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Abstract— This paper proposes a method to realize desired
contact normal forces between humanoids and their compliant
environment. By using contact models, desired contact forces
are converted to desired deformations of compliant surfaces. To
achieve desired forces, deformations are controlled by control-
ling the contact point positions. Parameters of contact models
are assumed to be known or estimated using the approach
described in this paper. The proposed methods for estimating
the contact parameters and controlling the contact normal force
are implemented on a LWR KUKA IV arm. To verify both
methods, experiments are performed with the KUKA arm while
its end-effector is in contact with two different soft objects.

I. INTRODUCTION

Dealing with soft or compliant environment is still a
challenging problem in robotics. This is more challenging for
humanoid robots if they want to rely on compliant contacts
for the balancing task. In most of the previous studies on
whole-body motion control of humanoid robots, contacts
with the environment are assumed to be rigid [13], [15]–
[18], [20]. This assumption results in zero acceleration of
the contact points as long as the contact force constraints
(i.e. unilaterality of the normal force and the friction cone)
are satisfied. On the other hand, compliant (soft) contact
assumption [4], [10], [21] implies that contact surfaces
deform and consequently contact forces are functions of
surface deformations. These functions, which are called
contact models, express the dynamics of contact surfaces.

To interact with a compliant surface, robots need (i) reli-
able estimations of the dynamics of the contact, and also (ii)
a suitable strategy to deal with and exploit those dynamics.
Focusing on the second one in our previous work [3], we
presented a balance control strategy for a humanoid robot
standing on a compliant surface. Our proposed controller was
designed to control the movements of contact points based on
the assumption that an exact model of the contact is available
for the controller beforehand. Since we do not have access to
the exact model of the contact surface in practice, providing
a reliable and accurate estimation of the model is vital for
the controller to succeed.

In order to provide an accurate contact model, reliable
estimations of both forces and movements at the contact
point (surface deformation) are required. Given these two,
this paper focuses on estimating the contact model and
also exploiting the estimated model in order to control the
compliant contact force. For both estimation and control
parts, the components of compliant contact forces which are
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Fig. 1. KUKA LWR IV arms with two soft surfaces used in our
experiments. The objects providing soft surfaces are sponge and dice.

normal to the contact surface are considered in this paper.
We assume that, by controlling the normal components, we
can always satisfy the friction cone constraints and therefore
there will be no slipping at the contact surfaces.

A compliant contact model for the normal force is in fact a
relationship between deformation at the contact surface in the
direction of the normal vector, the rate of that deformation
and the normal contact force. This relationship can be defined
as a linear or a non-linear function. The linear model, which
is known as Kelvin-Voigt in the literature [6], is defined as

fz =

{
kz + λż z ≥ 0

0 z < 0
, (1)

where fz is the normal contact force, z is the deformation
at the contact point and k and λ are stiffness and damp-
ing coefficients, respectively. These two coefficients are the
parameters of the contact model and are dependent on the
mechanical properties of contact surfaces.

For the non-linear case, a few different models have been
suggested in the literature which have the general form of

fz =

{
kza + λzbżc z ≥ 0

0 z < 0
, (2)

where a, b and c are constant parameters. Note that setting
a = c = 1 and b = 0 in (2) yields the linear model. Most
of the non-linear models are reviewed in [7]. Among them
the Hunt-Crossley model [11] is the most popular one in the
robotics community due to its higher consistency with the
physics of the contact [5], [8]. In this model, the constant
parameters are set to a = b = 3

2 and c = 1. Different learning



methods have been suggested in the literature in order to
estimate the parameters of this model [9], [19]. Recently, it
is shown in [1] and [2] that setting b = 1

2 in the model leads
to more accurate results. This model is referred as Azad-
Featherstone non-linear model in this paper.

The three above mentioned contact models: (i) Kelvin-
Voigt, (ii) Hunt-Crossley and (iii) Azad-Featherstone, are
used in our experiments to estimate the dynamics of two
soft surfaces. These surfaces are provided by sponge and dice
objects shown in Fig. 1. The best model for each surface,
in terms of fitting the actual data, is selected to control
the contact normal force between the robot’s end-effector
and the corresponding object. This is done by converting
desired forces to desired deformations via contact models
and realizing those deformations by the controller.

In Section II of this paper, we explain how controlling
the normal component of the compliant contact force can
be included in a whole-body motion control frame work of
a humanoid. Then, in section III, we show by experimental
results how we can estimate compliant contact models be-
tween a LWR KUKA arm’s end-effector and two different
soft surfaces and control compliant contact forces in practice.

II. CONTROL STRATEGY

Consider a floating base robot which has multiple contacts
with its environment. These contacts are combinations of
rigid and compliant ones. Let q ∈ Rn denote the vector
of generalized coordinates of the robot which includes m
actuated joints and 6 virtual degrees of freedom (DoF) due
to the floating base (n = m+6). Therefore, motion equations
for this robot will be

Mq̈ + h = Bτ + JT
s fs + JT

r fr , (3)

where M ∈ Rn×n is the joint-space inertia matrix, h ∈ Rn

is the vector of Coriolis, centrifugal and gravity forces, B ∈
Rn×m is the selection matrix for actuated joints, τ ∈ Rm is
the vector of joint torques, Js ∈ R6ls×n and Jr ∈ R6lr×n

are the Jacobians, and fs ∈ R6ls and fr ∈ R6lr are contact
force vectors of the soft and rigid surfaces, respectively. Note
that, at each contact point, the contact force is a 6×1 vector,
and ls and lr are the numbers of points in contact with soft
and rigid surfaces, respectively.

Since fs depends on the dynamics of the compliant sur-
faces, it is a known variable in the current time instant
and is assumed to be measured or reliably estimated via
force/torque sensors. Given that

Jrq̇ = 0 =⇒ J̇rq̇ + Jrq̈ = 0 , (4)

due to the rigid contacts, both unknown variables q̈ and fr
can be written separately as functions of τ via (3). Finding
proper values for τ (usually via optimization techniques
subject to the contact force constraints) to realize the desired
values of q̈ and fr, is the problem of whole-body motion
control that is well-studied in the literature [16]. The desired
values of q̈ and fr are defined in order to maintain balance
and execute manipulation tasks.

Controlling compliant contact forces for humanoid robots
can be accomplished by adding a new task into the whole-
body motion control framework. As we previously proposed
in [3], this task could be controlling the movements of the
contact points. Hence, a relationship between contact points
accelerations and the control input (τ ) is required. For soft
contacts we have

Jsq̇ = ṗ =⇒ J̇sq̇ + Jsq̈ = p̈ , (5)

where p ∈ R6ls is the position vector of the compliant
contact points expressed in the inertial frame. Note that p
includes both linear (denoted by r ∈ R3ls in this paper) and
angular parts of the position vector. By replacing q̈ from (5)
into (3) and solving for p̈, we will have

p̈ = αpτ + βp , (6)

where

αp = JsM
−1B− JsM

−1JT
r (JrM

−1JT
r )−1(JrM

−1B)

βp = JsM
−1JT

s fs − JsM
−1h + J̇sq̇

− JsM
−1JT

r (JrM
−1JT

r )−1(JrM
−1JT

s fs

− JrM
−1h + J̇rq̇)

Thus, by using (6), we can define a task in order to control
the motion of the contact points. This task can be achieved
together with balance and manipulation tasks in a whole-
body motion control framework.

As mentioned earlier, we are focusing on controlling the
components of compliant contact forces which are normal to
the contact surfaces. The other components are the friction
forces (2 × 1 vectors) and the moments (3 × 1 vectors).
The friction forces are assumed to be maintained inside
the friction cone by controlling the normal component.
Controlling the moments of a contact can be expressed as
controlling the location of its center of pressure (CoP) which
could be a possible extension of the current work.

To control the normal compliant contact force, we control
linear accelerations of the contact points. Therefore,

r̈ = αlτ + βl , (7)

where αl and βl are obtained by selecting the relevant (to
linear position) rows of αp and βp, respectively. This can
also be done by replacing Js by Jsl in αp and βp, where Jsl

is the matrix of the selected rows (corresponding to linear
positions) of Js, implying that, ṙ = Jsl q̇.

Given the normal vectors of the compliant contact surfaces
which are denoted by ni (where i = 1, 2, . . . , ls), we can
calculate the normal force component and also the position
and velocity in the normal direction of each surface. Let
ui and ri denote the linear parts of the force and position
vectors of the ith compliant contact, respectively. They can
be obtained directly from r and fs. Hence,

fi = uT
i ni , (8)

where fi is the contact normal force at the ith compliant
contact. Position and velocity of the ith contact point in



its normal direction are rzi = rTi ni and ṙzi = ṙTi ni,
respectively. Note that the surface deformation and the rate
of the deformation can be computed via

zi = rzi − dT
i ni = (ri − di)

Tni , (9)

and
żi = ṙzi = ṙTi ni , (10)

for the ith contact point, where di is the position of the
contact point at the beginning of the contact. This position
is assumed to be known either from the geometry of the
contact surface or the estimation of the starting instant of
the contact by using force/torque or tactile sensors.

By using a contact model, we convert the desired normal
compliant force to the desired deformation of the contact
surface in the normal direction as f cmd

i = F (zcmd
i , żcmd

i ),
where F could be either (1) or (2). Then, we use a feedback
controller to control the desired acceleration of the surface
deformation (and consequently the contact point position) as

z̈desi = z̈cmd
i + kz(zcmd

i − zi) + kż(żcmd
i − żi) , (11)

where kz and kż are the controller gains. Note that not
all arbitrary force profiles are physically achievable, since
the contact forces follow the dynamics of the contact sur-
faces estimated by a first-order differential equation. We
can extract r̈des from z̈des by differentiating (10) and then
multiplying both sides by ni (i. e. z̈ini = r̈Ti ). Given that
r = [rT1 rT2 · · · rTls ]T , we have

r̈des = [z̈des1 n1, z̈
des
2 n2, . . . , z̈

des
ls nls ]T . (12)

By plugging (12) into (7), we can compute the desired
joint torques which realize the desired accelerations of the
contact points and therefore the desired contact forces at the
compliant contacts.

III. EXPERIMENTS

In order to verify our strategy for controlling compliant
contact forces in practice, we carry out a series of exper-
iments with our KUKA LWR IV arm in contact with two
different soft surfaces, including a sponge and a dice. These
two objects are shown in Fig. 1 together with the robot. For
each surface, we performed two types of experiments, which
are referred as (i) identification and (ii) control experiments.
The purpose of the identification, which is presented in
subsection III-B, was to choose a proper model (either linear
or non-linear) for each contact surface and estimate the
model parameters. In the control experiments in subsection
III-C, we aimed at controlling the normal compliant contact
force given the estimated model from the identification
experiments.

To provide reliable estimation of the contact forces, a
6-axis force-torque (F/T) sensor (Gamma, ATI, USA) is
mounted on the end-effector of our KUKA LWR IV arm. A
3D plastic printed box (i.e. the robot’s hand) is attached to the
F/T sensor. The hand provides a flat surface to make contact
with the soft objects. In the beginning of each experiment,
the hand is placed about 4cm above the objects with its sole
parallel to the horizontal plane.

A. KUKA Arm’s Motion Control with A Compliant Contact

Since there is no under-actuation or rigid contact, modi-
fying the motion equations in (3) for our 7 DoF KUKA arm
yields

Mq̈ + h = τ + JT
s fs . (13)

In this experiment, the only contact is the one at the end-
effector. Thus, (6) becomes

p̈ = (JsM
−1)τ + J̇sq̇− JsM

−1h + JsM
−1JT

s fs . (14)

As explained in Section II, to control the normal component
of the contact force, we control the linear accelerations of
the end-effector. The desired linear accelerations (r̈des) are
computed from (12). In order to keep the CoP as close as
possible to the center of the hand and provide a uniform
contact, we start our experiments with the hand parallel to the
surface and keep its orientation during the experiment. This
is done by setting the desired angular positions to the initial
ones. Therefore, by inverting (14), we define the control input
as

τ = (JsM
−1)#(p̈des − J̇sq̇ + JsM

−1h

− JsM
−1JT

s fs) + Nτ 0 , (15)

where # denotes the generalized pseudo-inverse, N = I −
(JsM

−1)#(JsM
−1) is the null space projection matrix and

τ 0 is the joint-space impedance control torque which tries to
keep the initial configuration. Vector p̈des is a 6× 1 vector
which includes the desired linear positions (r̈des) and the
desired angular ones.

B. Identification Experiments

In Section I, we discussed linear and non-linear compliant
contact normal force models; however, it is not clear which
model is optimal for the surfaces used in our experiments.
In the identification experiments, we estimate the contact
parameters of the surface with three different models in-
cluding (i) Kelvin-Voigt, (ii) Hunt-Crossley, and (iii) Azad-
Featherstone models, and evaluate how well these models fit
the actual data. As mentioned earlier, the reason of choosing
two non-linear models is that the popular Hunt-Crossley
model is recently shown to be outperformed by the Azad-
Featherstone model in fitting the empirical data of the contact
between spheres and plates with different materials [2].

In the identification experiments, we command the robot’s
hand to push each soft surface with a predefined reference
trajectory in the vertical direction. Examples of reference
trajectories along with the actual movements of the end-
effector in the vertical direction for both sponge and dice
are shown in Fig. 2. Each trajectory consists of two ramps
at the beginning and the end, to make and break contacts, and
a sine function with the frequency of 2π Hz in the middle.
Red lines in the plots show the contact surfaces just before
making the contact, which is estimated by using measured
normal contact force (at the instant that the normal force
goes above 1N). The maximum deformation for the dice is
set to 7cm, whereas it is set to 5cm for the sponge to avoid
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Fig. 2. Examples of reference trajectories for the end-effector position
(dashed lines) used in the identification experiments for the sponge (top)
and the dice (bottom). Actual movements of the end-effector are also shown
by solid lines.

generating high forces and hitting saturation limits of the
joint torques.

This experiment is performed 10 times for each surface.
During the experiments, we recorded the position and veloc-
ity of the end-effector (r and ṙ) and the contact forces (fs) at
every 10ms. Then, by using (8), (9) and (10), we computed
the contact normal force (f ), the surface deformation (z)
and its rate (ż) and put them in column vectors σ, ζ and ν,
respectively. So,

σ =


ft1
ft2
...
ftn

 , ζ =


zt1
zt2
...
ztn

 , ν =


żt1
żt2
...
żtn

 ,
where t1, t2, . . . , tn are the time instants. Using the collected
data, we estimated the parameters k and λ for the three con-
tact models as follows. For the Kelvin-Voigt linear model, the
relationship between the normal forces and the deformations
can be described as σ = A[k λ]T , where A = [ζ ν]. By
employing linear least-squared regression [14], the unique
solution for k and λ will be

[k̂ λ̂]T = (ATA)−1ATσ , (16)

where k̂ and λ̂ are the estimated parameters of the contact
models. To estimate the parameters of the non-linear models,
we redefine A as [ζ

3
2 ζ

3
2ν] for the Hunt-Crossley and

[ζ
3
2 ζ

1
2ν] for the Azad-Featherstone model. After estimating

the parameters, the estimated normal force (σ̂) can be
calculated as

σ̂ = A[k̂ λ̂]T . (17)

To select the best model for each surface, we compare
the three contact models in fitting the actual data. Our
comparison criterion is based on the fitness value, which is

TABLE I
FITNESS VALUES OF THREE DIFFERENT CONTACT MODELS FOR EACH

SURFACE CALCULATED VIA (18)

linear K/V non-linear H/C non-linear A/F
sponge 0.965± 0.001 0.981± 0.001 0.986± 0.001

dice 0.976± 0.001 0.845± 0.002 0.853± 0.002

TABLE II
ABSOLUTE VALUES OF THE ERRORS BETWEEN THE COMMAND AND

ACTUAL FORCES FOR THE SPONGE SURFACE. FORCES ARE IN NEWTONS.

ratios 0.8 0.4 0.7 0.3 0.5 0.6
commands 224 112 196 84 140 168
cycle #1 30.49 14.33 15.25 13.56 17.46 15.93
cycle #2 15.45 4.92 9.47 7.43 12.45 13.16
cycle #3 16.02 5.38 11.69 6.33 11.56 13.70
cycle #4 18.01 5.10 12.59 5.47 10.72 13.69

ratios 0.75 0.35 0.65 0.25 0.45 0.55
commands 210 98 182 70 126 154
cycle #5 17.23 5.30 14.06 6.23 12.80 13.09

calculated via

fitness = 1−
(∑

(σ − σ̂)2
)
/
(∑

(σ − σ̄)2
)
, (18)

where σ̄ is the average value of σ. For an unbiased as-
sessment, we employed a 5-fold cross validation technique
[12]. The average and standard deviation of fitness values
for each surface are shown in Table I. As can be seen in
this table, although the two non-linear models have almost
the same fitness for each surface, the Azad-Featherstone
model is better than the Hunt-Crossley one in both cases.
These two are better than the linear model for the sponge
surface whereas the linear model provides a better fit for
the dice surface. Therefore, to control the contact forces in
the next experiments (subsection III-C), we use the Azad-
Featherstone model for the sponge and the linear model for
the dice surface.

C. Control Experiments
To verify the proposed method in Section II for controlling

the normal contact force, we study the performance of the
controller in reaching various command forces. A set of
30 command forces are defined for each surface. Each set
consists of 12 different values which 6 of them are repeated
4 times and then followed by the other 6 values; 30 in total.
These 12 command forces are computed for each surface
based on the maximum recorded normal force during the
identification experiments. The maximum forces were 280N
and 130N for the sponge and dice surfaces, respectively. The
values of the command forces and also the ratio between
each command force and the maximum force are mentioned
in Tables II and III for the sponge and dice, respectively.

By using the corresponding contact model for each sur-
face, we convert force commands to deformation commands
which are actually position commands for the end-effector
in the vertical direction (by using (9)). This conversion can
be done by using (2) as

zcmd = (
f cmd

k̂
)

1
a , (19)



TABLE III
ABSOLUTE VALUES OF THE ERRORS BETWEEN THE COMMAND AND

ACTUAL FORCES FOR THE DICE SURFACE. FORCES ARE IN NEWTONS.

ratios 0.8 0.4 0.7 0.3 0.5 0.6
commands 104 52 91 39 65 78
cycle #1 15.81 8.02 8.73 9.62 9.67 7.42
cycle #2 2.26 1.51 2.89 5.61 5.39 3.57
cycle #3 7.13 0.95 3.49 4.04 4.72 3.85
cycle #4 8.30 0.10 3.94 3.38 4.51 3.43

ratios 0.75 0.35 0.65 0.25 0.45 0.55
commands 97.5 45.5 84.5 32.5 58.5 71.5
cycle #5 6.65 1.58 4.56 5.30 5.97 4.59

where a = 1 for the dice (linear model) and a = 3
2 for

the sponge (non-linear model) surfaces. Note that, we expect
zero velocity of the end-effector at the time of reaching force
commands (i.e. setting ż = 0 in (2)). To command the end-
effector of the robot, to move from one position command to
the next one, we define a time dependent reference trajectory
for its position. In order to make sure that the results are not
dependent on a certain trajectory type, we do not use a sine
function as we did for the identification experiments. Instead,
we use a fifth-order polynomial function as a reference
trajectory for the end-effector’s position. The time length of
the trajectory is set to 2 seconds. Therefore, to achieve all
force commands, the whole reference trajectory of the end-
effector is formed of 30 fifth-order polynomial trajectories
which connect the position commands to each other (60s
in total). The reference velocity and acceleration (żcmd and
z̈cmd to be used in (11)) are calculated by differentiating the
fifth-order reference trajectory of the position.

Figs. 3 and 4 show the actual force profiles together
with the predicted ones and also the command forces for
the sponge and dice surfaces, respectively. The predicted
force profiles are calculated by feeding the command values
of the deformations and their rates (zcmd and żcmd) into
corresponding contact models. The command forces are
shown by green circles in the plots. Each graph is divided
by red dashed lines into 5 regions representing 5 cycles of
commands: the first 6 commands are repeated 4 times and
then followed by 6 different commands in the fifth cycle.
The duration of each cycle is 12s since it is formed of 6
points which are placed 2 seconds apart. The values of the
command forces and also absolute errors of reaching those
values are mentioned in Tables II and III for both surfaces.

In the first cycle of commands, to convert the force
commands to deformation commands via (19), we used
k̂ that was already estimated for each surface during the
identification experiments. Also, to calculate the predicted
force profiles in Figs. 3 and 4 for the first cycle, k̂ and λ̂ are
those obtained from identification experiments. According to
Tables II and III, the errors are between %7 to %16 for the
sponge and %7 to %25 for the dice in the first cycle.

From the end of the first cycle till the end of the experi-
ment for each surface, we update the contact parameters in
order to decrease the errors between actual and command
forces. To update the parameters via (16), we use the

recorded data during the last 12s (i.e. 1200 points since the
sample rate is 10ms). This strategy allows us to improve
the estimation of the model parameters without substantially
affecting the computation time.

The effects of this update can be seen by comparing the
errors of the first cycle with the ones for the second, third
and fourth cycles in Tables II and III. According to these
tables, the maximum errors in the first four cycles are %16,
%9, %8 and %8 for the sponge and %25, %14, %10 and
%9 for the dice, respectively. Regarding these numbers, it
is obvious that updating the contact parameters significantly
improved the accuracy of reaching the command forces. This
improvement is also visible in Figs. 3 and 4. It can be seen
in these figures that the predicted force profile starts to fit
the actual one better just after the end of the first cycle.

In the last cycle, we show the performance of our online
updating strategy in realizing new force commands. As
already mentioned, the force commands in the last cycle are
different from the previous ones. These forces and also their
corresponding errors are mentioned in the lower parts of Ta-
bles II and III. The maximum errors of the last cycle are %10
and %16 for the sponge and dice, respectively. Comparing
these numbers with the maximum errors of the other cycles
which are mentioned above, suggests that although the errors
are in creased in the last cycle they are still much lower
than the first cycle. It implies that introducing new command
forces does not affect the performance of the controller while
the contact parameters are updated online.

IV. CONCLUSION AND FUTURE WORK

In this paper, we converted the problem of controlling
compliant contact normal forces to controlling surface defor-
mations by using contact models. We explained how this can
be included inside a whole-body motion control framework
for a humanoid robot. To study the performance of the
proposed method in practice, a series of experiments, includ-
ing identification and control experiments, were performed
with a LWR KUKA manipulator. During the identification
experiments, we estimated the contact models between the
robot’s end-effector and two soft surfaces using least-squared
linear regression algorithm. In control experiments, by using
the estimated models, we controlled the robot’s motion
in order to achieve various desired contact normal forces
for each surface. We also studied the effects of updating
model parameters during control experiments using an on-
line estimation method. The experiment results showed that
desired forces can be achieved with some errors while using
the estimated model from identification experiments. These
errors are decreased substantially by online adaptation of the
contact model parameters during control experiments. For the
future work, we are planning to extend the current work to
control the CoP of the contact as well.
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Fig. 3. Actual, predicted and command normal contact forces for the sponge surface.
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Fig. 4. Actual, predicted and command normal contact forces for the dice surface.
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