

UNIVERSITÄT ZU LÜBECK **INSTITUTE FOR ROBOTICS** AND COGNITIVE SYSTEMS

Humanoid Robotics Summer term 2018 April 18, 2018

Nils Rottmann rottmann@rob.uni-luebeck.de

Exercise sheet 0 - Matlab and V-rep

Please prepare the following exercises for the upcoming tutorial.

Task 1: Pendulum

Figure 1 Pendulum

The pendulum, which is shown in Figure 1, shall be analyzed given the following specifications,

 φ

$$L = 1.0 \text{ m}$$

$$m = 0.5 \text{ kg}$$

$$g = 9.81 \text{ m/s}^2$$

$$\varphi(t = 0) = 0.1 \text{ rad}$$

$$\dot{\varphi}(t = 0) = 0 \text{ rad/s}$$
(1)

- (a) Determine the response of the pendulum $\varphi(t)$ for the time interval $t \in [0 \text{ s} \quad 10 \text{ s}]$ assuming $\varphi \ll 1 \quad \forall t$ in order to linearize the differential equation. Plot the answer using Matlab. Label all axes and add a legend.
- (b) Determine the response of the pendulum $\varphi(t)$ for the non-linearized differential equation using Matlab's ODE solver, e.g., with the function ode45. Plot $\varphi(t)$ for $t \in [0 \text{ s} \quad 10 \text{ s}]$.
- (c) Do (a) and (b) again with $\varphi(t=0) = 3$ and compare the results.

Humanoid Robotics Summer term 2018 April 18, 2018

Figure 2 Electric Circuit

Task 2: Electric Circuit

The electric circuit, which is shown in Figure 2, shall be analyzed given the following specifications,

 $V_{0} = 5.0 V$ $I_{0} = 2.0 A$ $R_{1} = 1.0 \Omega$ $R_{2} = 1.0 \Omega$ $R_{3} = 2.0 \Omega$ $R_{4} = 2.0 \Omega$ $R_{5} = 3.0 \Omega$ $R_{6} = 3.0 \Omega$ $R_{7} = 4.0 \Omega$ $R_{8} = 4.0 \Omega$

(2)

(a) Compute all voltages and currents across all resistors using the node analysis method. For this computation, write the equations in matrix from and use Matlab for the calculation.

Task 3: V-REP Introdcution

In the tutorial we go through a V-REP (virtual robot experimentation platform) introduction. Please download and install V-REP educational from http://www.coppeliarobotics.com/downloads.html. You can start to get an overview over V-REP by following the tutorials from http://www.coppeliarobotics.com/helpFiles/en/tutorials.htm. In the introduction, we start with a short overview of V-REP and show how to connect and steer a robot in V-REP via Matlab. V-Rep will be used in the upcoming exercises, so if you have any questions or problems please get in touch in time.

UNIVERSITÄT ZU LÜBECK INSTITUTE FOR ROBOTICS AND COGNITIVE SYSTEMS

Humanoid Robotics Summer term 2018 April 18, 2018

Additional important links:

- http://www.coppeliarobotics.com/helpFiles/en/remoteApiFunctionsMatlab.htm
- https://www.youtube.com/watch?v=piI5wYEXUms
- https://www.youtube.com/watch?v=mal48Vd-DQY

Graded Assignment

There will be no graded assignment this week.