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Abstract— Tactile sensing provides significant information
about the state of the environment for performing manipulation
tasks. Depending on the physical properties of the object, ma-
nipulation tasks can exhibit large variation in their movements.
For a grasping task, the movement of the arm and of the end
effector varies depending on different points of contact on the
object, especially if the object is non-homogeneous in hardness
and/or has an uneven geometry.

In this paper, we propose Tactile Probabilistic Movement
Primitives (TacProMPs), to learn a highly non-linear relation-
ship between the desired tactile responses and the full-arm
movement. We solely condition on the tactile responses to infer
the complex manipulation skills. We formulate a joint trajectory
of full-arm joints with tactile data, leverage the model to condi-
tion on the desired tactile response from the non-homogeneous
object and infer the full-arm (7-dof panda arm and 19-dof
gripper hand) motion. We use a Gaussian Mixture Model of
primitives to address the multimodality in demonstrations. We
also show that the measurement noise adjustment must be taken
into account due to multiple systems working in collaboration.
We validate and show the robustness of the approach through
two experiments. First, we consider an object with non-uniform
hardness. Grasping different parts of an object require different
motion, and results into different tactile responses. Second, we
grasp multiple objects at different locations. Our result shows
that TacProMPs can successfully model complex multimodal
skills and generalise to new situations.

I. INTRODUCTION AND RELATED WORK

Imagine finding an object in a box without seeing anything
inside. The only stimulus that you can rely on is the sense
of touch. Tactile sensation is an essential tool for robots
to interact with the environment. Based on the contact
configuration, touch can provide a wide range of information
regarding the physical properties and dynamics of the object
through a set of diverse signals. This vital information can
be exploited for performing various tasks including grasping,
dexterous manipulation etc.

Humans can identify physical properties (hardness, rough-
ness, texture) of objects solely by touching [1] and also
show a strong reliance on tactile responses for grasping
and manipulation tasks. Monzée et al. [2] showed that the
relationship between the grip and load force was disrupted
if the tactile sensation in humans was eliminated. Removing
the tactile feedback through anesthesia takes a heavy toll
on motor skills and even the simplest tasks like grasping
becomes clumsy and slow [3]. In a recent study, Chinn et
al. [4] investigated the strategies in infants to reach the tactile
targets on their face. Although it seems easy and obvious
for humans to reach any location on the body, it requires a
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Fig. 1: Illustration of different grasps/touches that the robot
performs on different locations on the object. The robot must
predict the action that needs to be executed solely based on
the desired tactile response and reach that tactile response.

coordinated set of motor skills. We investigate on a similar
aspect where such motions can be described through tactile
targets.

In the recent years, researchers have found various ways
to extract the tactile information and utilise it for robotic
tasks [5, 6]. Torres-Jara et al. [7] developed heuristics to
reach and grasp the object but had no notion of behaviour
inference strategy. Qiang li et al. [8] proposed a framework
to realise tactile tracking through feature extraction of tactile
images. However, this method requires a selection of task-
specific matrix and does not generalise to complex grippers.
Similarly, control actions for manipulation are learnt via
Reinforcement Learning [9] and Gaussian Processes [10] to
reach the desired future sensations. Wang et al. [11] explores
tactile space to infer object dynamics and obtain optimal
control parameters for desired swing-up angle. Calandra et
al. [12] predicted joint torques from raw tactile data and
force/torque sensors embedded in the robot joints through
Gaussian Processes. Hogan et al. [13] addressed the problem
of tactile tracking by decomposing the manipulation plans
into sequences of manipulation primitives with planners.
However, the motion described in the above methods is
usually simple and the information about the manipulator
trajectories and gripper configuration is often neglected.

In order to manipulate in an unstructured environment,
the robot needs to execute simple motions and learn skills.
Learning from Demonstration is a way to learn motion
skills via human demonstrations [14]. Probabilistic Move-
ment Primitives (ProMPs) [15] is one such framework that
represents the trajectories in a probabilistic manner. Maeda
et al. proposed Interaction ProMPs (IProMPs) [16], an ex-
tension to ProMPs to model human-robot interaction tasks. It



deals with the scenario where the controlled agent’s motion
must be adapted based on a set of partial observations of
the target agent. Marco et al. [17] improved IProMPs by
learning a mixture of IProMPs to learn the multimodality
in the unlabelled data. We leverage these ideas to learn
the relationship between full-arm trajectories and tactile
responses in a probabilistic manner.

Although there exists much work on tactile manipula-
tion [18], there is still room for research that learns complex
manipulation strategies dependent on target tactile responses.
Similar to real-world cases, we focus on scenarios where
large part of the trajectories contains no tactile information
as the object is not in contact with the hand. Given these
challenges, the keys question arises: Can we predict the robot
arm and gripper manipulation, based solely on the desired
future tactile response?

Concretely, our contributions are as follows. We present
an approach that capture the variance in full-arm movement
and exploit it to reach desired targets when conditioned only
on the tactile responses. We formulate the whole trajectory
with full-arm states and tactile states, which is necessary for
constructing a ProMP model. We leverage the idea of inter-
action primitive so that full-arm trajectories can be produced
through conditioning on the desired tactile sensations. We
show that a single TacProMP is incapable of generalising to
multimodal demonstrations and is outperformed by a mixture
of TacProMPs that captures multimodality of the data and
provides precise results.

To test the model, we designed two experimental setups.
In the first setup, we have an object of non-homogeneous
hardness. As shown in the Figure 1, grasping the same
object at different parts require widely varying motion. In
the second setup, we consider multiple objects at different
locations. Grasping every object require distinct manipula-
tion and grasping patterns. During testing (in both the cases),
a new tactile response is provided and the full-arm motion
is generalised to that response.

The experiments prove that the model is robust enough to
deal with the high-dimensional data and non-linear relation-
ships, and at the same time, flexible enough to generalise to
new tactile information. We believe the idea of tactile goal-
directed manipulation is a significant aspect in robotics, and
the simplicity, flexibility and robustness of our approach will
bring us a step closer to that goal.

In the next section, we discuss mathematics and frame-
work of the method. In Section III, we introduce our exper-
imental setup and implementations of the method in more
detail. Finally, we discuss the work with possible future
extensions and present our conclusions.

II. TACTILE PROBABILISTIC MOVEMENT PRIMITIVES

A. Problem Statement

Lets assume S⃗(t) ∈ Rn and Q⃗(t) ∈ Rm denote the
tactile sensor observations and the full-arm trajectory data at
time instance t respectively. The full-arm motion comprises
of robot arm and hand/gripper trajectory data i.e. Q⃗(t) =
{Q⃗h(t), Q⃗a(t)}; Q⃗h(t) ∈ Rm1 , Q⃗a(t) ∈ Rm2 ,m1 + m2 =

m. For a grasping task, the point of contact of the hand
with the object typically defines the movement of the arm.
The information about the point of contact can be obtained
via tactile observations. This assumption is validated in this
paper.

The aim is to find the non-linear relationship between this
tactile response and the full-arm trajectory:

S⃗(t) = f(Q⃗a(t), Q⃗h(t)). (1)

We formulate this problem with ProMPs approach by con-
sidering the tactile response as a trajectory which is jointly
distributed with the full-arm trajectory.

B. Probabilistic Movement Primitives

Probabilistic Movement Primitives (ProMPs) [15] was
proposed for representing movements based on distribution
of the demonstrated trajectories and to compute feedback
control laws. It also allows movement modulation, primi-
tive combination, blending and robot control by exploiting
variance in trajectories. A single demonstration trajectory is
defined by τ = {yt}Tt=1, where yt is a d-dimensional state
vector that represents joint angles or cartesian position at
time step t. The phase variables z ∈ [0, 1] decouple the
trajectories from time instances. For simplicity, we write
z(t) = t. The state vector at every time step can be
represented through a linear combination of basis functions,

yt = Ψtw + ϵ, (2)

where Ψt ∈ Rd×dK is a block diagonal matrix that contains
K Gaussian basis functions ϕt for each degree of freedom,
w ∈ RdK is the weight vector and ϵ ∼ N (0,Σy) is the
Gaussian noise with zero mean and Σy uncertainty.

Each trajectory can be represented through a weight vector
w, characterised by parameters θ. The distribution of the
weight vectors over multiple trajectories is assumed to be
Gaussian i.e. p(w; θ) = N (w|µw,Σw). The distribution of
the state vector can be defined as:

p(yt, θ) =

∫
N (yt|Ψtw,Σy) N (w|µw,Σw)dw,

= N (yt|Ψtµw,ΨtΣwΨt
T +Σy).

(3)

The weight vector wi for i-th trajectory is estimated by
Regularised Least Squares, wi = (ΨTΨ + λI)−1ΨTYi,
where Yi consists of all the points from i-th trajectory.

C. Tactile ProMPs

We leverage Interaction ProMPs to adapt the motion of the
full arm according to the tactile data. From the definitions
stated in Section II-A, let’s suppose that we observed a
sequence of observations that consists of tactile information
s(t) ∈ S⃗(t), arm trajectory qa(t) ∈ Q⃗a(t) and hand
trajectory qh(t) ∈ Q⃗h(t). For simplicity, we drop the vector
notation. Note that instead of considering only the final
tactile state, we consider all the tactile states, beginning from
the time the motion is captured. This will result in large part
of the tactile states S to be zero.



In order to capture the correlation between the tactile
states and the full-arm movements, we assume that they
have a joint distribution. The trajectory at time step t can
be represented by yt = [s(t)T , qh(t)

T , qa(t)
T ]T . For every

i-th demonstration, the weight vector can be written as

w̄i = {[wT
1 , ..., w

T
n ]

s, [wT
1 , ..., w

T
m]q}, (4)

We then calculate the weight vectors w̄ ∈ R(m+n)K(K basis
functions) for every trajectory as defined in Section II-B.
Afterwards, the mean vector µw̄ ∈ R(m+n)K and covariance
matrix Σw̄ ∈ R(m+n)K×(m+n)K are computed.

During inference, the observation from the desired tactile
states are designated and used to infer the movement of the
full-arm. Consequently, the observation Ht (at time instance
t), will consist of two partitions, for observed and inferred
data

Ht =



Ψ
(s,1)
t 0

. . .

0 Ψ
(s,n)
t

0

0
0(q,1) 0

. . .
0 0(q,m)


(5)

The unobserved data to be inferred is denoted through
zeros. Given the tactile state observations, the corresponding
trajectories can be obtained by integrating out the weight
vector

p(y1:T |y∗t:t′) =
∫

p(y1:T |w̄)p(w̄|y∗t:t′)dw̄, (6)

where y∗t:t′ is the desired state vector, in our case, tactile
states. The posterior distribution over weights can be com-
puted both, for offline and online cases, in closed-form, i.e.,

µnew
w̄ = µw̄ +L

(
y∗t:t′ −Ht:t′µw̄

)
,

Σnew
w̄ = Σw̄ −L

(
Ht:t′Σw̄

)
,

L = Σw̄Ht:t′
(
Σ∗

y +Ht:t′Σw̄H
T
t:t′

)−1

,

(7)

where Σ∗
y is the measurement noise and Ht:t′ is a concate-

nated Ht matrix from eq. (5) at their corresponding time
instances. For implementing it online, the conditioning can
be done in a recursive fashion. We condition one observation
every time, compute the parameters θnew = {µnew

w̄ ,Σnew
w̄ }

and set them as prior for the new observations.
For measurement noise, we usually use a constant across

all the dimensions as they usually originate from the same
source [15]. In our case, these sources have largely varying
noise. The uncertainty of the estimate in tactile response
states is much higher as compared to the estimate in the
robot states. We compensate for the different noise levels

Σ∗
y =

Σ∗
s 0 0
0 Σ∗

a 0
0 0 Σ∗

h

 ,

where Σ∗
s,Σ

∗
a,Σ

∗
h are diagonal matrices indicating uncer-

tainty in tactile response, robot arm and robot hand respec-
tively.

D. Mixture of Tactile ProMPs

For a multimodal task, a single weight vector is not enough
to capture the distribution of the demonstrations. For several
interaction patterns, it is essential to learn multiple weight
vectors s.t. each weight vector corresponds to a different in-
teraction pattern. In order to generalise to multiple interaction
patterns, we learn a mixture of primitives from unlabelled
data. This is achieved by learning Gaussian Mixture Model
(GMM) in the weight space using Expectation-Maximization
algorithm (EM) [19].

1) Components in the Mixture: We maintain a mixture
of D Gaussians in the GMM, where each component d
corresponds to a probability distribution p(w̄;αd, θd), where
αd = p(d) is the prior probability and θd = {µd,Σd} are
the parameters (mean and covariance matrix) of the d-th
mixture. The EM algorithm iterates over Expectation step
and Maximization step until convergence over the probability
distribution of the weights.

Expectation Step: Probability of cluster d given weight
vector (responsibility)

rid = p(d|w̄i) =
αd N (w̄i|µd,Σd)∑K
j=1 αj N (w̄i|µj ,Σj)

. (8)

Maximization Step: Update the parameters αd, µd and Σd

nd =
∑n

j=1 rjd, αd = nd/n,

µd = 1
nd

(∑n
j=1 rjdw̄j

)
,

Σd = 1
nd

(∑n
j=1 rjd(w̄i − µd)(w̄i − µd)

T

)
.

(9)

2) Most Probable Cluster: In order to find the posterior
distribution of the weight vector based on the desired ob-
servations, it is necessary to find the most probable cluster
to which these observations belong. The observations can be
written as y∗t:t′ = {s∗t:t′ , qat:t′}, where s∗t:t′ are the desired
tactile observations and qt:t′ are the full-arm point. Given
this observation, the likelihood in the posterior p(d|y∗t:t′) ∝
p(y∗t:t′ |d)p(d) over the clusters d can be written as

p(y∗t:t′ |d) = N (Ht:t′µw̄,Σ
∗
y +Ht:t′Σw̄H

T
t:t′). (10)

The most probable cluster d∗ can be recognised through
argmax

x
p(d|y∗t:t′). The cluster d∗ is later conditioned over

the weight vectors to find the posterior distribution over
trajectories. As this conditioning is done over the tactile
domain s∗ ∈ y∗t:t′ , the inferred trajectories for the hand
and arm will correspond to those tactile state observations.
In other words, we can obtain full arm trajectories by just
conditioning some final states (desired tactile states) from the
desired hand fingers. More about these states are discussed
in the Section III.

E. Error Measures

We propose two measures for error measurement.
i) Anticipated Tactile Response Error (ATRE): Let the

mapping from anticipated tactile data to generated full-
arm movements be denoted by f : Rn 7→ Rm; {s∗} 7→



{qh, qa}. Consider that we implement the acquired
states {qh, qa} on the real hardware and extract the
resulting tactile response. Let that mapping be denoted
by g : Rm 7→ Rn; {qrealh , qreala } 7→ {sreal}. The
reproduced tactile error of the model is defined as

∆s =

t′∑
t

∥s∗t − srealt ∥2, (11)

where ∥.∥ denotes the Euclidean Norm and st denotes
the tactile response observed at time instance t and t′

is the last time instance of the selected points.
ii) Robot RMSE: This measure denotes the error be-

tween the robot states in test demonstrations and the
robot states in actual robot when the inferred trajec-
tories are fed into it. The robot consists of two parts:
arm (position and orientation) and hand (joint angles).
As these three components have separate units, we
measure the error separately for all the components:

∆p
a =

√√√√ 1

N

t′∑
t=t

∥q∗(a,p)t − qreal(a,p)t
∥2,

∆o
a =

√√√√ 1

N

t′∑
t=t

∥q∗(a,o)t − qreal(a,o)t
∥2,

∆h =

√√√√ 1

N

t′∑
t=t

∥q∗ht − qhrealt ∥2,

(12)

where ∆p
a, ∆o

a, ∆h are the total error in arm’s posi-
tion, orientation and hand’s joint angles respectively,
{q∗(a,p)t, q

∗
(a,o)t

, q∗ht} is the desired robot trajectory
at time instance t and {qreal(a,p)t

, qreal(a,o)t
, qh

real
t } is the

learned trajectory that is fed into the real robot at time
instance t and N is the number of total points.

F. Feature Scaling of Tactile Responses

It is possible that the responses from the tactile sensor
s have significantly different range of values than its
counterparts in the model. This will result in allocating
very large weights to the tactile responses compared
to the other elements ({qh, qa}). This tactile responses
are rescaled by min-max normalization and the range
is scaled in [−1, 1]

s′ =
s−min(s)

max(s)−min(s)
, (13)

where s′ is the normalised tactile response. For sim-
plicity, we will denote s′ as s in the next sections.

III. EXPERIMENTS

In this section, we discuss the results from two differ-
ent experiments performed using the 7-dof Franka Emika
Panda with a 19-dof (underactuated) Seed Robotics RH8D
Hand [20] with five actuators. Each finger is equipped with
tactile sensors that provide 3D tactile data. Consequently, a

high-dimensional observation space is generated when these
elements are combined.

The first experiment is performed on the object of non-
homogeneous hardness to acquire dissimilar tactile responses
when different parts of the object are exposed to contact. For
the second experiment, multiple objects used in day-to-day
life were selected and multiple grasps were performed on
each of them. The demonstrations in both the cases have
multimodal distribution. At the end, we will discuss the
accuracy of our model by comparing the anticipated tactile
responses to the tactile responses obtained from the real
system.

A. Reaching dissimilar anticipated tactile responses

In this experiment, we have recorded the interactions of
the robot with a toy object of irregular hardness at different
parts. Basically, the robot encounters two types of tactile
responses: high forces when grabbing the bottom part of the
object and low forces when grabbing the upper part of the
object. As shown in Figure 2, the robot experiences three
interactions:

i) Move arm from the left and grasp the hard part of the
object with all five fingers.

ii) Move arm from the right and grasp the hard part of
the object with all five fingers.

iii) Move arm from the top and grasp the soft part of the
object with three fingers (index, middle, thumb).

Note that the resulting hand and the robot arm movement
will be different in all the cases as these regions are located
apart in the object (Figure 3).

1) Experimental Settings: For each interaction, 20 demon-
strations were performed to capture the variance in the
movements, resulting in 60 unlabelled demonstrations (in-
teractions are not assigned to any groups). The robot arm
was moved to a point within grasping range in gravity
compensation mode. Every demonstration was initialised
from a random position and orientation (Section C). In
order to grasp, we used the robot glove [21] that maps the
movement of the human hand to the robot hand, making the
process of grasping more human-like and avoid pre-coded
trajectories like [17]. The details about experimental data
are explained in Section A.

2) Optimal Number of Clusters: In order to decide the
number of clusters in the mixture, we measure the Root
Mean Square Error (RMSE) of the predicted trajectory of
the hand and the arm with its corresponding ground truth
using the leave-one-out cross-validation (LOOCV) over the
whole dataset. We take robot’s pose and hand’s joints into
consideration. These components are considered vectors and
thus the error is the distance in Euclidean space. Figure 5
shows that the RMSE decreases as the number of cluster
increases, as expected. The RMSE after 14th cluster is stable,
thus we select 14 clusters in the mixture. The mean error
and standard deviation of (0.203± 0.064) units is achieved.
It can be seen from Figure 6(a) that a model with single
TacProMP is incapable of generalising to multiple tactile
interaction patterns whereas when a mixture of TacProMPs



Fig. 2: The figure shows the demonstration of the three interactions of the robot with the object along with the tactile
response generated as a result. The bottom row shows the normalised tactile response obtained from 5 fingers along x,y and
z axes. In (a) and (b), the magnitude of the tactile response is larger as compared to (c). In (c), the tactile response was zero
for the ring (yellow) and the pinkie (pink) finger. Note that the axis scaling in (c) was increased for visualization purpose.

Fig. 3: The Interaction patterns are shown in this figure. The
Interaction 1 and 2 are grasping the hard part of the object
whereas the interaction 3 grasps the softer part.

are used, a much better performance can be observed in terms
of predicting and generalising the interactions (Figure 6(b)).

3) Inference: As described in the Section II, we im-
plement the model on the unlabelled demonstration data
and determine their weights. During inference phase, the
user provides the anticipated tactile response, which is done
simply by establishing the contact between of the fingers
with the desired point on the object. We then search the
most probable primitive and find the posterior distribution
through conditioning (Section II-D.2). The results can be
seen in Figure 4. The demonstrated trajectories along some
of the dimensions are shown in the upper row of the figure.
The conditioning is performed only on the final points of
the tactile data, shown by red dots. The black line is the
mean and yellow is the variance of the posterior obtained
after conditioning.
Feedback Controller. Finally, the mean of arm’s posterior

distribution is fed to a standard inverse dynamics controller.
For the hand, its mean is fed to a joint position controller.
Note that the resulting posterior mean for orientation will
not obey the unit quaternion constraint, thus it needs to be
normalised.

4) Results: The precision of the model is evaluated on
the basis of error measures described in the Section II-
E. For testing purposes, we capture ten completely new
movements along with their tactile responses from these
three interactions. For inference, conditioning is performed
on the tactile responses of these testing samples and the
resulting posterior mean is fed into real robot. The results
are discussed below and shown in Table I.
Interaction Recognition. Provided the tactile response, the
robot was able to recognise the interaction pattern 100% of
the time.
Error Measures. We calculate ATRE (eq. 11) and Robot
RMSE (eq. 12) as described in Section II-E. As seen from the
Table I, the error in the robot pose and hand’s joint positions
is significantly smaller compared to tactile error, which
validates our claim that tactile information can predict arm
and hand movements with high precision. The reproduction
error of the tactile observation for all the fingers is in the
range of 100 mN, which is not very large if compared to
the range of the sensors (0-50N) and the high noise from the
sensors. This proves that through our model, movements can
be predicted precisely even though the sensor noise is very
high.

Note that the error for orientation is calculated as a
Euclidean distance, as in our model, we consider it to be
in Euclidean Space. More sophisticated approach for error
function would be to consider Geodesic distance between
two quaternions.



Fig. 4: The upper row shows the data of three interactions collected through demonstrations. The bottom row shows the
initial and posterior distribution of the demonstrated data in pink and yellow respectively. a) It shows tactile data obtained
from z-direction in thumb and pinkie finger. The red dots in the bottom row indicates the desired tactile observation on
which the distribution is conditioned. b) It shows the position (x-direction) and orientation (qx) of robot arm along with
joint angles of the ring finger of the gripper. The inferred mean and variance of the posterior after conditioning is shown
by black and yellow colours respectively.

TABLE I: Error measures for Experiment 1

Measure ProMPs∗ TacProMPs
∆p

a(cm) 7.38 ± 4.69 2.97 ± 1.46
∆o

a 0.27 ± 0.19 0.13 ± 0.09
∆h (radians) 1.44 ± 0.53 1.35 ± 0.58
∆s (N) 1.622 ± 1.669 0.806 ± 0.386

The error measurement is calculated as defined in Section II-
E. The error is the resulting mean error and standard de-
viation (µ ± 2σ) from the 10 test samples. ∗The result is
generated from 6 samples as 4 resulted into failure.

Fig. 5: The RMSE of the trajectories with its ground truth
using LOOCV, averaged over all trajectories w.r.t the number
of clusters. After 14 clusters, there is no significant improve-
ment in error. Such high number of clusters is the result of
high dimensional multimodal data.

B. Grasping multiple objects at different locations

For this experiment, we recorded tactile information from
four different objects of different shapes and located at
distinct locations (Figure 7). As they are located at different
locations, the trajectory of the arm is varying and the
grasping is different due to unique shapes of the objects.
A total of eight grasps were performed. This increase in
number of objects and grasping patterns makes the problem

Fig. 6: The prediction of the robot arm’s position in Cartesian
space generated by LOOCV over the whole dataset. Both
subplots show the demonstrated trajectories v/s the trajecto-
ries generated by TacProMPs. (a) Prediction using a single
Gaussian. (b) Prediction using the mixture of 14 Gaussians.

more challenging.
We capture 20 demonstrations for each of the interactions

in a similar way as described in Section III-A. For condi-
tioning on the desired tactile response, we simply establish
contact of the robot hand at randomly selected points on the
object with different grasping configurations.

Figure 8 shows the RMSE of the predicted trajectory with
its corresponding ground truth w.r.t. the number of clusters in
the mixture model (eq. 8). Our model consists of 17 clusters
in the mixture. The mean error and standard deviation was
(0.0729± 0.0478) units. Similar to previous experiment, we
take ten new samples randomly from these interactions for
testing. However, in this case, we experienced some failures
during experimentation. During training, the 7 out of 80
(8.75%) trajectories were not recognised in the cluster. For
testing, we took ten random samples on four objects, out
of which one failed, and other nine succeeded. The error
measures are shown in the Table II.



Fig. 7: Four objects shown in the figure are grasped with
various configurations at different positions.

TABLE II: Error measures for Experiment 2

Measure ProMPs* TacProMPs**
∆p

a(cm) 32.27 ± 15.59 4.90 ± 3.40
∆o

a 0.31 ± 0.12 0.10 ± 0.03
∆h (radians) 2.33 ± 1.69 1.3 ± 1.15
∆s (N) NA 1.295 ± 0.784

The error is the resulting mean error and standard deviation
(µ± 2σ) from the 10 test samples. ∗The result is generated
from all the samples that accounted for failure. ∗∗The result
is generated from 9 out of 10 samples as one resulted in
failure.

IV. DISCUSSION

It is to be noted that object geometry plays a significant
role in our experiments. The sensors receives widely varying
signals based on different surfaces and shapes during contact.

The motion of the arm relies heavily on the position of
the object and the specific part of its contact. Thus, even
for small changes in object position (1-5 cm), the grasping
operation often fails. In order to overcome this problem, we
plan to track the object’s 6D pose via OptiTrack Motion
Capture Systems [22] to improve the robustness of our
approach.

Like most of previous implementations of ProMPs, the
orientation is considered in Euclidean Space for simplicity.
However, this model can be extended to Riemannian Mani-
folds [23].

V. CONCLUSIONS

In this paper, we presented an approach to learn the
mapping between the tactile responses and the full-arm
motion. The problem was formulated as a problem of two
agents, tactile responses and full-arm movements, where the
partial observations from the tactile responses are provided
and the corresponding full-arm movements are required to be
inferred. Consequently, a joint trajectory of tactile responses
and full-arm joints is generated. The goal was achieved
through Interaction Probabilistic Movement Primitives that
learns the model of non-linearly correlated trajectories. A

Fig. 8: The RMSE of the trajectories with its ground truth
using LOOCV, averaged over all trajectories w.r.t the number
of clusters.

Gaussian Mixture Model of IProMPs is incorporated to
address the unlabelled multimodal demonstrations. In fact,
classical IProMPs fails to solve the task (See Table I and II).
Inference is achieved through conditioning the anticipated
tactile responses on the most probable GMM component. To
compensate for different noise levels from different sources,
we change the noise measurement matrix.

In order to capture the wide range of tactile responses,
an object of non-homogeneous hardness was selected and
different contact points were exploited. To show the robust-
ness of the model, we demonstrated it on multiple objects
at distinct locations that mimics real-life scenario. We also
incorporated grasping with varying number of fingers that
leaves anticipated tactile response to zeros across many
dimensions in the tactile space. We showed that only through
the anticipated tactile response (even zero), the motion of
a complex hand and the arm can be correctly categorised
and are generalisable to unseen tactile responses. The results
show that high precision manipulation skills can be inferred
through our TacProMP model, even with a low cost tactile
sensor that is imprecise and produces tactile responses with
very high noise.
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APPENDIX

A. Experimental Data

Here we present the details regarding the data in the
experiments.

1) Tactile Response Data: The tactile responses are ac-
quired in form of forces in the (x, y, z) directions for each
five fingers, adding upto 15 dimensions in total. These tactile
responses are in millinewton (mN). Before implying the
algorithm, the tactile responses are normalised as described
in Section II-F.



2) Robot Data: The robot arm movement is described by
a 7-dimensional vector composed of position and orientation
(quaternions) in Cartesian coordinates. The hand movement
is described by the joint angles of the five actuators that
controls these fingers. These are thumb flexion, thumb ab-
duction, index distal flexion, middle distal flexion, ring and
pinkie flexion.

B. TacProMP Parameters

TABLE III: Parameters of a single TacProMP

Parameter Symbol Value
Number of Basis K 50

Length of
Demonstration

T 200

Uncertainty in
Tactile Measurement

Σ∗
s I15×15 × 10−2

Uncertainty in Robot
Arm’s Measurement

Σ∗
a I7×7 × 10−4

Uncertainty in Robot
Hand’s Measurement

Σ∗
h I5×5 × 10−3

In×n refers to n× n Identity matrix

C. Random Initial Pose

The initial pose is randomised in its working range as
follows (position is in meters):
Position: x = (0, 0.3), y = (0, 0.3), z = (0.4, 0.75)
Orientation : qw = (−0.25, 0.5) qx = (−1, 0.75)

qy = (0, 0.5) qz = (−1, 0.75)
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