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Exercise sheet 3 - Control Theory

Please prepare the following exercises for the upcoming tutorial.

Task 1: Closed-Loop PID Control

As an example throughout this exercise we will use a simple spring-damper model depicted in Figure 1 given
the following parameters

m = 1, b = 0.7, k = 1. (1)

Figure 1 Spring-damper model

a) The di�erential equation for the spring-damper system depicted in Figure 1 can be derived from the free
body diagram given in Figure 2. Therefore we simply use Newton's equation of motion F = ma. This
leads to

ÿ(t)m = u(t)− Fk − Fb = u(t)− ky(t)− bẏ(t). (2)

Rewriting this equation yields

ÿ(t) +
b

m
ẏ(t) +

k

m
y(t) =

1

m
u(t). (3)

In the following we will use the following short hand notation y = y(t), u = u(t).

Figure 2 Free body diagram spring-damper system

b) We can rewrite Equation (3) in a system of order 1 using v = ẏ. This leads to[
ẏ
v̇

]
=

[
0 1
− k

m − b
m

] [
y
v

]
+

[
0
1
m

]
u. (4)
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c) The de�nition of a standard linear State-Space Model is given as

ẋ = Ax+Bu

ẏ = Cx+Du,
(5)

whereA is called the system matrix. The �rst equation represents the dynamics of the plant with x ∈ Rn×1

as the state variables and is called the state equation. The second equation de�nes the plant output as a
linear combination of state variables and input. It is called the output equation. The input into the system
is de�ned as u ∈ Rm×1 and the output as y ∈ Rl×1. Rewriting equation 4 into such a State-Space Model
yields [

ẏ
v̇

]
=

[
0 1
− k

m − b
m

] [
y
v

]
+

[
0
1
m

]
u

y =
[
1 0

] [y
v

]
.

(6)

d) The Laplace Transform is de�ned as follows

L[x(t)] =
∫ ∞
0

x(t)e−stdt. (7)

Here s is complex variable which is interpretable as a complex frequency. Moreover, the Laplace Transform
is used to convert a di�erential equation from time domain into frequency domain. The so transformed
model is represented by a transfer function and only algebraic operations are required. For example a
convolution in time domain turns into a multiplication in frequency domain. For transform rules have a
look into the appendix. As an example for the Laplace Transform we will use the following generalized
di�erential equation

dn

dtn
y(t) + an−1

dn−1

dtn−1
y(t) + · · ·+ a1ẏ(t) + a0y(t) = bm

dm

dtm
u(t) + · · ·+ b1u̇(t) + b0u(t). (8)

Using the Laplace Transform leads to

snY (s) + an−1s
n−1Y (s) + · · ·+ a1sY (s) + a0Y (s) = bms

mU(s) + · · ·+ b1sU(s) + b0U(s). (9)

Notice that di�erential equation which represents a real physical system has n ≥ m. We can rewrite
Equation 9 into

Y (s) =
bms

m + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

U(s) (10)

with

G(s) =
bms

m + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

(11)

as the transfer function of the system. We can now transform the di�erential equation from (a). This leads
to

Y (s) =
1
m

s2 + b
ms+

k
m

U(s). (12)

e) The State-Space Model from Equation 5 can also be transformed into frequency domain using the Laplace
Equation which leads to

sX(s) = AX(s) +BU(s)

→ X(s) = (sI −A)−1BU(s)

→ Y (s) = (C(sI −A)−1B +D)U(s).

(13)
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with
G(s) = C(sI −A)−1B +D (14)

as the transfer function of the system. The Laplace Transform of the in (c) generated system is given as

Y (s) =
1
m

s2 + b
ms+

k
m

U(s). (15)

which is the same as calculated above in (d).

f) With the �nal value theorem the value for x(t) as t → ∞ can be calculated, if x(t) converges to a �nite
and constant value. It states

lim
t→∞

x(t) = lim
s→0

sX(s). (16)

The counterpart of the �nal value theorem is the initial value theorem. It can be used to �nd the value of
x(t) as t→ 0+. Thus the limit when approaching zero from the right. It states

x(0+) = lim
s→∞

sX(s). (17)

Using the �nal value theorem to calculate the answer for a unit step response for the system given above
yields

Y (s) =
1

s2 + 0.7s+ 1
U(s) =

1

s2 + 0.7s+ 1

1

s

→ lim
t→∞

y(t) = lim
s→0

s
1

s2 + 0.7s+ 1

1

s
= lim

s→0

1

s2 + 0.7s+ 1
= 1.

(18)

g) Consider a system with a transfer function given as

G(s) =
bms

m + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

. (19)

The values of s at which the denominator of G(s) becomes zero, thus the values at which G(s) becomes
in�nite, are called the poles of the transfer function G(s). The poles for the transfer function calculated
in (d) and (e) are given as

s1,2 = −
b
m

2
±

√√√√( b
m

2

)2

− k

m
. (20)

The location of the poles in the complex plane determine the dynamic behavior of the system, e.g. a
system is stable, if all poles of the system are situated in the left half plane.

h) One of the most important con�gurations for control theory is shown in Figure 3. Lets determine the
closed-loop transfer function. Therefore we start with

Y1(s) = G1(s)R(s)−G1(s)G2(s)Y1(s). (21)

This leads to
(1 +G1(s)G2(s))Y1(s) = G1(s)R(s) (22)

and with Gcl(s) as the closed-loop transfer function to

Gcl(s) =
G1(s)

1 +G1(s)G2(s)
. (23)

In general we can write

closed-loop transfer function =
forward gain

1 + loop gain
. (24)
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Figure 3 Closed Loop Con�guration

i) In Figure 4 a standard feedback control loop is shown. The tracking function can be derived as follows

Y =
GC

1 +GC
R (25)

and the disturbance rejection transfer function as

Y =
G

1 +GC
D. (26)

Figure 4 Closed-Loop Control Loop

l) A general framework for a PID controller can be de�ned in time domain as

c(t) = KP

(
e(t) +

1

TI

∫ t

t0

e(τ)dτ + TD ė(t)

)
. (27)

Transformation into frequency domain yields

C(s) = KP (1 + TDs+
1

TIs
). (28)

Figure 5 shows an example for the response of the spring-damper system introduced above disturbed by
a unit step.

Task 2: LQR

a) Given the equation determined in exercise 1

(mc +mp)ẍ−mplθ̇
2 sin(θ) +mplθ̈ cos(θ) = 0

mplẍ cos(θ) +mpl
2θ̈ +mplg sin(θ) = 0.

(29)
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Figure 5 Example PID-Control

a linearization around θ = π + φ, together with the additional input term u(t), yields

(mc +mp)ẍ+mplφ̈ cos(φ) = u

−mplẍ+mpl
2φ̈+mplgφ = 0.

(30)

There we used the following linearization procedure

cos(θ) = cos(π + φ) ≈ −1
sin(θ) = sin(π + φ) ≈ −φ

θ̇2 = φ̇2 ≈ 0.

(31)

Rewriting the equation above int matrix form leads to[
mc +mp −mpl
−mpl mpl

2

]
︸ ︷︷ ︸

M

[
ẍ

φ̈

]
︸︷︷︸
ÿ

+

[
0 0
0 −mpgl

]
︸ ︷︷ ︸

K

[
x
φ

]
︸︷︷︸
y

=

[
1
0

]
︸︷︷︸
f

u. (32)

The State-Space-System is given as[
ẏ
ÿ

]
=

[
0 I

−M−1K 0

] [
y
ẏ

]
+

[
0

M−1f

]
u.

x =

[
1 0 0 0
0 1 0 0

] [
y
ẏ

]
.

(33)

b) The system is stable if and only if all poles of the transfer function are in the left-half of the complex
plane. The above cart-pole around the point θ = π is unstable, which is also implied by calling this point
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the unstable equilibrium from the cart-pole.

A system is controllable if and only if the controllability matrix C(A,C) has the full rank. The controlla-
bility matrix is given as

C(A,B) =
[
B AB A2B ... An−1B

]
(34)

where n is the number of states of the system. If a system is controllable than it is possible to �nd a
control input that takes the system from any initial state to any �nal state in any given time interval. We
can check with the help of Matlab that our given system is controllable.

c) The idea of a LQR controller is to �nd a feedback control law

u = −Kx (35)

which minimizes the cost given by

J =

∫ t1

t0

(
xTQx+ uTRu

)
dt. (36)

A state-feedback with such an controller is shown in 6.

Figure 6 State-Feedback with LQR

d) For a detailed solution have a look into the Matlab File for this Exercise.
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