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Exercise sheet 2 - Movement Representations

Please prepare the following exercises for the upcoming tutorial.

Task 1: Dynamical Systems

a) A parameterized trajectory generator can be de�ned as

τ = f(w), (1)

where τ is the desired trajectory and f(w) the function, which de�nes the trajectory based on parameters
w. One approach to de�ne such a parameterized trajectory generator is based on a second order dynamical
system. Such a system could be a simple spring-damper system, as depicted in Figure 1. The second order
di�erential equation, which describes the presented system can be determined as

mẍ+ dẋ+ cx = F. (2)

We can now rearrange this equation such that

m

c
ẍ+

d

c
ẋ =

F

c
− x = g − x. (3)

Hence, the term F
c = g de�nes now a target position of the system. Further,

m

d
ẍ =

c

d
(g − x)− ẋ

ẍ =
d

m

( c
d

(g − x)− ẋ
)
.

(4)

Generalizing our second-order linear model leads to

ẍ = α (β(g − x)− ẋ) . (5)

In order to encode a desired acceleration pro�le (e.g. drive a circle) we have to add a forcing function
fw(t) to the model

ẍ = α (β(g − x)− ẋ) + fw(t). (6)

This forcing function is de�ned by parameters w. This parameters have to be learned. Furthermore, such
a function is generally built on normalized basis functions which are de�ned in the region [0, 1]. Thus, we
have to encode a temporal scaling

ẍ =
1

τ2
α (β(g − x)− ẋτ) + fw(z), (7)

where z is the phase variable de�ned in the region z ∈ [0, 1] and τ is the time resolution. An advantage
of such a model is the well-de�ned behavior and its stability by construction, but on the other hand this
comes with only a limited class of possible movements.

b) A normalized radial basis function (NRBF) is de�ned as

Φi(z) = exp

(
−0.5

z − ci)2

hi

)
. (8)

Using K of these NRBF we can de�ne our forcing function as

fw(z) =

∑K
i=1 Φi(z)wi∑K
j=1 Φj(z)

. (9)
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Figure 1 simple spring-damper system

In matrix notation we get

fw(z) = Ψ>(z)w, Ψi(z) =
Φi(z)∑K
j=1 Φj(z)

. (10)

In order to understand RBF, take a look at Figure 2 where di�erent RBFs are shown. The left �gure shows
six RBFs with ci = 0, 0.2, . . . , 1 and h = 0.1. The right �gure has the same ci but h = 0.01. As seen, the
c de�nes the position of the peak of the RBF and the h de�nes the width of the RBF.
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Figure 2 RBF

c) Assume we have some observations y, a system matrix X and unknown parameters β. Since the obser-
vations will probably not perfect �t our system we have also an error ε. Such a system can be described
as

y = Xβ + ε. (11)

The idea is to determine the parameters β such that the squared error ε>ε becomes minimal. Hence,

ε>ε = (y −Xβ)>(y −Xβ)

= y>y − 2β>X>y + β>X>Xβ
(12)
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Searching for a minimum using the derivative yields to

∂ε>ε

∂β
= −2X>y + 2X>Xβ = 0

→ 2X>Xβ = 2X>y

→ β = (X>X)−1X>y

(13)

To calculate the parameters w we have to measure desired trajectories (e.g. using an OptiTrack System).
With this measurements we can compute our target values for our forcing function f t. Linear Regression
yields

w = (Ψ>Ψ + σ2I)−1Ψ>f t. (14)

Task 2: Probabilistic Systems

a) The Bayes' Theorem is given as

p(A|B) =
p(B|A) · p(A)

p(B)
. (15)

Here p(A|B) is the conditional probability of event A = [a1, a2, . . . , aN ] under the condition that event
B = [b1, b2, . . . , bM ] occured and p(B|A) the conditional probability of event B under the condition that
event A occured. The probabilities p(A) and p(B) are the a-priori probabilities of the events A and B.
Now, let us recapture some probability calculation. The probability of an event ai ∈ A can be written as
the sum of the conditional probabilities

p(ai) =

M∑
j=1

p(ai|bj)p(bj). (16)

The joint probability of an event ai and bj can be written as

p(ai, bj) = p(ai|bj)p(bj) = p(bj |ai)p(ai). (17)

This is also the basis of the Bayes' Theorem. Furthermore, the sum of probabilities have to sum up to 1

N∑
i=1

p(ai) = 1

N∑
i=1

p(ai|bj) = 1

N,M∑
i=1,j=1

p(ai, bj) = 1.

(18)

The Bayes' Theorem allows to make estimates about a probability of an event A, which may not be
observed directly using information about an event B which is related to event A and can be observed.
Moreover, the Bayes' Theorem lays the foundation of position estimation methods, such as Kalman Filters.

b) We have the information, that the AIDS test is 99.9% sensitive and 99.7% speci�c. LetA ∈ [infected, non-infected]
the event, which de�nes if a person is infected or not and B = [+,−] the event, which de�nes the result
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of the AIDS test. From the above descriptions we can then de�ne our conditional probabilities as follows

p(+|infected) = 0.999

p(−|non-infected) = 0.997

p(−|infected) = 1− p(+|infected) = 1− 0.999 = 0.001

p(+|non-infected) = 1− p(−|non-infected) = 1− 0.997 = 0.003

(19)

and the a-priori probabilities as

p(infected) = 0.001

p(non-infected) = 1− p(infected) = 1− 0.001 = 0.999

p(+) = p(+|infected)p(infected) + p(+|non-infected)p(non-infected) = 0.004

(20)

Using the Bayes' Theorem we get

p(infected|+) =
p(+|infected)p(infected)

p(+)
=

0.999 · 0.001

0.004
= 0.2498 ≈ 25%. (21)

Hence, if the test is positive, with a probability of 25% the person has AIDS.

c) In order to understand Gaussian Processes �rst consider a multivariate normal distribution with x′ =
{x′1, . . . , x′k}

f(x′|µ,Σ) =
1√

(2π)k|Σ|
· exp

(
−1

2
(x′ − µ)>Σ−1(x′ − µ)

)
, (22)

which can be written as
x′ ∼ N (µ,Σ). (23)

Figure 3 shows such a normal distribution. By partition the Gaussian random vector x′ into x and y,
where both are jointly Gaussian random vectors, the term (23) becomes[

x
y

]
∼ N

([
µx
µy

]
,

[
A C

C> B

])
. (24)

The marginal distribution of x is
x ∼ N (µx,A) (25)

and the conditional distribution of x given y is

x|y ∼ N (µx +CB−1(y − µy),A−CB−1C>). (26)

Thus, the conditional expectation and the covariance matrix can be written as

E(x|y) = µx +CB−1(y − µy)

var(x|y) = A−CB−1C>.
(27)

Proof. De�ne z = x+My withM = −CB−1. There z and y are uncorrelated and, since they are jointly
normal, they are independent. This can be shown by

cov(z,y) = cov(x,y) + cov(My,y)

= C +Mvar(y)

= C −CB−1B
= 0
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The expectation value of x|y is calculated to proof the �rst part of equation (26), using the fact that
E(z|y) = E(z) = µx +Mµy.

E(x|y) = E(z −My|y)

= E(z|y)− E(My|y)

= E(z)−My

= µx +M(µy − y)

= µx +CB−1(y − µy)

The covariance matrix can be derived from

var(x|y) = var(z −My|y)

= var(z|y)− var(My|y)−Mcov(z,−y)− cov(z,−y)M>

= var(z|y)

= var(z)

= var(x+My)

= var(x) +Mvar(y)M> +Mcov(x,y) + cov(y,x)M>

= A+CB−1BB−1C> − 2CB−1C>

= A+CB−1C> − 2CB−1C>

= A−CB−1C>

Processes without Noise Gaussian Processes are probabilistic models which can be used to estimate,
on the basis of known data, a mean and a variance for an unknown data point. They use the relation
given in equation (27).

From now on a more convenient nomenclature is used. Consider a training set T = {(xi, yi)} = (X,y)
where xi denotes an input vector of dimension D and yi denotes a scalar output. Here, X contains all the
input data and y all the output (target) data of the training set. In order to determine expectation values
for y∗, the values y at the states X = (x1, . . . ,xn) have to be known. Rewriting equation (24) with the
prede�ned training set yields[

y
y∗

]
∼ N

([
µ(X)
µ(X∗)

]
,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
, (28)

where µ(·) are the expectation values given a certain input set andK(·, ·) a covariance matrix determined
through two input sets. The expectation values and the variance of the unknown values y∗ can be derived
with equation (27), as

E(y∗|y, X,X∗) = µ∗ +K>∗K
−1(y − µ)

var(y∗|y, X,X∗) = K∗∗ −K>∗K
−1K∗,

(29)

where µ(X) = µ, µ(X∗) = µ∗, K(X,X) = K, K(X,X∗) = K∗ and K(X∗, X∗) = K∗∗. The mean
function µ(·) can be generated using proper information of the target values yi given the input xi or, if
non such information is available, can be set to zero. The covariance function (kernel function) de�nes
nearness or similarity and the covariance matrix K has to be positive de�nite. Possible types of such
kernels are
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Figure 3 The �gure shows a two dimensional Gaussian Distribution created using Matlab with µ = [0 0] and Σ =
[0.2 0.2; 0.2 1.0].
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� k = k(x− x′) (stationary, invariant to translation in the input space)

� k = k(||x− x′||) (isotropic, invariant to all rigid motions)

� k = k(x · x′) (dot product, invariant to rotation)

A commonly used kernel function is the squared-exponential covariance function kse(τ) = σ2
f · exp(− τ2

2l2 )
with τ = ||x−x′||. The variables σf and l are hyperparameters. This kernel is smooth because the function
is in�nitely di�erentiable. The properties of a kernel around 0 determine the smoothness of the stationary
process. A one dimensional example of a Gaussian Process is shown in �gure 4.

-5 -4 -3 -2 -1 0 1 2 3 4 5

(x
i
,y

i
)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

f(
x

i,y
i)

model uncertainty

mean values

test function

observations

Figure 4 Example for a one dimensional Gaussian Process. The test function is a sinus; Six observation points have
been used to determine an estimation result (mean values) and the model uncertainty (variance).

Noisy Observations Are the given data, thus the training set T = {(xi, yi)} = (X,y), corrupted
with white noise, e.g. yi = z(xi) + εi with εi ∼ N(0, σ2

n), it can be taken into account by adding σ2
nI to

the covariance matrix K. The matrix I describes an identity matrix with convenient size. Equation (28)
becomes [

y
y∗

]
∼ N

([
µ(X)
µ(X∗)

]
,

[
K + σ2

nI K∗
K>∗ K∗∗

])
(30)

with

E(y∗|y, X,X∗) = µ∗ +K>∗ (K + σ2
nI)−1(y − µ)

var(y∗|y, X,X∗) = K∗∗ −K>∗ (K + σ2
nI)−1K∗.

(31)

Parameter Adjustment Assuming zero mean (µ(·) = 0), in equation (31) only the parameters of the
kernel function θ are unknown. Either one can choose these parameters by trial and error or use Bayesian
Optimization to �nd optimal parameters for a certain problem. The aim of Bayesian Optimization is to
�nd parameters θ which maximize equation (22). The logarithm of the likelihood,

log(f(y|X,θ)) = −1

2
y>K−1y − 1

2
log||K|| − n

2
log(2π), (32)
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is used for maximization. In order to use optimization methods, such as gradient descent, the derivation
of the log likelihood (32), de�ned as

∂log(f(y|X,θ))

∂θj
=

1

2
tr

(
(αα> −K−1)

∂K

∂θj

)
, (33)

with α = K−1y and n the number of data points in the training set, is required.

d) The Gaussian Processes can be used to �nd a smooth trajectory by using example data. Therefore we
have to normalize the data in regard to the time such that one loop (one ∞) is scaled to t = [0, 1]. The
normalized data can then be used to estimate the mean and variances for the x, y and z coordinates
accordingly to the above description of the GP regression. The estimated mean data are the desired values
of our trajectory which can be de�ned as

τ = [µx,1:T , µy,1:T , µz,1:T ]>. (34)
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