second
LSTM cell at the end of the sequence.

This network is abbreviated as LSTM-2. Based on the same topology as LSTM-2, second
recurrent architecture is evaluated, where a fully connected layer with linear activation is
followed after the second cell, that is typically added to improve the overall regression per-
formance by compensating for the squashing sigmoid output function (see Equation (3.71)
on page 39). This modification is named LSTM-2-FCL.
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Transformer

Lastly, a Transformer network is investigated as a non-recurrent topology that has recently
achieved good results on a number of sequence-to-sequence modeling and time-series pre-
diction tasks from various domains (Giuliari et al., 2021). Originally proposed in (Vaswani
et al., 2017), the Transformer constitutes an encoder-decoder architecture that does not rely
on recurrence. The input is concatenated by a sinusoidal encoding and fed through a series
of encoding layers each containing a multi-head scaled dot-product attention, normalization,
and fully connected sub-layer. The encoded features are then decoded by a similar layered
structure where they are subject to a joint attention layer accepting both the encoding
as well as the previous predictions to generate the output for the next step. The vanilla
implementation of the architecture is adopted and configured to accept the input sequence
and output dimensions defined for the LSTM, yielding the network function

fTF(x
(t,...,T )) = τ

(T )
NN , (4.32)

to be inserted in the hybrid model function when using the Transformer as the neural
network component.

Input/Output Normalization

Considering the largely varying numerical scales of the different features and benefits with
respect to network generalization and convergence (Sola and Sevilla, 1997), the entirety of
the investigated architectures is equipped with a pre-and post-processing component to nor-
malize the input and output features respectively, that is implemented as an integral part
of the networks. Using the training data (see Section 4.4 on page 65) obtained through the
process described in Section 4.3, the mean and standard deviation over all samples is cal-
culated for the occurring joint positions, velocities, accelerations, and torques for each joint
respectively. Let x be the mean of one feature x for one joint and σ(x) the corresponding
standard deviation, then the input features are normalized as in

xnormj =
xj − xj
σ(xj)

, (4.33)

and propagated through the network. The inverse operation is performed at the output
where the prediction torques of one joint are subject to

τ outj = σ(τj)τ
norm
j + τ j , (4.34)

where the de-normalization parameters for the output torques are the same used for normal-
ization of the auxiliary input torques originating from the rigid body dynamics model. The
visualization of the numerical ranges and distribution of the observable joint-space features
is given in Figure 4.11 on page 66.

4.3 Algorithmic Training Data Generation

Most data sets obtained for robot dynamics research either focus on complex small-scale
motion tasks within a fairly constrained effective workspace, simple large-scale motion (Vi-
jayakumar and Schaal, 2000), larger-scale repetitive motions (Polydoros and Nalpantidis,
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2016). To the extent of the research carried out during this work, there is no propriocep-
tive data set available for multi-articulated, possibly redundant, serial robots, that covers
a wide kinematic range while specifically capturing the joint torques occurring during ir-
regular, low-intensity, and fine-scale motion. In order to provide such a data set for the
purposes of developing and evaluating dynamic modeling and torque estimation techniques
for this specialized motion type, an algorithmic method for the randomized, parametric
generation of a continuous motion path has been developed. The intention is to primarily
provoke dynamic effects encountered during fine motion at low velocities and frequent irreg-
ular directional reversals within narrow positional windows on the one hand, e.g. dynamic
and sensory hysteresis and low-velocity non-linear friction. On the other hand, the aim is
to capture these effects over a wide kinematic range covering large amounts of the effective
workspace, i.e. in as many different combinations of joint positions and motion directions
as possible to faithfully represent general motions that would be executed during practical
tasks.

For this purpose, the developed random fine motion generation algorithm (RFMA, see
Algorithm 4.10 on page 64) is inspired by the manual motion during the manipulation of
an ultrasound probe for sonography: After a phase of a medium velocity, long-distance
translation of the probe onto an arbitrarily defined anatomic target region, the motion
speed and range is significantly reduced and the manner of manipulation transitions to be
primarily explorative and dominated by frequent re-orientations of the probe. Likewise,
RFMA makes use of a two-phased partitioning of the robotic motion that is composed
by an initial reaching-phase where a target configuration is approached, and a subsequent
exploring-phase where the robot performs fine-scale irregular reconfigurations based on the
prior target configuration (see Figure 4.8 on the next page). This is realized by the pre-
calculation of geometric motion path defined as path of length P of joint configurations
C = {q1, . . . , qP } where qp ∈ Rn=7 designates the p-th waypoint in the configuration
path C, in contrast to a Cartesian motion description based on end-effector poses. By
doing so, the necessity of any inverse kinematics calculations during motion execution or
is avoided, and the verification of the kinematic feasibility of a specific pose is reduced
to a simple check for (self-)collisions in simulation. Considering the robot motion from the
perspective of its configuration space further mitigates the problem of possible configuration
ambiguities with respect to a certain end-effector pose when dealing with kinematically
redundant robots. The implementation of the reaching- and exploring-phases is based on
a randomly generated list of kinematically feasible and collision-free scaffold-configurations
S = {qscaf

1 , . . . , qscaf
L } of length L, where the feasibility check is performed for every qscaf

l

in simulation (see Section 2.2 on page 17). A scaffold configuration qscaf
l is utilized as

the goal configuration to be reached in the l-th reaching-phase and represents a randomly
encounterable configuration to reach a specific target. The geometric configuration path
for the l-th reaching-phase is simply defined by the one configuration waypoint qscaf

l and
practically realized as a joint-wise linear motion by the controller. At the same time,
qscaf
l acts as the starting configuration for the l-th exploration-phase, which is implemented

as a time-unfolded joint-wise random sinusoidal path jel ∈ RT that ranges T ∈ N joint
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Figure 4.8: An illustration of the path geometry generated by RFMA (see Algorithm 4.10
on page 64). Following an initial path point, visualized here by the opaque schematic of
the robot in the upright position, a random goal configuration is generated, shown by the
articulated robot, which is reached via joint-wise linear motions, depicted by the linear
segments in the spheres. This motion is ensured to result in an arbitrary but collision-free
end-effector path, depicted by the dashed red line, via simulation. To provoke hysteresis
in joint torque measurements and sample rich data regarding dynamic behavior during fine
motion, combinations of low-amplitude sinusoidal are then superimposed upon the reached
goal configuration as indicated by the sinusoidal joint motion profiles.

orientation waypoints and is parameterized by a discrete Fourier series of length 3

jel(t) =

3∑
k=1

Arand
k sin

(
2πf rand

k t+ ϕrand
k

)
, (4.35)

jel = {jel(1), . . . , jel(T rand)} , (4.36)

where jel(t) corresponds to the position of joint j at waypoint t of the joint-wise exploration-
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phase path jel. Arand
n ∈ [0.5, 3], f rand

n ∈ [−4, 4] and ϕrand
n ∈ [0, 2π] are drawn uniformly and

randomly from the respective intervals for each joint j and the k-th summand of the Fourier
series. The path length, i.e. waypoint number, for every l-th sinusoidal exploration phase
el = (1el, . . . , n=7el) ∈ R(n=7)×T rand following the l-th reach-phase is randomly determined
by T rand ∈ [2000, 2500]. This results in a geometric configuration path composed of the
configuration-space waypoints

C = {qscaf
1︸︷︷︸
7×1

, e1︸︷︷︸
7×T rand

, qscaf
2︸︷︷︸
7×1

, e2︸︷︷︸
7×T rand

, . . . , qscaf
L︸︷︷︸
7×1

, eL︸︷︷︸
7×T rand

} , (4.37)

where every pair
(
qscaf
l , el

)
designates a sinusoidal exploration el around the l-th scaffold

configuration qscaf
l . The joint-wise independently random sinusoidal motion is deliberately

chosen to excite a wide range of dynamic state combinations that also provoke hysteretic
behavior with oscillating motion; the parameter intervals are defined experimentally to
resemble realistic short-range explorative motions and emphasize hysteretic nonlinearity by
preventing the torque measurement hysteresis from saturating Figure 2.5 on page 16.

Due to the high dimensionality of robot dynamics, statistical dynamic modeling tech-
niques in general and neural network-based approaches, in particular, rely heavily on the
availability of a rich data set that reflects the data distributions encountered in practice,
ideally even with some redundancy; if we assume the part of the Newton Euler equations
Equation (3.31) on page 27 describing the torques acting on rigid bodies to minimally define
the dynamic effects that are conventionally observable with joint sensors, we are confronted
with a state-space that is composed of at least 28 × n dimensions, i.e. one torque and one
joint position along with its two time derivatives for n joints. Because it is intractable
to exhaustively sample such a big state space, some restrictions and discretizations that
balance the sampling efficiency and representative quality have to be introduced: From an
application-oriented point of view, the usual Cartesian workspace that is transited by the
end-effector of the robot within a specific setup can often be estimated with quite certainty.
Under real-world conditions, the fixed position of environmental obstacles, pose-dependent
reduced dexterity and typically well-defined spatial target areas (Çallar, 2018; Böttger et
al., 2019) allow for the demarcation of an expected effective workspace Weff , which is often
smaller than the theoretical total reachable workspace Wtot ⊃ Weff . Therefore one can
accredit some plausibility to the reduction of the sample space to a practically relevant
workspace, without sacrificing all too much sampling density on practically insignificant
regions of the total workspace. In order to impose minimal prior workspace restriction such
that Weff 6�Wtot, the effective workspace Weff is marked out as the kinematically reach-
able quarter-sphere in front of the robot, circumscribed by the positive x- and z-axis of the
base coordinate system (see Figure 2.1 on page 13). As this still includes spatial points
that are only reachable in fairly flexed or extended configurations that are undesirable in
practice due to the nearness to kinematic singularities and low local dexterity (Kuhlemann
et al., 2016), the workspace Wsamp ⊂Weff to be actually sampled is defined as the collec-
tion of configurations where the distance between the base and end-effector is less than 0.8
m. Given the range of motion of each joint (see Table 2.3 on page 14), the respective joint
spaces are uniformly sampled to obtain a candidate configuration. This candidate config-
uration is then used together with the known forward kinematics of the robot to check in
simulation whether the end-effector position for this configuration lies within the sample
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Figure 4.9: (Top) Spatial distribution of points traversed by the end-effector during the
execution of a test motion based on a path generated by RMSA. The coloring of the points
denotes the linear velocity of the end-effector at the respective location on the motion path.
Note the poses depicted in dark-blue where a low-velocity and -amplitude fine motion is
executed. (Bottom) The depiction of the trajectory of the test motion in configuration
space. Please note the sinusoidal joint trajectories intermitted by steep, linear segments
representing the point-to-point motion until the respective scaffold configuration is reached,
around which the randomized oscillations are executed.

workspace and between the robot and itself or the environment occurs. This step is repeated
until a desired number of feasible configurations – 150 per total path was chosen here – is
reached, which is then utilized as the set of scaffold configurations. Due to the fact that
dynamic data acquisition experiments in robotics are particularly time-intensive and lead
to mechanical wear and tear, an effort for path length optimization has been made. After
the target number of scaffold configurations is obtained, the distance in joint configuration
space between two randomly determined successive scaffold configurations is possibly very
large, leading to a joint-wise linear motion towards distant scaffold configurations which
adds up to a drastic increase in path execution duration. Aside from resource constraints,
this is may also be considered undesirable from the perspective of variation in the data
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set, as during these linear configuration space interpolations with constant speed between
two distant scaffold configurations results in frequent re-samplings of similar kinematic and
dynamic states. Therefore, RFMA performs a prior spatial sorting of the scaffold configura-
tions using a nearest-neighbor-search based on a kd-tree representation of the configuration
space, where the scaffold configurations are sequentially ordered, reducing the total distance
traveled during each reaching-phase.

As described, the final geometric path is lastly constructed by inserting an exploration
sequence after each scaffold configuration. With an average of 2250 waypoints for each
exploration-phase, this results in approximately 337500 waypoints for the total path and an
execution duration of roughly 1 hour, assuming that 100 waypoints are passed through per
second.

To allow for a variable speed of motion execution, RFMA, essentially being a purely
geometric path planner, returns this path solely as a relative sequence of configurations as
waypoints, which is then be translated by an external motion controller into a dynamic
trajectory. The motion execution for the experiments carried out for this work was realized
by a TCP/IP transmission of the waypoint data to the proprietary controller of the robot
manufacturer (see Section 2.2 on page 17 and (Safeea and Neto, 2017)), where the waypoint
transitions are executed as linear configuration space interpolations with soft real-time con-
straints by sequential execution of the buffered list of waypoints where the next waypoint
is commanded as soon as the previous one is reached. The path execution dynamics are
regulated in two ways. First, at the beginning of each reaching-phase, the proprietary con-
trol values of the joint-wise relative velocities and accelerations are randomly set between
60% and 90% with respect to the individual maximum joint velocities given in Table 2.3
on page 14. After completion of the reaching-phase, the relative velocities are randomly set
between 10% and 30%.

Algorithm 4.10: The Random Fine Motion Generation Algorithm.

algorithm RFMA
require: goal_number_scaffold_configs,

number_joints, // n × 1
joint_intervals, // n × 2, rotation ranges for each joint
robot_collision_model,
environment_collision_model,
Cartesian_sample_range, // Cartesian space within which scaffold configs must lie
sinusoidal_parameters_range, // n × 2, intervals for amplitude A, frequency f and

phase ϕ

sinusoidal_steps, // t × 1
output: config_path_points // P × n

config_path_points = [ ]
scaffold_configs = [ ]
while length(scaffold_configs) < goal_number_scaffold_configs do

for j = 1 to number_joints do
random_config[j] = get_random_sample(joint_intervals[j, min],
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joint_intervals[j, max])
foward_kinematics(random_pose)
end_effector_location = get_end_effector_location(random_pose)
collision = check_collisions(robot_geometry, environment_geometry)

end for
if end_effector_location <= Cartesian_sample_range and collision == false

do
scaffold_configs[i] = random_config

end if
end while
sorted_scaffold_configs = empty(size(scaffold_configs))
sorted_scaffold_configs[1] = scaffold_configs[1]
for l = 1 to length(sorted_scaffold_configs) do

query_config = sorted_scaffold_configs[l]
remove query_config from scaffold_configs
neighbor_config = kd_nearest_neighbor(query_config, scaffold_configs)
remove neighbor_config from scaffold_configs
sorted_scaffold_config[l+1] = neighbor_config
config_path_points[end+1] = neighbor_config
for j = 1 to n do

// sinusoidal =
∑3

k=1 A
rand
k sin

(
2πf rand

k t+ ϕrand
k

)
sinusoidals[i] = generate_random_sinusoidal_sum(
sinusoidal_parameters_range, sinusoidal_steps)
config_path_points[end+1. . .length(sinusoidal_steps)]

end for

return config_path_points

Through this motion generation strategy, a thorough coverage of the Cartesian as well
configuration workspace is achievable (see Table 2.3 on page 14). At the same time, the
coverage of a wide range of dynamic state combinations in the acquired data is ensured,
which includes multiple permutations of simultaneously occurring joint positions, velocities,
accelerations, motion directions as well as torques, yielding a comprehensive yet efficient
sampling of the effective dynamic space Figure 4.11 on the following page.

4.4 Traning Scheme

The neural networks are implemented in PyTorch (Paszke et al., 2019) and trained on
a data set that is acquired by the execution of the trajectory shown in Figure 4.9 on
page 63 that is commanded on the robot via the control scheme explained in Section 2.2
on page 17. The training is implemented to support CUDA API (Nickolls et al., 2008)
and run in a cloud computing instance on a Tesla T4 GPU with 25 GB RAM, resulting
in an average training duration of approximately 12 hours per network, depending on the
parameter count of the trained architecture respectively. The obtained data set contains
804205 temporally sequential joint positions and torques. The position measurements are
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Figure 4.11: Coverage of the joint-wise dynamic ranges captured by the training data
acquired during the execution of the test motion. The data are visualized in four dimensions
as shown by the legend in the upper left corner: The z-axes denote the torques recorded for
the respective joints, where the most distal joints have the smallest torque ranges and joints
2 to 4 the largest due to the position and orientation of the joints within the kinematic
chain. The joint velocities are shown on the y-axes and are nearly uniformly distributed
within the same ranges for each joint. The sampled joint positions are depicted on the
x-axes where the distribution is likewise uniform, with the exception of joint 2, due to the
restriction of the effective workspace on the positive x-axis of the world coordinate frame.
The color-coding indicates the rotational displacement since the last directional reversal of
that joint at the respective sampling time (see Section 4.2 on page 57).

numerically differentiated to obtain the respective velocities and accelerations, which are
then, together with the noisy torque measurements, subjected to the same post-processing
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pipeline described in Section 4.1 on page 47.
Due to the sampling rate of approximately 150 Hz in combination with the slow and

steady joint velocities enforced by RFMA, there is a comparatively small temporal change
in the measurements. This diminished temporal variation is deemed to be detrimental
for the sequence modeling network architectures of the LSTM and Transformer, given the
sampling rate and the history time windows of T = 100 and T = 500 used for the prediction
of one set of momentary joint torques as defined before. As a simple increase of the time
window can possibly exceed the feasible sequence for LSTM’s and exacerbate the vanishing
gradient problem still affecting this architecture (Li et al., 2018), the data set is reduced
by excluding every second sample, yielding 402102 samples in total. Employing a common
train-test-split, the neural networks are trained on a random 80% of the data and tested
on the remaining 20 %. With respect to the evaluated architectures that, instead of single
inputs, accept an input sequence, the data set is partitioned into sub-sequences of length
T , such that the shuffling affects only the order of the sub-sequences but not that of the
samples within one such sub-sequence.

The optimization of the parameters of the respective networks is all performed using the
adaptive learning rate optimizer AdamW (Loshchilov and Hutter, 2019) proposed to improve
the generalization capability obtainable by the popular Adam optimizer (Kingma and Ba,
2017). The initial learning rate is determined empirically based on a series of preliminary
trials and recommendations in the literature (Hitzler et al., 2019)and set as ε = 0.001

for every network. During the course of training spanning 100 epochs, the adaptation of
the learning rate via the optimizer is complemented by the learning rate decay scheduler
ReduceLROnPlateau implemented in PyTorch that reduces the learning rate in case the
training loss does not improve for two consecutive epochs, with the intent to guide the
optimization out of local minima.

The training is performed based on the loss metric of the mean squared error

LMSE(τHY B, τ̃meas) =
1

m

m∑
i

||(τHY B − τ̃meas)
2
i || , (4.38)

between τHY B = τRBD + τNN , i.e. the sum of the downstream network predictions and
upstream rigid body dynamics model estimates, and the processed torque measurements
τ̃meas. For the evaluation of the performance of the various neural network architectures
proposed for the hybrid model (see Section 4.2 on pages 57–59), after training with the
full feature space defined in Equation (4.28) on page 56, the network architectures are
retrained as a) standalone networks without the input feature inclusion and output addition
of the upstream estimates τRBD, b) without the inclusion of the rotational displacement
encoding feature r, and c) in case of the time-series networks LSTM and Transformer with
different input sequence lengths T = {100, 500}. As the main benefit of the Transformer
architecture is supposedly most apparent for long sequences exceeding the hypothetical
capability of LSTM’s and the prediction delay due to recurrence is rather insignificant for
shorter sequences, the Transformer is, however, only trained once on sequence lengths of
T = 500 and with the full feature space.
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Model Performance Evaluation

In pursuit of finding the optimal model architecture and configuration, the following eval-
uation intends to provide a answers for these questions:

– Which architectural base is best suited for the purpose of proprioceptive torque estima-
tion and how does joint-torque estimation accuracy relate to contact force estimation?

– How does a parametric model based on rigid body dynamics perform at fine-scale,
irregular motion?

– What is the benefit of the hybrid model architecture?
– Can temporal information be successfully leveraged to improve model performance?

What is the importance of network recurrence in this regard?

The evaluation of the respective model performances is carried out in two ways. Initially,
the different models are assessed with regards to their joint torque prediction accuracy based
on the mean squared error obtained for the data set used for the training and testing of
the hybrid models. This is accompanied by a discussion of the training error convergence
behavior and generalization capability on the test data set. As the goal of robotic force con-
trol is the regulation of contact forces emerging between the robot and its environment or
the interacting human respectively, one evaluation criterion is the model performance with
respect to the accuracy with which the external interaction forces can be estimated, consti-
tuting the second evaluation approach. Experimentally, this is investigated by replicating
external interaction forces with the attachment of known masses at the end-effector during
the execution of a validation trajectory that is generated by the same proposed algorithm
RFMA described in Section 4.3 on page 59 and comprises 42260 samples after exclusion of
every second sample to improve temporal variation for the training of the sequence models
as explained before. The validation trajectory is then repeatedly executed without as well as
with machined masses weighing m500 = 500 g and m1000 = 1000 g that are attached at the
end-effector respectively to emulate the presence of constant external downward force vec-
tors

[
0 0 −g m0 = 0

]>,
[
0 0 −g m500 = 4.905N

]> and
[
0 0 −g m1000 = 9.81N

]>
respectively, where g ≈ 9.81m/s2. The evaluation in this regard is performed by computa-
tion of the linear external force via the geometric Jacobian of the manipulator as defined in
Equation (3.11) on page 21 which is compared against the actual linear force acting upon
the end-effector due to the attached mass.

– 68 –



5 Model Performance Evaluation

x (m
)

−0.5
0.0

0.5y (m)

−0.5
0.0

0.5

z
(m

)

0.0

0.5

1.0

0.5

1.0

1.5

(m/s)

0 100 200
time (s)

−100

0

100

q
(◦
)

j1

j2

j3

j4

j5

j6

j7

Figure 5.1: Left) Cartesian path traversed by the end-effector during the repeated execu-
tion of the validation trajectory motion with the respectively successive attachment of the
test masses, beginning and ending at the joint configuration q = (0, 0, 0, 0, 0, 0, 0), which is
equivalent to the Cartesian end-effector position (0 m, 0 m, 1.306 m). The coloring of the
line denotes the linear velocity of the end-effector at the respective location on the motion
path. (Right) The excitation trajectory depicted in the configuration space, where each
curve shows the temporal angular position of the respective joint. Note the presence of
spatially restricted motions with slow motion as generated by RFMA,

5.1 Architectural Performance Comparison

The evaluation experiments are performed for every hybrid model combination

τHY B = Kb(q, q̇, q̈,k) Φ
LS
b + fNN

((
Kb(q, q̇, q̈,k) Φ

LS
b

)
, q, q̇, q̈, r

)
(5.1)

with (5.2)
fNN = {(), fMLP−7, fLSTM−2, fLSTM−2−FCL, fLSTM−2, fTF} , (5.3)

in order to elucidate the benefits gained from the architectural variations with regards to the
estimation accuracy of the joint torques and external linear forces, where fNN = () denotes
the absence of a neural network component making the hybrid model equivalent to the
backbone rigid body dynamics model abbreviated as RBD in the following. Furthermore,
the analysis is carried out through an inexhaustive grid search by successively excluding
parts of the input feature space and the auxiliary RBD predictions (see the end of Section 4.4
on page 65). The trained hybrid model configurations are listed along with the statistical
estimation results in Tables 5.3 and 5.4 on page 74 and on page 75; the training loss curves
are given for the base architectures in Section 5.1 on page 71.

Joint Torque Estimation

On the basis of the residual joint-wise training and test error results (see Table 5.3) obtained
through the training of the individual hybrid model architectures and configurations, it is
evident that those models that are trained with the full feature space, i.e. with the rotational
displacement encoding feature r (see Section 4.2 on page 57) , have consistently achieved
lower residual losses on both the training and test data sets than their counterparts trained
without r. On its own, this finding allows for a tentative confirmation of the benefit of this
auxiliary input parameter. The positive effect of the hybrid model structure is even more
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pronounced. With the exception of the LSTM-2-FCL trained on sequences of length 500,
where the gain is insignificant, every case of omission of the rigid body dynamics support
resulted in a significant reduction of the achievable MSE in comparison to the hybrid model
counterparts. With respect to the MLP and LSTM-2 100 architectures, the relative mean
prediction accuracy difference over all joints between the standalone neural networks and
hybrid versions amounts to a magnitude of more than 1 · 104%. This suggests the plethora
of multiple conjectures, that are common in machine learning. Either, these architecture
configurations are inherently unable to adapt to the type of motion data presented during
training; the training data amount is insufficient, or the culprit lies in the hyperparame-
ter configuration. As the performance can demonstrably be improved through the hybrid
model structure and the rotational displacement encoding, and there is no significant over-
fitting noticeable as per the small train-test-error difference, the architectural properties are
deemed to be causal in connection with the characteristics of the motion represented in the
data set (see Section 4.3 on page 59). In view of related grey-box neural network-based
error model learning research carried out on a robotic system that is dynamically similar to
the one discussed here (Hitzler et al., 2019), the problem of underfitting of highly dynamic
robotic motion data seems to be possibly a common phenomenon, necessitating to resort
to the inclusion of some kind of model prior such as the identified rigid body dynamics
model. The shortcomings of the standalone MLP’s can be further analyzed with respect to
the joint-wise differences in the residual MSE, which show the highest errors for the joints
with the largest torque range due to their structurally load-bearing location, especially in
a robot that is mounted upright (see Figure 4.11 on page 66) . This is most likely caused
by the resulting high variability in the dynamic ranges of those joints, which cannot be
encoded without prior information. The tentative reason for reportedly favorable results
obtained by MLP’s for robotic force estimation (Kuhlemann, 2019) may be an increased
sampling density of the robotic workspace but also a restriction of the modeling task to
quasi-static states, where the input space is reduced to the number of joint positions of the
robot. In such quasi-static cases, the influence of complex dynamic nonlinearities arising
from intra-joint dynamics, especially during slow irregular motion as discussed in the previ-
ous chapters, is essentially removed, rendering the dynamic influences to be mostly due to
static gravitation. Because the dynamic range that is targeted in this work and reflected in
the training data is possibly at the interface between the quasi-static and dynamic states,
a variety of mechanic phenomena are provoked that are not easily interpretable by a neural
network without additional information that goes beyond the conventional temporal joint
position derivatives. Conversely, the cause for the LSTM-2-FCL architectures to yield fa-
vorable MSE’s even without support from a model prior within a hybrid architecture or an
additional rotational displacement encoding – although these two elements indeed lead to
some improvements – may be the ability to leverage long-term temporal information over
long distances due to the combination of recurrence by LSTM cells and regression by the
added fully connected layer. Interestingly, the LSTM-2 architecture was not able to qualita-
tively achieve the same performance without integration within the hybrid model structure,
indicating synergetic effects through the combination of LSTM’s with final fully connected
layers. Accordingly, the hybrid LSTM model trained on sequences of 500 time-steps with
rotational displacement encoding achieved the lowest training and test MSE.

Accepting the speculative benefits gained from time-series neural networks by the ex-
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Figure 5.2: Development of the MSE between the inferences of the best performing con-
figurations of the respective model architectures and post-processed measured joint torques
from the training and test data sets over a course of 100 epochs. The training and test
losses are depicted for every single joint respectively as well as a mean over all individual
per joint estimates. The loss curves of the remaining models are not included either due to
qualitative similarity to those shown or, immediate convergence after few epochs on high
losses in the case of the bad-performing standalone neural networks without support from
the rigid body dynamics estimates.

ample of LSTM’s, this begs the question of whether recurrence is ultimately necessary for
the successful encoding of temporal information in robot dynamics modeling. The usual
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indication for using Transformer networks over RNN’s is the practical sequence length limit
up until which the latter can feasibly learn distant sequential relations, especially in the
context of high-dimensional feature spaces, e.g. found in natural language processing. For
this reason, the Transformer network is only evaluated on sequences of length T = 500, aim-
ing to reveal possible model accuracy gains through long sequence information. Under the
experimental and configurational specifications of this thesis, no such improvement could
be derived from this architecture. In fact, the entirety of the hybrid recurrent models with
rotational displacement encoding has lower MSE’s, while those without encoding are rather
similar accuracy-wise, which leads to the possible conclusion that recurrence in combination
with the proposed encoding may be equal or even superior compared to the Transformer.

The estimation errors obtained by the backbone RBD model on the same training data
are significantly worse than those of the hybrid models that are, rather ironically, based
on the RBD model and achieve their superior accuracy mainly through the prior infor-
mation included within that physical parametric model. This is also to show, that the
generalization capability of the RBD model is limited especially with respect to the dy-
namic properties of the training motion, leading to a stark discrepancy between its MSE
on the neural network training data set and that on the data of the dynamic excitation
experiment (see Section 4.1 on page 47). One can interpret this as an effect of unavoid-
able overfitting of the rigid body inertial parameters obtained on the excitation data on
which they were determined by regression. Another possible explanation, however, is that
the kinematic-dynamic state relations contained in the training data reflect proportionally
higher influences of dynamic effects outside the framework of rigid body dynamics. In-
tuitively, this can be comprehended by the fact that the terms of the formula describing
the rigid body dynamics (see Equation (3.5) on page 20) depending on the link velocities
and accelerations have minimal influence during slow and generally steady motion, leaving
only the gravitational term. As the dynamics are still not in a completely static state, the
multitude of causally obscure and possibly hysteretical effects provoked by slow velocities
and directional reversals, e.g. complex friction, actuator/transmission dynamics, etc., gain
influence. This provides tentative evidence for the significant decrease in torque estimation
performance of models based on a closed-form parametric dynamic description for appli-
cations within which such motions predominantly occur, although this can, in theory, be
mitigated by more sophisticated model formulations and parameter identification schemes.

The temporal course of the joint torque predictions τPRED given by the individual
model architectures in comparison with the filtered joint torque measurements τ̃meas is
given in the Appendix. From these visualizations, the qualitative superiority of the hybrid
recurrent architectures with rotational encoding is particularly apparent from the near per-
fect congruence of the predictions with the measurements across all joints, especially in the
case of LSTM-2-FCL 500.

Cartesian Force Estimation

The statistical accuracy with which the Cartesian forces due to the attached masses were
estimated is given in Table 5.4 on page 75. The RMSE’s of the predicted force are derived
from the observed deviation in the joint torques with respect to the model estimates using
the relation between the end-effector contact Jacobian and the joint-wise torque deviations
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as defined in Equation (3.11) on page 21. Considering the joint-wise MSE’s obtained by
the different model architectures and configurations on the neural network training data
set, the results for the Cartesian force estimates indicate, that the joint-wise accuracy is
comparatively weakly correlated with the actual accuracy with which the Cartesian forces
can be inferred. For the validation trajectory without any attached weights, the discrepancy
between the Cartesian force estimates of the different architectural configurations is not as
pronounced as the one regarding the joint torque estimation, although a qualitative trend
is noticeable, where the standalone neural network, especially the MLP’s, still achieved the
highest RMSE with the exception of the standalone LSTM-2-FLC 500 architecture, and the
hybrid recurrent models achieved the lowest RMSE lead by the hybrid LSTM-2-FCL 500
with rotational encoding. The same applies to the standard deviations. Interestingly the
spatial distribution of the RMSE force error vector of the MLP’s have components largely
varying in magnitude, which is not seen with the other architectures. With an increase
in the mass of the attached weights, there is an increase in the z-component of the force
error vectors that is equal to the weight force of the respective mass. Likewise, the standard
deviation of the prediction error assumes approximately the force vector due to the attached
masses. The architectures that are relatively less affected by this are the MLP’s, which show
continuously high RMSE’s, and the RBD model, where. although the difference in RSME
between the weights follows the same rule, the standard deviation of the error vectors is
higher for no attached weights.
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Table 5.4: Estimation of the external linear forces due to the attachment of the test
weights m = {0g, 500g, 1000g} obtained by the different model architectures and input
space variations. The results are given for each architectural variation as a root mean
squared error along with the standard deviation of the prediction error which are both
listed as force vectors in Nm, designating the errors and standard deviations with respect
to three spatial dimensions [x y z]. The names of the network configurations follow the
naming convention introduced in Sections 3.4 and 4.2 on page 31, on page 58 and on page 59.
The additional number behind the time-series models designates the sequence lengths on
which the respective models were trained

Mass (g) MLP-7 MLP-7 no r MLP-7 no r, τRBD

0 [5.54 6.09 5.377] [11.77 6.00 5.59] [5.54 11.59 16.25]

[7.77 8.45 7.29] [7.74 8.43 7.62] [16.74 16.79 22.60]

500 [7.56 4.27 7.38] [10.17 4.13 7.48] [7.42 8.30 19.33]

[8.06 6.62 9.08] [7.95 6.36 8.89] [16.51 10.20 14.07]

1000 [8.28 4.72 10.91] [8.13 4.60 11.11] [9.36 7.78 22.31]

[8.54 7.25 12.61] [8.41 7.02 12.63] [15.32 9.72 16.66]

Transformer 500 LSTM-2 100 LSTM-2 100 no r

0 [0.24 0.25 0.33] [0.09 0.09 0.14] [0.11 0.12 0.16]

[0.36 0.35 0.43] [0.13 0.14 0.21] [0.16 0.16 0.23]

500 [0.95 0.73 4.52] [0.96 0.64 4.49] [0.97 6.57 4.54]

[1.11 1.08 5.00] [0.98 0.95 5.01] [1.02 1.01 5.00]

1000 [1.74 1.25 9.12] [1.74 1.07 9.07] [1.77 1.12 9.11]

[1.95 1.83 9.94] [1.76 1.62 9.96] [1.77 1.72 9.96]

LSTM-2 100 no r, τRBD LSTM-2-FCL 100 LSTM-2-FCL 100 no r

0 [1.98 1.92 2.44] [0.22 0.28 0.28] [0.18 0.18 0.25]

[2.82 2.84 4.41] [0.32 0.32 0.41] [0.26 0.26 0.36]

500 [3.54 2.03 5.00] [1.01 0.79 4.52] [0.95 0.69 4.50]

[4.54 3.15 6.82] [1.11 1.23 5.03] [1.08 1.03 5.00]

1000 [4.20 2.45 9.23] [1.82 1.20 9.06] [1.75 1.17 9.05]

[5.06 3.84 11.02] [1.89 1.86 9.96] [1.81 1.17 9.94]

LSTM-2-FCL 500 LSTM-2-FCL 500 no r LSTM-2-FCL 500 no r, τRBD

0 [0.08 0.09 0.12] [0.11 0.12 0.15] [0.15 0.16 0.21]

[0.12 0.12 0.17] [0.15 0.16 0.21] [0.21 0.23 0.29]

500 [0.96 0.68 4.49] [0.91 0.68 5.53] [1.26 0.94 4.79]

[1.07 0.98 5.00] [1.04 1.02 5.01] [1.68 1.36 5.28]

1000 [1.74 1.25 9.12] [1.67 1.28 9.13] [1.86 1.36 9.38]

[1.90 1.81 9.96] [1.80 1.86 9.96] [2.21 1.97 10.13]

RBD
0 [1.53 1.74 1.93]

[5.11 5.85 6.30]

500 [0.90 0.83 4.77]

[1.11 1.19 5.03]

1000 [1.65 1.24 9.26]

[1.80 1.85 9.91]
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Throughout this work, the robotic force control problem in view of newly emerging physical
human-robot interaction applications has been investigated with regards to the sub-problem
of the observability of external contact forces in order to contribute to the applicability of
robotic systems in highly interactive and force-sensitive usage scenarios, such as in health-
care or collaborative robotics. Instead of utilizing exteroceptive sensorization in the form of
force/torque sensors that are locally attached e.g. at the robot’s end-effector for the direct
measurement of contact forces, a proprioceptive approach was taken by employing the joint
position and torque sensing capabilities available with recent collaborative robots such as
the KUKA LBR iiwa 14, which was investigated in this thesis (see Chapter 2 on page 12).

This has the benefits of reduced system complexity compared to additional external
sensors and a larger perceptive field with respect to external mechanical contacts that
might occur anywhere on the robot housing and can remain undetected by local sensors.
To infer external physical influences acting on the robot due to intentional interactions or
collisions, the force observation task is cast as a dynamic modeling problem to determine
the expected dynamic state reflected in the joint torque measurements for a particular
kinematic state, i.e. pose and motion. The primary focus of this thesis was to develop
a dynamic model that targets a specific dynamic range, which was motivated as follows:
Conventionally, in collaborative scenarios, the robotic motion path is composed of rather
long and directionally consistent changes in configuration space of medium velocity, which
prevents the induction mechanical dynamic phenomena that predominantly occur during at
slow velocities and frequent directional reversals within small configuration space distances
due to complex effects, e.g. joint flexibility and nonlinear friction which exhibit pronounced
hysteretical behavior that is otherwise not provoked. These perturbating causes have lead
to the insufficiency of proprioceptive external force estimation for highly force-sensitive
applications, as they affect pertain to joint-level sensors.

This has prevented this sensing scheme from being employed as a primary force esti-
mation strategy for functionally and safety-wise force-critical applications such as in the
medical field. The presence of joint torque measurement hysteresis was experimentally
demonstrated in Figure 2.5 on page 16, while the problems this is causing for the paramet-
ric model-based external torque estimation have been presented in Chapter 5 on page 68. As
many proprietary force estimation methods implemented by robot manufacturers are rep-
resentations of the class of disturbance observers using parametric inverse dynamic models
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(Haddadin, De Luca, and Albu-Schäffer, 2017), this poses an important problem for their
applicability in scenarios with high estimation accuracy requirements and adversarial dy-
namic conditions with respect to the modeling capabilities of parametric inverse dynamics
approximations.

Because of the inaccessibility of the actual parametric model used by the robot controller
due to manufacturer confidentiality and general uncertainty about the accuracy and status
of calibration on the actual unit used during experimentation, a classical identification of
the inertial parameters was conducted to be used within the Newton-Euler formulation
of rigid body dynamics as a parametric model specific to the given robot (Atkeson, An,
and Hollerbach, 1986); although this is not equivalent to the actual approach used by
the robot manufacturer, which implements a momentum-observer in order to also avoid
the model’s dependence on joint accelerations due to difficulties in the robust retrieval
of this quantity by real-time numerical differentiation. As this was not a direct concern
for the basic investigations conducted in this thesis with regards to the theoretical upper
boundaries reachable for dynamic model accuracy, and the post-processing of noise-amplified
acceleration measurements was feasible, and due to the hypothesis that the consideration
of accelerations would yield a more comprehensive model representation, this first approach
was taken (see Section 3.3 on page 24). The observation of the shortcomings of this technique
during experimentation motivated the search of alternative dynamic modeling methods, for
which neural networks were chosen due to their inherent universal approximation property
as well as their capability to infer a range of dynamic effects simply from data, possibly
exceeding that which can be included in any closed model-formulation in spite of extensive
domain knowledge.

In order to provide a suitable database that captures the targeted dynamic and motoric
range of irregular fine-scale movements occurring in a large variety of configurations, the
algorithm RFMA was developed during the course of this thesis to randomly generate a
sequential geometric motion path in configuration space that was inspired by the manipula-
tion of medical ultrasound transducers, representing a possible motion to be replicated by a
robotic agent for the automated execution of this medical procedure Section 4.3 on page 59.
The generated random paths are composed of slow joint-wise linear motions corresponding
to the human arm motion during the initial translation of the ultrasound probe onto a
specific anatomic target site. This movement phase is followed by a randomized superposi-
tion of low amplitude and rather high frequency parametric sinusoidal joint motion profiles
to emulate explorative motions to find a particular sonographic visualization plane. With
this motion component, it was at the same time intended to provoke the nonlinearities and
hysteretical behavior in the actuation and torque sensors.

Using proprioceptive data obtained during the execution of the motion path yielded
by RFMA, the training of a parallel multilayer perceptron (Yilmaz et al., 2020) was con-
ducted to infer the joint torque levels from the proprioceptive motion observations. The
initial failure of this approach, yielding results drastically worse than those obtained by
the parametric model, which is speculated to be caused by the high dimensionality of the
feature space in spite of comparatively minimal variations of many features such as the
relatively constant velocities and nearly absent accelerations during steady motions pro-
duced by RFMA. A further reason for the incapability to learn from the data, except for
the ever-present possibility of an insufficiently large and rich data set, is hypothesized to lie
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in the temporal dependency of the hysteretical effects, which could not be captured by the
presentation of momentary kinematic-dynamic relations. This challenge was approached
by considering the robot dynamics as essentially being a time-series process where some
causally undefined effects are responsible for the inadequacy of parametric modeling for the
specific motion type exhibiting long-term temporal dependencies. Accordingly, an LSTM
architecture was investigated (Rueckert et al., 2017), which yielded unsatisfactory results
on the data set as well.

Given the difficulties in obtaining a serviceable model for the targeted motion class and
the contrasting shortcomings of the parametric and neural network-based modeling, where
the former is inherently incapable of representing dynamics outside of its model formulation
and the latter is incapable of extracting sufficient model information from the data, the idea
to combine both model architectures in a hybrid structure was pursued Equation (4.3) on
page 46 by implementing the investigated neural networks as a downstream mode compo-
nent following the initial estimates made by the parametric rigid body dynamics model l
Section 4.2 on page 56. The hybridization of both model approaches led to a significant
improvement in modeling accuracy on the RFMA data set over the previously investigated
standalone techniques, led by the hybrid LSTM architecture. To further optimize the per-
formance, a novel positional encoding based on the rotational displacement of a respective
joint since the last reversal of its motion direction was developed to be concatenated with
the input features of the kinematic observations, providing a simple quantity that can nu-
merically express the transition phase on the hysteresis loops associated time-dependent
mechanical effects. Although this auxiliary feature on its own did not improve the per-
formances, the experimental data indicate an additional benefit gained from the encoding
within the respective hybrid models.

With respect to the implementation of the hybrid model architectures for real-time
applications, a solution for the robust online estimation of the joint velocities, accelerations,
and torques has to be worked on. While the velocities and accelerations can be determined
comparatively easily with conventional methods of low-pass filtered differentiation, or even
be entirely omitted if the experimental data suggests an insignificant influence of the already
minimal magnitude of velocity and acceleration during slow movements, the joint torque
measurements are deteriorated by characteristic torque ripples that vary depending on the
joint velocity. Although this can be dealt with via offline post-processing and case-individual
filter tuning, during real-time operation, this appears to be a problem. Using a similar
approach to the one proposed in (Chawda and Niemeyer, 2017), this may be tackled by as
a variable notch filter realized as an experimentally determined lookup table defining the
filter parameters in relation to the momentary joint velocities that can be estimated more
robustly by filtered temporal differentiation of the joint positions.

Considering the translation of the joint torque estimation accuracy on the inference
of external Cartesian contact forces, a series of validation experiments were conducted by
attaching known masses at the robot end-effector and commanding a test motion likewise
generated by RFMA. The fundamental finding is that the inference of the external Cartesian
forces due to the weight force of the attached mass during motion was possible with an
RMSE and that is approximately equal to the weight force of the respectively attached
mass, meaning that the absence of any attached weight could be predicted by most of
the model architectures with good accuracy and, e.g. the weight force of approximately
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9.81 N for the attached mass of 1000 g was predicted with both an RMSE and standard
deviation of the estimation error of circa 9 N. To determine the reason for this dependency
of the estimation error on the applied external force, the conduction of further validation
experiments is indicated to reproduce the model error behavior. A tentative causality that is
proposed for this rather interesting result is that the dynamic effect imposed upon the robot
by the weight is not significant enough to be captured by the joint torque sensors during
the slow and irregular motion, where measurement noise and the influence of gravitational
torques, as well as the nonlinear friction and sensor hysteresis, predominate. Combined
with momentary configuration and the orientation-dependent perceptive limitation of the
uniaxial joint torque sensors, this may lead to an alteration of the dynamic state that is
simply not observable during motion. This assumption is further backed by the qualitatively
similar RMSE obtained by the RBD model, which is exempt from any presumable effects
of data maladaptation that can be suspected for the neural network components. A general
task for the development of this work is the conduction of an extensive, systematic, and
individualized optimization of the network hyperparameters.

In order to either confirm or dismiss this conjecture, the future research work to be car-
ried out on this topic has to include an augmentation of the training data set to incorporate
a higher sampling density regarding both the configuration space as well as the quasi-static
range of the respective dynamic spaces of the joints. This extended data set may then be
used to investigate whether further training can improve the force estimation, or the pro-
posed models in their current training state may even be capable of accurately predicting
joint torques and Cartesian external forces under quasi-static conditions. Another aspect
to be considered is the further exploration of proprioceptively observable features that may
guide the model inference capabilities. A possible approach in this regard, which has been
contemplated upon during the work on this subject, is the doubling of the joint positions
using the motor position as well as the link side position data to achieve some degree of
informational redundancy with respect to the deflection of the flexible joints under the
influence of external forces in addition to the joint torque readings.

From a practical point of view, however, the estimation of Cartesian forces should not
necessarily be regarded as the only functional benefit to be gained from the general method
of model-based proprioceptive dynamic disturbance observation. The hybrid model archi-
tecture with the obtained joint-wise torque estimation accuracy may be exceptionally well-
suited for the identification of non-Cartesian external influence such as interaction torques
or as a redundant mechanical disturbance system together with locally highly accurate
exteroceptive sensorization at places of probable contact.
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A
Joint-Wise Torque Predictions

The joint-wise torque predictions over a sub-sequence of the validation trajectory without
attached weights are listed in the following for all of the implemented and evaluated ar-
chitectures. Please refer to Chapters 4 and 5 for the naming conventions of the respective
models.
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