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Abstract—Domestic robots, such as vacuum cleaners or lawn
mowers, are mostly based on a low-cost design to make them
affordable for the consumer. This often results in such robots
being equipped with only simple sensors, such as in-/outside area
detectors for lawn mowers. Intelligent navigation and planning
strategies, however, usually require additional sensors like LiDAR
sensors, cameras or time of flight sensors. Thus, there is a lack of
intelligent approaches for the complete coverage of the workspace
under consideration of only minimal sensing capabilities.
In this work, we propose a probabilistic planning method for low-
cost robots with limited sensing capabilities to completely cover
an enclosed environment. Our planning approach thereby utilizes
Monte Carlo Localization for estimating coverage probabilities
based on the particle distribution. These coverage probabilities
are stored in a grid map on the basis of which an intelligent path
planning approach determines the next locations to be visited.
We demonstrate our approach in different simulation scenarios
for a realistic autonomous lawn mower with only in-/outside
area detection capabilities. As comparison benchmark we use the
common random walk mowing pattern.

I. INTRODUCTION

Low-cost robots for domestic use, for example lawn mowers,
often only employ simplistic random navigation strategies. This
is because there sensory capabilities are limited due to their
low-cost design to only detect in-/outside area estimations. For
example, most common autonomous lawn mowers today use
bounding wire, electro-magnetic field measurement technology
which safely detects wire crossing [1]. In [2, 3], we proposed
an active chlorophyll fluorescence sensory system for replacing
the bounding wire to reduce installation and maintenance costs.
However, the autonomous lawn mower is still only capable
of in-/outside area detection. Based on those measurements,
random walk strategies are currently employed to cover the
complete working area which are inefficient with respect to
time and energy consumption and often get stuck in narrow
corridors. Intuitively, common known coverage patterns such
as stripes or cycles would be preferable and highly efficient but
can not be performed by autonomous lawn mowers due to their
uncertain pose estimate. Thus, a trade-off between a perfect
structured coverage pattern and random walk is required which
accounts for the position uncertainties, reduces working time
and covers the complete working area with high probability.
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Fig. 1: Example of the proposed path planning method showing
the neural activities which force the robot and the path driven
by the robot. The coverage rate of the working area is 50%.
The underlying method is described in detail in Section II.

A. Related Work

In the past, many complete coverage path planning (CCPP)
strategies have been proposed. Those strategies can be
partitioned into cellular decomposition, landmark-based or
grid-based methods. For cellular decomposition methods, the
free-space of the working area is divided into individual,
non-overlapping cells such that the free-space is completely
filled. Those cells are then covered by generating an efficient
path through all cells, e.g. a ”mowing the lawn“ pattern. Two
prominent examples are given with [4] and [5]. In the former,
the problem of complete terrain acquisition with arbitrary
shaped obstacles has been addressed which produced the
”Seed Spreader“ algorithm. In the latter, the boustrophedon
cell decomposition (BCD) has been developed which allows
for non-polygonal obstacles within the operation space.
Landmark-based approaches use topological maps detecting
natural landmarks for navigation and planning. Those methods
are still utilizing the boustrophedon cell decomposition
(BCD). Such an algorithm has been introduced in [6], where
cellular decomposition is used for coverage path planning
by generating a planar graph G with a set of Nodes N and
edges E. The overall algorithm is then designed as a finite
state machine given the three states ”boundary“, ”normal“ and
”travel“. The method shows coverage accuracies of 99% in
simulation and 85% for real robots.



Fig. 2: The autonomous lawn mower used for learning the
model parameters to determine a realistic simulation setting.

Another famous class of CCPP algorithms utilizes grid maps
which have been firstly introduced in [7]. Those grid maps are
simple to create and to maintain but suffer from exponential
growth. One of the first methods applying CCPP on grid maps
has been given in [8] where an complete coverage path is
planned offline. For a detailed overview of CCPP algorithms,
we refer to [9].

Other approaches for CCPP focus on certain areas of
application. For example, in [10] the authors proposed a
CCPP method for agricultural machines, where trajectories are
selected which guarantee complete coverage while minimizing
overlapping. The best studied robots for CCPP are vacuum
cleaners since they are widely used nowadays and they operate
in a simplistic indoor setting. A complete setup for this
type of robots, including a simple CCPP method, has been
introduced in [11]. More advanced studies covering efficient
probabilistic robot cleaning strategies have been introduced
in [12] and [13]. In the former, dirt grid maps are introduced
which are modeled by Poisson Processes. Based on the
modeled dirt distribution, a traveling salesman problem (TSP)
is solved for optimally cleaning the working space. In the
latter, high-confidence cleaning guarantees under uncertainties
are studied. Therefore, a particle filter is used to estimate
the dirt distribution assigning a particle to each grid cell of
the map. These particles are then updated based on random
samples from the robots motion model. The robots path is
then updated solving again a TSP.

For autonomous lawn mowers, little research considering
efficient path planning methods have been done. In [14], this
problem is addressed designing different planning methods
with respect to minimal time or energy consumption. However,
the proposed method requires an exact pose estimate for the
robot utilizing real-time positioning system and self-navigation.
Such precise positioning is not available for consumer lawn
mowers, as these are only equipped with in-/outside area
detection and odometry sensors. Also, most of the previously

mentioned methods are not applicable to lawn mowers, since
they mostly require remote sensing such as sonar. An ap-
proach for CCPP considering only contact sensors has been
presented in [15]. However, it requires rectilinear structure of
the working environment. Those limitations, either that remote
sensing techniques are needed or assumptions of the structure
of the environment have to be made, require new probabilistic
approaches for CCPP on autonomous lawn mowers to be
applicable.

B. Contributions and Organization

We propose a probabilistic CCPP approach for closed en-
vironments applicable to autonomous lawn mowers and other
low-cost systems which can cope with high uncertainties re-
garding the pose estimates. For this purpose, the neural network
based CCPP approach from [16, 17] is adapted and combined
with ideas for high-confidence cleaning guarantees for vacuum
cleaners from [13]. To the best of our knowledge, this is the
first work which addresses directly the CCPP problem for
robots with only in-/outside area detection without any further
restrictions to the structure of the environment. The contri-
butions of this paper are thereby three-fold: (1) Adaptation
of a neural net planning method for highly uncertain pose
estimates, (2) a definition of a probabilistic coverage map and
(3) a demonstration of the proposed method in different realistic
simulation scenarios.
The paper is organized as follows: We start by introducing
our method in Section II, beginning with the definition of the
underlying dynamical system and the probabilistic coverage
map. We proceed with a short repetition to particle filter which
then leads to the actual planning algorithm. In Section III, we
demonstrate our approach in different challenging simulation
scenarios and in Section IV we conclude.

II. METHODS

We assume a map of the closed environment is given as
a binary occupancy grid M. Such a map can be generated
utilizing only the given in-/outside area detectors by following
the boundary line as demonstrated in [18]. Given the map of the
environment M, a probability occupancy grid map C is used
to model the coverage of the closed environment. Therefore,
we use a similar dynamical system model as proposed in [12,
13] for high-confidence cleaning guarantees. To account for the
high uncertainty of the pose estimate given only the odometry
and the in-/outside area measurements, a particle filter is used
to estimate the pose and the coverage respectively. The CCPP
approach then uses a neural network where each cell of the
coverage map represents a neuron, as introduced in [16, 17].
Based on the neural activity of the neurons and the current pose,
the planner chooses the neighboring cell to move to. This, in
combination with the probabilistic coverage information, leads
to efficient CCPP under high uncertainties.

A. Probabilistic Coverage Map and Dynamical System

Given the map of the environment M, a probability oc-
cupancy grid map C is generated with ci ∈ [0, 1] being the



probability of the cell i to be covered by the robot initialized
as ci = 0, ∀i. Let pt be the pose of robot at time step t, ut the
input signals to the robot, zt the sensor measurements and ct
the coverage states of all cells, then the path of the robot and
the coverage can be defined as joint posterior distribution

prob(p0:t, c0:t|u1:t, z1:t) = η prob(zt|pt)︸ ︷︷ ︸
sensor model

prob(ct|ct−1,pt−1,pt)︸ ︷︷ ︸
coverage model

prob(pt|pt−1,ut)︸ ︷︷ ︸
motion model

prob(p0:t−1, c0:t−1|u1:t−1, z1:t−1)︸ ︷︷ ︸
prior distribution

.

(1)

In comparison to [13], we do not have a cover-
age sensor model which gives us additional information
for pose estimation. By considering the Markov property
prob(at|at−1:0) = prob(at|at−1), Equation (1) turns into

prob(pt, ct|ut, zt) = η prob(zt|pt)
prob(ct|ct−1,pt−1,pt) prob(pt|pt−1,ut)
prob(pt−1, ct−1|ut−1, zt−1)

(2)

which gives us an iterative update rule for the pose estimate
and the coverage based on the current inputs and sensor
measurements. In the following we shortly define each of the
models introduced in Equation (1).

1) Sensor Model: Our robot is equipped with two in-/outside
area detectors, more precisely chlorophyll fluorescence sensors,
which give the information whether the sensors are over grass
(inside) or not (outside). The sensors are placed at the left
and right front of the robot. Based on the current pose p,
an estimate of the measurements can be made given the
information from the map M.

2) Coverage Model: The coverage model reflects the change
in coverage based on the movements of the robot. A general
probabilistic model can be defined as

prob(ct|ct−1,pt−1,pt) =
prob(ct−1) + P (pt−1,pt) · (1− prob(ct−1)) ,

(3)

zt−2 zt−1 zt

ut−2 ut−1 ut

ct−2 ct−1 ct

pt−2 pt−1 pt

Fig. 3: The dynamical system, Equation (1), illustrated as graph.
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(a) Line drawing approach.

pt

pt−1

(b) Unweighted area sampling.

Fig. 4: Different coverage models where the circles represent
the robot’s effector, e.g. the cutter. The first approach is
conservative and computationally fast but underestimates the
true coverage whereas the latter is more accurate but comes
with higher computational costs and might slightly overestimate
the coverage.

where P (pt−1,pt) is the probability of the robot covering a
certain grid cell by moving from pose pt−1 to pt. In comparison
to [13], where unweighted area sampling is used to determine
P (pt−1,pt) (Figure 4b), we use a more conservative yet com-
putationally faster approach in order to lower the computational
burden onto our system (Figure 4a). Our approach is based
on simple line drawing algorithms where a cell is marked as
covered if the robot passed it. Therefore, the resolution of the
coverage grid has to be chosen as

Resolution ≥ 2
√
2

d
, (4)

where d is the diameter of the robot’s effector. This ensures
the coverage of the whole cell. The coverage probability is
then P (pt−1,pt) = 1 if the robot traversed the certain grid
cell and P (pt−1,pt) = 0 otherwise.

3) Motion Model: For the motion model we use the in [19]
proposed odometry model. Therefore, we determined the model
noise parameters a1, . . . , a4 applying Maximum Likelihood
Estimation [20] on with the real robot recorded data. We
validated our results with the Kolmogorow-Smirnow-Test [21].
The parameter values are given in Table II.

B. Particle Filter

To efficiently generate a pose estimate for our robot by
fusing the odometry and sensor data, we use a standard particle
filter algorithm [19] to handle the binary in-/outside area
measurements. The general idea of the particle filter is to
represent the probability distribution of the posterior by a set
of samples, called particles, instead of using a parametric form
as the Kalman Filter does. Here each particle

Xt = x
[1]
t ,x

[2]
t , . . . ,x

[N ]
t (5)

represents a concrete instantiation of the state at time t, where
N denotes the number of particles used. The belief bel(xt) is
then approximated by the set of particles Xt. The pose estimate
of the robot can be calculated by taking the mean over all



N particles. The Bayes filter posterior is used to include the
likelihood of a state hypothesis xt

x
[i]
t ∼ p(xt|z1:t,u1:t). (6)

Here z1:t and u1:t represent the measurement history and the
input signal history respectively.

Given the positions of the N particles, the coverage map
is updated when the robot traversed from one cell to another.
According to the coverage model proposed in Equation (3) and
Figure 4a the update rule can be defined as

ct,i = ct−1,i +
nt,i
N

(1− ct−1,i), (7)

where ct,i is the coverage probability of cell i at time t and
nt,i the number of particles in cell i at time t.

C. Complete Coverage Path Planner

Given the estimation of the robots trajectory and estimation
of the coverage, an efficient path planning scheme is left to
define. Due to the high uncertainty of the robot’s pose and the
associated uncertainties in map coverage, such a path planning
scheme requires rapid adaptability. Hence, solving a traveling
salesman problem (TSP) on the fully connected graph over all
cells of the map as in [13] is not feasible. Instead, we adapt the
neural network approach introduced in [16, 17] to uncertain
pose and coverage estimates. The neural network approach is
thereby derived from the shunting equation [22] which was
inspired by a model for a patch of a membrane introduced
in [23]. In this approach, neurons are generated which each
have a neural activity. These neural activities then provide
an attraction on the basis of which the robot plans its next steps.

Let each cell of the coverage map represent a neuron and qi
the neural activity of the neuron i, then the change of neuronal
activity can be described according to [16] as

dqi
dt

= −Aqi+(B−qi)

[Ii]
+ +

k∑
j=1

wij [qj ]
+

−(D+qi)[Ii]
−.

(8)

wij

j

i

Fig. 5: A schematic of the neural network with the neighbor-
hood of a cell and the cell connections.

Fig. 6: Example path after reaching 90% coverage.

Here, A, B and D are non-negative parameters representing
the passive decay rate, the upper and the lower bound of the
neural activity. The function operators [a]+ and [a]− are defined
as [a]+ = max{a, 0} and [a]− = min{−a, 0}. The neuronal
activities are initialized as qi = 0, ∀i but receive an external
input Ii. Following to [16] and considering the coverage
probabilities ci, we propose

Ii =

{
(1− ci)E if cell i is inside the working area
−E if cell i is outside the working area

. (9)

Here, the external input accelerator E should be chosen such
that E � B. The neurons are each connected to their neigh-
boring cells, as illustrated in Figure 5. The connections weights
can be defined as

wij = f(||xi − xj ||), (10)

where xi represents the location of the i-th neuron. For
example, [16] proposes the weighting function

f(a) =

{
µ
a if 0 < a < r

0 if a ≥ r
(11)

with µ and r being positive constants. Here, a regular grid is
assumed such that we propose a constant symmetric weighting
matrix

W =

 1√
2

1 1√
2

1 0 1
1√
2

1 1√
2

 (12)

for efficiently using image filtering techniques for determining
the input of the neighboring cells. Since Equation (8) only
allows for positive neural activities to propagate between
neighboring neurons, negative neural activities stay local. In
other words, uncovered areas inside the working area attract
the robot globally while areas outside the working space
only locally push the robot away. Samples of neural activity
distributions over the cells are shown in Figure 7 at two
different coverage states.



Fig. 7: Neural activities qi for different coverage values. The left panel shows the neural activities after 10% coverage is reached
and the right panel the neural activities after 95% coverage is reached.

Following [16], the robot’s path is planned based on the
neural activity landscape. More precisely, let xi be the robot’s
current position and qi the corresponding neural activity, then
the next position xnext the robot is sent to can be defined as the
position of the neighboring cell with the largest neural activity.
Thus,

qxnext = max (qj , j = 1, . . . , k) (13)

with k being the number of neighboring cells of qi. Considering
the robot’s motion model, we like to avoid unnecessary turns
with the robot since turning movements are much more prone
to odometry errors. Thus, an additional term to Equation (13)
is added which takes the current orientation ϕi of the robot into
account

qxnext = max (qj − γgj , j = 1, . . . , k) (14)

with
gj = |ϕi − atan2 (xj − xi) | (15)

and γ being a parameter which has to be set appropriately. This
ensures a preferred next cell allocation based on the robots
current pose. In Figure 6, an example path after reaching 90%
coverage is shown.

D. Relocalization

Since the robot has a large odometry error but only in-
/outside area detection sensors, the robot receives only few
valuable measurement data during path execution. Thus, it is
required that the robot stops path execution and starts to relocal-
ize itself when the pose estimate becomes quite uncertain, thus
exceeds a certain variance value σmax. For the relocalization, the
robot drives along the boundary to get different measurement
signals for improving the accuracy of the pose estimate by
the particle filter until the pose estimates variance is below
another threshold σmin after which the robot continues with
path execution.

III. RESULTS

We evaluated our approach in different challenging
simulation scenarios based on an odometry and a velocity
motion model from [19] where the model parameters have been
determined using Maximum Likelihood Estimation [20] on
data recorded with a real robot, a Viking MI 422P (Figure 2).
This enables realistic simulation studies for analyzing the
performance of the proposed method in detail. The simulated
robot is only equipped with two in-/outside area detectors
for relocalization. A detailed description of the robots setup
parameters is given in the appendix Section V-B.

A. Evaluation Criteria

As measurement of the performance, we use the traveled
distance required to reach a certain total coverage percentage
which in our case is a coverage value of 95%. In total, the
proposed method was evaluated on 6 different maps with
different degrees of complexity but same size of coverage
space A = 50m2, see Figure 11, and for different levels of
odometry errors. Here, an odometry level error of one signals
a full odometry error as represented by the odometry model
parameters from Table II and an odometry level error of zero
signals no odometry error at all.
The optimal traveled distance traversing over the centers of the
grid map cells to reach 95% coverage for a coverage space of
A = 50m2 can be determined as Topt = 237.4m, see appendix
Section V-A. Based on this optimal distance, we can define a
optimality criterion for our algorithm as

Opt = 1−
T − Topt

Trand − Topt
, (16)

where T is the average traveled distance our method required
and Trand the average traveled distance a random walk pattern
required. Here, a value close to one signals a performance



(a) Comparison between optimal, random walk and the here proposed
path planning algorithms.

(b) Trials where the particle filter has lost track of the robots pose
estimate during path execution.

Fig. 8: Comparison of the here proposed complete coverage method with the commonly used random walk approach and the
optimal approach. For the optimal approach the exact pose of the robot is assumed to be known. For the evaluation, the algorithms
have been tested in different maps shown in Figure 11, and with different odometry error levels.

TABLE I: Algorithm performance based on Equation (16).

Odometry Error
0.0 0.2 0.4 0.6 0.8 1.0

M
ap

s

1 1.00 0.54 0.26 0.07 -0.12 -0.26
2 1.00 0.60 0.34 0.17 0.10 -0.08
3 0.99 0.82 0.70 0.66 0.60 0.49
4 0.97 0.74 0.65 0.51 0.41 0.38
5 0.99 0.79 0.69 0.57 0.54 0.44
6 0.96 0.76 0.62 0.51 0.47 0.42

close to the optimal pattern where a value close to zero signals
a performance close to a random pattern. A negative value
therefore shows a worse performance than a random walk
pattern.

B. Statistical Evaluation

For our simulation study, we had 20 runs performed for
each pair of map-odometry error level. In total, 6× 6 different
combination pairs were evaluated with respect to their traveled
distance after reaching the 95% total coverage level. Since our
approach is probabilistic, we averaged the 20 runs recorded for
each map-odometry error level pairing. The method parameters
used for the evaluation are tabulated in the appendix Section
V-B.

In Figure 8a, the calculated average traveled distances
are shown together with the optimal traveled distances and
the average traveled distances reached with a random walk
pattern. Additionally, in Table I the performance of our method
according to Equation (16) is presented. The evaluation shows,
that our method in general outperforms the commonly used
random walk pattern except for the most simplistic maps
under high odometry error. A strong correlation between the

0 200 400 600 800
0

0.5

1

True

Estimated

Fig. 9: Comparison between the true and the estimated coverage
with respect to the traveled distance of the robot for an
odometry level of 1.0 and map 4.

performance of our method and the odometry error level can
be found such that with lower odometry error our approach
performs better and approaches the optimal performance. This
is to be expected, since less odometry error allows for better
path performance and requires less relocalization. In addition,
the complexity of the map favors our approach, as the random
walk pattern has trouble covering narrow areas of the map.

C. Coverage Tracking

The robot should be able to estimate the current coverage of
the workspace as efficiently as possible. Thus, the correlation
between the true coverage and the estimated coverage by our
approach is of importance. In Figure 9, a comparison between
both values is shown for map 4 and an odometry error level of
1.0. The estimated coverage always slightly underestimates the
true coverage and thus can be used to conservatively estimate
the true coverage.
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(a) Effect of the number of particles on the method
performance.
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(b) Effect of the relocalization on the method perfor-
mance.

Fig. 10: Algorithm performance (traveled distance, lost tracks)
with respect to the number of particles and the relocalization
parameter σmax, σmin.

D. Particle Filter Performance Analysis

One disadvantage of our approach is the use of the parti-
cle filter, as it sometimes looses track of the pose estimate,
Figure 8b, which leads to an abort of the path planning
execution. This happens especially with increasing odometry
error. Possible error sources, according to [19], are:
(1) The approximation error of the probability distribution due
to the finite number of particles used, (2) the approximation
error induced by the randomness of the resampling phase, (3)
the divergence of the proposal and target distribution if only
deterministic measurements are available and (4) the particle
deprivation problem, where no particles might be in the vicinity
of the correct state.
In general, a larger number of particles used are beneficial
for reducing most of the mentioned error sources but comes
with a higher computational burden. Nevertheless, an increasing
number of particles reduces the number of lost tracks signifi-
cantly, as shown in Figure 10a. Other measures to be taken are
the use of additional sensors to either improve the odometry
error, e.g. IMU and odometry sensor fusion, or the external
sensory information. Also, a boundary transition zone can be
defined to reduce the deterministic character of the in-/outside
measurements. Additionally, the parameters for relocalization,
σmax, σmin, can be adjusted, such that the robot more often
relocalize itself. This reduces the number of lost tracks but also
reduces the performance of the method, as shown in Figure 10b.

IV. CONCLUSION

We proposed a probabilistic approach for complete coverage
path planning with low-cost systems. Our method outperforms

the commonly used random walk pattern while coping with
high pose uncertainties due to only limited sensing capabilities,
e.g. only in-/outside area detectors. We analyzed the perfor-
mance of our method in different challenging scenarios and
with different odometry accuracy levels. Thereby, the method
proved to be efficient for complete coverage path planning,
especially for complex environments. For the future, we will
test the robots performance in a real outdoor setting.

V. APPENDIX

A. Optimal traveled Distance

The optimal traveled distance, assuming the centers of each
grid cell should be traversed, can be determined as the number
of cells visited multiplied by the length between two grid cell
centers, thus the reciprocal of the resolution of the grid. Given
a grid map with an area to cover A and a resolution of r, the
total number of cells to cover is

cells = Ar2

and the distance required to traverse over all cell centers, thus
to reach 100% coverage, is then

Topt =
1

r
cells = Ar.

For this calculation, we assumed that it is possible to find a path
along all cell centers without traversing diagonal or revisiting
cells. This assumption might not hold always and thus the
calculated distance reflects more a lower bound.

B. Robot Setup and Hyper-Parameters used for Simulation

The robot used for simulation is a common autonomous lawn
mower, a Viking MI 422P. This robot is a differential drive
robot with odometry encoders and two binary in-/outside area
detectors at the left and right front. The odometry accuracy has
been evaluated performing measurements on a real robot and
determining accurate odometry model parameters, Table II. An
overview over all parameters for the evaluation of our proposed
method is given in Table II.

TABLE II: Robot Setup and Method Parameters

R
ob

ot
Se

tu
p Kin. Model Odom. Model Other

α1 0.011230 a1 0.002361 max. lin. Vel. 0.6ms−1

α2 0.003417 a1 0.000346 max. ang. Vel. 0.3 s−1

α3 0.193604 a1 0.000223 system frequ. 20Hz
α4 0.180664 a1 0.000069

M
et

ho
d

Particle Filter Path Planner & Map
N 500 Resolution 5m−1 E 100
Nthr 0.7N A 10 γ 0.1

B 1 σmax 0.09
D 1 σmin 0.03
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