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Abstract— We solve a pedestrian visual navigation problem
with a first-person view in an urban setting via deep reinforce-
ment learning in an end-to-end manner. The major challenges
lie in severe partial observability and sparse positive experiences
of reaching the goal. To address partial observability, we
propose a novel 3D-temporal convolutional network to encode
sequential historical visual observations, its effectiveness is
verified by comparing to a commonly-used Frame-Stacking
approach. For sparse positive samples, we propose an improved
automatic curriculum learning algorithm NavACL+, which
proposes meaningful curricula starting from easy tasks and
gradually generalizing to challenging ones. NavACL+ is shown
to facilitate the learning process with 21% earlier convergence,
to improve the task success rate on difficult tasks by 40%
compared to the original NavACL algorithm [1] and to offer
enhanced generalization to different initial poses compared to
training from a fixed initial pose.

I. INTRODUCTION

Auxiliary advanced driver assistance systems have been
increasingly developed for vulnerable road users besides
intelligent autonomous vehicles for road safety issues, with
previous efforts focusing on pedestrian behavior or vision
prediction problems [2], [3]. On the other hand, Deep Rein-
forcement Learning (DRL) has been extensively investigated
in navigation tasks [4], [5]. A major benefit of DRL is
learning from scratch and even without map knowledge. In
this work, we address a mapless visual navigation problem
in an urban setting, where a pedestrian (agent) is merely
provided with first-person greyscale visual images and learns
to cross an intersection safely. The key challenges of this
task lie in the scarcity of positive learning signals (class
imbalance problems) and severe partial observability. We
investigate if DRL approaches can solve the task and how
the learned policy can generalize to different initial poses.

Partial observability (PO) refers to the settings where the
agent cannot perceive the whole environment. In a typical
first-person visual navigation task with no map knowledge,
PO greatly raises the task difficulty in two aspects. The agent
merely relies on a restricted frontal view where goals are
often absent in visual information. Secondly, even with a
360◦ view, PO still exists as the goal can be obstructed
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by other objects or simply too small to be spotted when
being distant. From DRL perspectives, PO also jeopardizes
the learning procedure as classical algorithms are premised
on the Markov Decision Process that the agent gains full
knowledge on environments [6].

Similar to Deep Learning, DRL algorithms can only
learn well given both positive and negative learning signals,
i.e., without significant class imbalance problems. Balanc-
ing multiple learning signals can improve the sample effi-
ciency [6]. In goal-reaching tasks, vital learning signals are
those reaching the terminal states, which occur with low
probability when starting with a random policy. To enhance
the number of goal-reaching experiences, various approaches
such as efficient exploration or Curriculum Learning (CL)
have been proposed. CL has been shown to facilitate the
learning process, i.e., increase the sample efficiency by
proposing simple tasks and gradually increasing the difficul-
ties [7], [8]. Automatic Curriculum Learning (ACL) further
automates curricula proposal steps instead of hardcrafting
tasks and manually determining how to form curricula.

The contribution of this work is to propose an improved
ACL algorithm called NavACL+. We show that NavACL+

can effectively improve the training performance and lead
to a reasonable curriculum compared to an existing method
NavACL [1]. It also significantly outperforms training from
fixed start in generalizing to different initial poses. The
validation task also pinpoints the assumption. Secondly, we
propose a 3D Temporal Convolutional Network with addi-
tional historical rewards and actions to address the problem
of PO in a first-person visual navigation task. The proposed
network architecture is compared with a commonly-used
Frame-Stacking encoder for visual inputs in [9]. Finally,
we show that our modified Distributional Soft Actor-Critic
algorithm [10] can successfully be applied to a mapless vi-
sual navigation task featuring high-dimensional inputs in an
end-to-end learning fashion, whereas the original work only
shows its effectiveness in problems with low-dimensional
inputs like Ants in Mujoco [11].

II. RELATED WORK

Extensive research efforts have been dedicated to solving
visual navigation tasks using DRL. In [12], [13], they deal
with a visual navigation task in a target-driven manner, where
the agent is additionally provided with the image of the goal,
seen as a generalization on the goal state. In [12], a pre-
trained encoder is used to extract the features from visual
data for domain generalization. The work [14] combines
unsupervised learning of expert demonstration features and



DRL to improve the policy on raw-pixel inputs. Others [15]
apply end-to-end DRL in a map-based fashion, where actions
are learned from the local occupancy map along with high-
level goal information. However, the aforementioned ap-
proaches either break the assumption of end-to-end learning
without prior knowledge, thus simplifying the task difficul-
ties, or require additional efforts to access map knowledge,
which is not feasible in the case of non-stationary environ-
ments. To realize end-to-end learning, sufficient meaningful
learning signals must be provided to the agent. One way to
achieve that is ACL, as tasks with properly-scaled difficulty
facilitate the training compared to random tasks [1].

A. Automatic Curriculum Learning in Reinforcement Learn-
ing Domains

As pointed out in [7], one category of ACL algorithms
shifts the initial or terminal state distribution. The work [16]
proposes reverse curriculum expansion for goal reaching
tasks, where the training starts from initial states close to
the goal to raise the task success rate. A scheduler will
determine when to increase the initial-goal distance based
on the estimated return of the candidate initial states. A
random walk is performed on the current initial state set
to guarantee all initial states are valid. Another idea is to
perform automatic goal generation from close to distant
ones [17], [18], where the initial state is fixed. These works
are based on the idea of goal-conditioned policies, where
the state space also includes the goal information as first
mentioned in the work [19]. In [18], a network is trained
to generate goals of appropriate difficulty and the generated
goals form a curriculum, whereas in [17] similar ideas are
employed, they use a settler and judge for proposing goals
under the criterion of goal validity, feasibility and diversity.
In this work, we generalize and improve the novel reverse
curriculum expansion algorithm NavACL [1]. NavACL is
shown to greatly enhance the training performance on visual
navigation tasks and outperform the approach in [18]. The
details are elaborated in Section III-A.

Fig. 1. The designed training environment in CARLA. (a) A bird’s view on
the urban scene (training environment). The red line represents an exemplary
trajectory. (b) The corresponding reward map with each color being a
different reward. The slashed area is the curriculum regions of NavACL+

and NavACL, while the black star represents the easiest initial pose before
entering ACL. For Non-ACL trials, we set the initial location as marked by
the black triangle. Note that we have already simplified the task for Non-
ACL variants, as they mostly fail to reach the goal when trained from the
desired initial pose, which is more distant to the goal. The goal (area 1)
gives a reward of 15. For undesired regions like streets (area 3), we assign
a reward of −3. Areas 2, 4 and 5 represent safe regions like sidewalks or
zebra-crossings and return the reward of −0.6, −0.8 and −1 respectively.

B. Alleviating Partial Observability in DRL

Another major challenge in visual navigation is PO. One
common way of mitigating this issue is to maintain historical
state information for decision making. The most common ap-
proach is to stack historical visual frames along the channel
dimension and then use regular 2D-convolutions to extract
features. The works [9] perform this trick in a few Atari
games. Some other work [20] processes historical visual data
by using a Long-Short-Term Memory [21].

An alternative to tackle temporal data instead of re-
current network is to use temporal convolution networks
(TCNs) [22]. TCNs avoid the gradient vanishing or exploding
problem in recurrent networks by applying stacked dilated
convolutions and also greatly reduce the number of learnable
parameters compared to standard causal convolution. TCNs
have been shown to handle long sequence data better than
recurrent networks [22].

III. METHODS

Here we present the details of our ACL method NavACL+

as well as the network architecture to respectively deal with
the challenge of sparse positive experiences and PO in a
mapless first-person visual navigation task. We also show the
interaction of ACL with one state-of-the-art DRL algorithm
Distributional Soft Actor-Critic [10] to achieve end-to-end
learning.

A. Automatic Curriculum Learning: NavACL

We start with the general paradigm of NavACL [1], from
which our algorithm NavACL+ is extended. In NavACL,
a curriculum is generated by proposing initial states. Let
the task h = ϕ(s0, sg), where s0 and sg represent the
initial and goal state, and ϕ(·) is a set of handcrafted
features mapping the states to a feature space. A success
prediction network is trained to predict the success rate
fs
π(h) of reaching the goal following policy π on the task
h. The superscript s denotes the success rate, which will
be distinguished from our approach. A number of candi-
date tasks are generated randomly and classified into three
categories: easy, frontier, and random via computing the
mean µf and the standard deviation σf of fs

π(h) from all
candidates and then thresholding to get their class types.
Specifically, tasks fulfilling the condition fs

π(h)>µf +βh
e σf

or condition µf−βl
fσf <fs

π(h) <µf +β
h
f σf are categorized

as easy or frontier respectively, where βh
e , βh

f and βl
f are

hyperparameters to determine the thresholds for task types.
This procedure is called Adaptive Filtering in [1]. Easy
tasks consolidate the knowledge acquired by the agent and
prevent catastrophic forgetting [7], while the frontier tasks
are the challenging ones given agent’s current ability. Then,
a scheduler determines which type of task is selected for the
new episode by assigning a probability to each task type.
The exact details are demonstrated the original work [1].

B. Automatic Curriculum Learning: NavACL+

Our work improves the original NavACL algorithm in
three aspects. The first enhancement is to train a network fr

π



to predict the discounted return Gt:T instead of the success
rate.

Gt:T =

{ ∑T−t−1
k=0 γkrt+k+1 + γT−tfr

π (hT ) , if T > Tmax,∑T−t
k=0 γ

krt+k+1 , elsewise,

where t, T and Tmax denote the current time step, terminal
time horizon and the maximal episodic length. This results in
a more precise evaluation of the agent’s current performance
on the task, as the success rate can not reflect the spent
time horizon to reach the goal. For these reasons, to further
characterize the quality of the current policy π, we replace
fs
π(h) with the discounted return fr

π(h).
The second improvement is to generate more data for

training fr
π . In NavACL, the network fs

π is trained only
using the initial states, causing a sparse training set, which
easily causes overfitting and training instabilities. To improve
sample efficiency, we train fr

π on an augmented dataset
that considers, in addition to the initial task h = (s0, sg),
all augmented tasks h = {ϕ(s1, sg), ...ϕ(sT , sg)} along
the trajectory in the current episode, where a trajectory is
defined as ⟨s0, ao, r1...sT , aT , rT+1⟩. This is valid as s0:T
still follows the current policy distribution π and therefore
describes agent’s current performance under the policy π.
In our case, we simply set ϕ(·) as (dx, dy, yaw) assumed
known map information, where dx, dy are the distances
between goal and initial state along the x/y-axis in a 2D
plane, and yaw is the initial orientation of the agent. Such
setting can uniquely define the initial state given a fixed goal
position.

The final modification is that the training will not enter
the ACL process until it surpasses a defined threshold on
the discounted return in a pre-specified easy task. We include
this change according to the findings in [23], as the original
NavACL may fail to differentiate easy from frontier tasks
given very few successful episodes reaching the target, i.e.,
suffering from class-imbalance problems with only negative
samples, resulting in an irrational curriculum. With this
modification, fr

π can distinguish easy tasks from others so
as to generate a proper curriculum.

We finally come up with 2 NavACL+ algorithm variants
adopting the aforementioned modifications. They differ in
the definition of task type and curriculum scheduling. For
the first variant, named as NavACL+ (Slope), we merely
change the lower bound of the frontier task to be gradually
decreasing to cover the most challenging task, where βl

f =
1+S·min(tc/tthre, 1), where tc is cumulative decision step
counts in the ACL phase. The remaining hyperparameters
S and tthre are shown in Table IV. The second variant
NavACL+ (Hard) replaces the random task to be hard task
with the threshold of fr

π(h) < µf − βh
hσf . The intention

is to enable fr
π to better distinguish task difficulties with

an additional hard category. The hard task also follows a
linear increasing probability starting from 0% until maximal
20% proportional to tc/tthre. The remaining probability are
equally assigned to easy and frontier tasks as in NavACL
algorithm to ensure both positive and negative samples
are provided to train fr

π(h) for better differentiation on

Algorithm 1 NavACL+ combined with DRL algorithm
Distributional Soft Actor-Critic
Require: maximum training episodes Nep

1: Initialize policy π, return-prediction network fr
π, i =

0, Tasks H = ∅,
2: while i < Nep, i++ do
3: if PassF irstTask then
4: µf , σf ← FitNormal(fπ)
5: h← GetDynamicTask(fr

π, µf , σf )
6: else
7: h← GetF irstTask()
8: end if
9: Haug, τ, G0...T−1 ← RunEpisode(h, π) ▷ Record

all augmented tasks, trajectory τ and discounted returns
of an episode.

10: Store τ into B
11: H.append (Haug, G0...T−1)
12: if i%∆ep == 0 then
13: Update π ← DSAC() ▷ Can be any RL

algorithm.
14: Update fr

π ← NavACL+Train(H)
15: H = ∅
16: end if
17: end while

task types. The general procedure of NavACL+ with DRL
algorithms in-a-loop is shown in Algorithm 1.

C. 3D-Temporal Convolutional Network

Inspired from the work [24], we also use 3D-convolutions
to process the image sequence, where the temporal di-
mension is the additional dimension. This is advantageous
over stacking the frames along channel and performing 2D-
convolutions [9] as the temporal correlation after the first
2D convolution is lost [24]. In the temporal dimension, we
apply hierarchically-structured dilated convolutions similarly
to TCN [22]. The details of the complete network are
visualized in Figure 2. Besides, we incorporate Nh − 1
historical actions and rewards into the observation space as
suggested in [25] to further mitigate the effect of PO.

D. Distributional Soft Actor-Critic with Modifications

We build our learning algorithm on top of one state-of-
the-art off-policy continuous control DRL algorithm Distri-
butional Soft Actor-Critic (DSAC) [10]. Distributional RL
is reported to greatly enhance the cumulative rewards [26],
[27]. DSAC inherits the advantage of maximal-entropy RL
that encourages exploration, while outperforming the soft
actor-critic algorithm (SAC) [28]. Here, we mentioned our
modifications on top of that and the exact algorithmic
explanation is in [10]. For the distributional RL part, we
also use the state-of-the-art algorithm Fully Parameterized
Quantile Function [27] and further combine Non-decreasing
Quantile Function Network [29] to guarantee monotonically-
increasing quantile estimates. We abandon the use of target
actor as we find it causes performance drops in some toy



Fig. 2. 3D-Temporal Convolutional structure for encoding vision se-
quences. Slightly different from the TCN in [22], the temporal length
is reduced after each dilated convolution to reduce memory usage. The
dilation factor along the temporal dimension is set as 1 for the last temporal
convolution to capture the information from all hidden temporal nodes.
‘K’, ‘S’, ‘P’, ‘D’ respectively denote kernel, stride, padding and dilation.
The image sequence shape is (B, C, T, H, W), where B, C, T, H and W
denote batch size, channel, temporal length, height and weight of the image
respectively. Historical actions and rewards are also encoded via 4 1D-
dilated convolutions to a dimension of 8 respectively. Then the encodings of
visual observations and historical actions and rewards are concatenated. The
recent action at is also concatenated for fraction-proposal and quantile net.
For the Frame-Stacking approach, we use 3 blocks of 2D-convolutions to
downscale the image to the shapes (B,16,42,42), (B,32,21,21) and (B,64,7,7)
sequentially, similarly to [9]. The policy network, fraction proposal network
and quantile network have their separate 3D-TCNs to encode inputs, and
followed by one fully-connected layer with 256 nodes to form outputs.

tasks and does not conform to SAC either, where no target
actor is used in SAC.

For the replay buffer, we design dual experience re-
play. The work [30] indicates a mixed sampling of ex-
pert demonstrations and collected experiences by RL agent
greatly facilitates the whole learning procedure. In our case,
two replay buffers respectively store non-terminal transi-
tion experiences and terminal ones. The terminal samples
serve as the sparse positive learning signals which are vital
for RL-agent. Moreover, DSAC features one-step temporal-
difference (TD) learning, q̂(st, at) is updated based on the
value of q̂(st+1, at+1) except for the terminal samples.
Merely the terminal ones have a stationary TD-target, un-
affected by updating the target network. Thus, only by
learning a correct q-value estimate on terminal state-action
pairs q̂(sT , aT ) can the TD-targets be correctly propagated
for q̂(sT−1, aT−1)...q̂(s0, a0). Hence, we let at least one
terminal experience be sampled in each batch. Rather than
take a fixed proportion of terminal/ non-terminal samples
from the dual buffers, the number of positive samples is
dynamically scaled such that the proposal distribution (new
sampling scheme) can best match the target distribution
(original sampling scheme, i.e. uniform sampling). As a

TABLE I
A SUMMARY OF OBSERVATION DESIGN AND THEIR CORRESPONDING

DIMENSIONS.

Type of Networks Observation Components Dimensions

3D-TCN
Grayscale visual sequence RB×1×Nh×84×84

Historical action sequence RB×(Nh−1)×3

Historical reward sequence RB×(Nh−1)×1

Frame-Stacking Grayscale visual sequence RB×Nh×84×84

result, the importance sampling (IS) ratios are mostly close to
1, which improves training stability. The IS-ratios are then
applied to terminal and non-terminal samples for updating
q-values, policy and SAC exploration coefficient α as [31]
does. The details are shown in Algorithm 2. It is observed
that dual replay facilitates learning q-values more correctly
and therefore greatly boosts the learning efficiency than
normal replay buffer used in [9] from some initial runs,
although not formally studied in this paper.

IV. EXPERIMENTAL DESIGN

We perform a pedestrian navigation task in the simulator
CARLA [32]. We select a road corner in a default map, as
shown in Figure 1(a). The pedestrian with a field of view
of 135◦, which mimics a human setting, learns to cross the
road along a zebra-crossing and reach the goal area. Here we
present how to cast the navigation task into an RL problem.

The action at ∈ R3 consists of a translational velocity v∈
[0m/s, 2m/s], a rotational velocity ωyaw∈ [−80◦/s, 80◦/s], and
a head turning motion mf . The actor outputs the Gaussian
mean and the lower triangular matrix of the covariance using
Cholesky Decomposition so that the dependence between
each action dimension is considered. The immediate reward
is r(t) = rm(t) + rv(t) + rc(t), where the speed reward
rv(t) = 0.125v encourages the agent to move fast, the
collision reward is rc(t)=−3 in case of a collision. The map
reward rm(t) is shown in Figure 1(b) and takes different
values depending on the location of the agent. An episode is
terminated when the agent reaches the goal or the number
of steps is larger than 8000 and each decision step endures
0.25s.

For the observation space, the design differs in our 3D-
TCN approach and Frame-Stacking approach used in [9].
In 3D-TCN, each observation ot includes a sequence of
greyscaled visual observations along with historical rewards
and actions, whereas in the Frame-Stacking approach, previ-
ous frames are stacked directly along the channel dimension
with no auxiliary input of historical rewards and actions. The
details are in Table I and Figure 2.

V. RESULTS

Here we would like to answer the following questions:
• Is 3D-TCN advantageous over the Frame-Stacking ap-

proach in this first-person visual navigation task featur-
ing PO? (Analyzed in Section V-A)

• Do our proposed NavACL+ variants bring a perfor-
mance boost over NavACL? Does NavACL+ propose
meaningful curricula? (Analyzed in Section V-B)



Fig. 3. The illustrations of training performance (smoothed) averaged over 5 runs in mean and standard deviation scheme, with each run having reached
convergence. The ‘oracle’ denotes the optimal discounted return for the fixed initial task, while the worst possible value is −300. For the case of not
reaching the target within Tmax = 8000 decision steps, but still walking in low-penalty regions, this corresponds to a discounted return in the interval of
[−80, −60]. A value difference of 20 in discounted return can mark a huge difference in the quality of policy, where the differences are better reflected
in (b),(d). Note that all NavACL variants feature diverse initial poses, corresponding to a non-fixed optimal discounted return. For the easiest task (point
0) and the most difficult task (point 7), the optimal discounted returns given favorable initial orientations are roughly 4 and −23. Both of the NavACL+

variants enter the ACL phase at around 0.9M steps.

• How is the performance of NavACL+ variants com-
pared to training from fixed start and NavACL, when
generalized to interpolated and extrapolated initial po-
sitions? (Analyzed in Section V-C)

To investigate those effects, we run 6 different settings as
shown in Table II, with each setting run 5 times and about
3.5M decision steps.

A. 3D-TCN vs. Frame-Stacking approach

To verify the effectiveness of our proposed 3D-TCN
approach on PO, we compare the performance of Non-ACL-
FR-4, Non-ACL-FR-16 and Non-ACL-TCN-16. They feature
exactly the same task shown in Figure 1(b) and the same
DRL algorithm, only differing in the network design for
encoding inputs.

The training performance of the three variants can be seen
in Figure 3(a)(b). It can be observed that Non-ACL-TCN-16
shows superior performance in discounted return over two
other variants. 3 out of 5 runs converge robustly to the near-
optimal policy. As a contrast, none of the Non-ACL-FR-4 tri-
als and merely one Non-ACL-FR-16 trial end up converging
robustly to the near-optimal policy. The performance gain of
Non-ACL-TCN-16 can also be verified in the validation task
in Section V-C. In 2 unsuccessful runs of Non-ACL-TCN-
16, the agent converges to a local optimum, i.e., converges
to the discounted return of −100, where most of the episodes
end up reaching Tmax. We address this issue using ACL in
Section V-B. Figure 3(b) shows the relation episode counts
and cumulative number of decision steps. A steeper slope
means the agent spends less decision steps to reach the goal
and is desired. It can be clearly seen that Non-ACL-TCN-16
has the steepest slope and Non-ACL-FR-16 has the second

TABLE II
A SUMMARY OF THE SETTINGS OF DIFFERENT DRL VARIANTS.

Settings Using ACL Visual Process Nh

Non-ACL-FR-4 Fixed start Frame-Stack 4
Non-ACL-FR-16 Fixed start Frame-Stack 16

Non-ACL-TCN-16 Fixed start 3D-TCN 16
NavACL-16 NavACL 3D-TCN 16

NavACL+(S)-16 NavACL+ (Slope) 3D-TCN 16
NavACL+(H)-16 NavACL+ (Hard) 3D-TCN 16

steepest slope. The sign of improvement is present around
2.5M decision steps. For Non-ACL-FR-4, most episodes end
up exceeding the maximal episodic length.

More importantly, Non-ACL-FR-16 turns out to be unsta-
ble in learning. 4 out of 5 runs end up in divergence on
fitting quantile and policy losses in DSAC, only to learn
policies with discounted returns below −100 (Figure 3). For
Non-ACL-FR-4, all 5 runs end up in divergence, resulting
in returns below −100. In contrast, Non-ACL-TCN-16 does
not diverge, even in 2 failure cases. The divergence arises
from the incapacity to address PO. In the 2 failure runs
of Non-ACL-TCN-16, despite not reaching the target, the
pedestrian still makes rational decisions which lead to a
high return, i.e, the pedestrian performs circling movements
on zebra-crossing or pavements. This still indicates that
the agent encodes the visual observation correctly with the
3D-TCN structure to avoid high-penalty areas like roads.
In all the divergent cases of Non-ACL-FR-4/16, the agent
behaves like random walks. Interestingly, directly adding
more historical observations does not prevent divergence
in the Frame-Stacking network when one compares Non-
ACL-FR-16 to Non-ACL-FR-4. However, in Atari games,
the Frame-Stacking network still works, as most of the Atari
games have a third-person view which suffers less from PO
when compared to our first-person visual navigation task.

Based on these findings, it can be concluded that 3D-TCN
with historical rewards and actions can effectively address
PO in the first-person visual navigation task and we use 3D-
TCN structure for further experiments.

B. NavACL+ vs. NavACL
The last section shows that Non-ACL-TCN-16 can effec-

tively mitigate PO. However, it still has 2 unsuccessful runs,
where most of the episodes terminate with not reaching the
goal. The reason is sparse positive experiences, especially in
the cases of large initial-goal distances. ACL approaches are
hence applied to increase the positive experiences and here
we show to which extent our NavACL+ variants outperform
the original NavACL. The performance enhancement of
NavACL over training from fixed starts will be discussed
in Section V-C.

The training performance of NavACL-16, NavACL+(S)-
16 and NavACL+(H)-16 is illustrated in Figure 3(c)(d).



Fig. 4. Evolution of the classified task types of NavACL+(H)-16 in
different training stages. (a) is a clipped part from Figure 1(b).

NavACL+(S)-16 and NavACL+(H)-16 exhibit similar per-
formance and are notably better than NavACL-16, where
NavACL+ variants show signs of convergence in around
2.3M decision steps and NavACL-16 starts to converge after
3M steps from Figure 3(d). All 5 runs of NavACL+(H)-
16 and NavACL+(S)-16 converge to near-optimal policies
for most of the proposed initial poses, whereas 3 runs of
NavACL-16 show similar patterns. The remaining 2 runs
of NavACL-16 show successes in initial poses close to the
goal, but fails in distant initial poses, e.g., in cases of the
initial pose used in Non-ACL-TCN-16. NavACL-16 shows
similar behaviors as Non-ACL-TCN-16, performing circling
movements in low-penalty areas but not reaching the goal.
This is in accordance with our expectation as NavACL-16
fails to distinguish easy from frontier tasks, where it could
propose difficult tasks as easy tasks in the worst case. When
frequently trained on difficult tasks and positive experiences
are absent, DSAC agent is likely to stagnate at a local
optimum.

Furthermore, we investigate whether a reasonable curricu-
lum is formed during training. A qualitative illustration can
be seen in Figure 4. For instance, an easy task gradually
spreads its coverage from the neighborhood of goal area
in early stages to more distant areas like zebra-crossing as
the policy improves (Figure 4(b)-(f)). The same goes for the
evolutions for frontier and hard tasks. In contrast, the success
prediction network fs

π of NavACL-16 shows no regular or
meaningful easy-frontier task segmentation over different
episodes after our investigation. The reason is manifest that
the success prediction network is prone to overfitting few
initial pose samples, only to generalize incorrectly to task
types of other states.

C. Validation Results

To examine the generalizability of the trained policy
with respect to different initial poses, i.e., different task
difficulties, we perform a systematic validation as shown
in Figure 5(a). Altogether 14 validation points are chosen,

Fig. 5. A qualitative representation of our validation results. For each
pose, 10 runs are performed. (a) 14 validation points are chosen. 8 red
points denote interpolated tasks while 6 blues points represent extrapolated
ones not encountered in the NavACL process. Point 3 is the initial pose
for training Non-ACL variants. The task difficulty rises monotonically from
point 0 to 7. (b)-(c) Trajectory distribution of NavACL-16 on interpolated
tasks, Failure cases can be seen. (d) NavACL+(S)-16 on one extrapolated
task. (e)-(f) NavACL+(S)-16 on interpolated tasks.

where 8 of them are interpolated tasks and the rest are
extrapolated ones not encountered in NavACL process. For
each initial point (x, y) in the 2D-map, we also set 8 different
orientations in yaw-angle {0◦,±45◦,±90◦,±135◦, 180◦} to
check the agent’s behavior under the effect of PO. For every
initial pose (x, y, yaw), we sample 10 trajectories, resulting
in a total number of 1120 validation runs for each algorithm
variant. The best run of each variant is used for validation
and the results are shown both quantitatively in Table III
and qualitatively in Figure 5(b)-(f). For validation we clip
Tmax = 2000.

In accordance with our expectation, Table III shows that
our two NavACL+ variants outperform the original NavACL
and Non-ACL variants significantly, especially on some hard
tasks, e.g. point 6, 7. Besides, all ACL approaches demon-
strate consistently better performance than Non-ACL trials
on all extrapolated tasks. It is explainable, as training from
different initial poses benefits generalization more than train-
ing from a fixed initial state. Furthermore, NavACL+(S)-
16 and NavACL+(H)-16 are comparable considering the
performance on all tasks.

Interestingly, we also have discovered the following phe-
nomena: The agent performs less stochastically in the regions
frequently reached in training phase, e.g., Figure 5(e)(f).
In contrast, stochastic behavior can be seen in extrapolated
initial poses that the agent has rarely visited in training,
corresponding to Figure 5(d). This is reasonable as DSAC
eventually converges to a less stochastic policy on frequently-
visited states to achieve a persistent high return. This also has
some connection with interpreting the result of PO. Given
some initial orientations where the agent can not directly
observe the goal, the agent will first rotate until it is oriented
towards the optimal path. In most of the interpolated cases,
we observe that the agent rotates in consistent directions



TABLE III
COMPLETE VALIDATION RESULTS AVERAGED OVER 8 ORIENTATIONS FOR EACH VALIDATION POINT.

Initial Pose Average Discounted Return
Non-ACL-FR-

4
Non-ACL-FR-

16
Non-ACL-

TCN-16
NavACL-16 NavACL+(H)-

16
NavACL+(S)-

16
Random Walk

Point 0 -242.7 ± 11.1 -9.6 ± 3.0 -7.2 ± 3.8 -9.4 ± 9.0 −5.4± 6.0 -7.3 ± 7.7 -180.1 ± 40.1
Point 1 -201.3 ± 10.2 -17.5 ± 3.9 -14.0 ± 3.0 -18.0 ± 14.9 −12.1± 5.2 -13.0 ± 7.7 -201.6 ± 31.6
Point 2 -199.7 ± 20.3 -21.8 ± 3.2 -21.6 ± 3.9 -25.6 ± 13.6 −18.1± 6.0 -23.6 ± 13.0 -211.0 ± 24.1
Point 3 -131.6 ± 21.6 -30.5 ± 4.0 -25.7 ± 3.5 -26.6 ± 5.7 −18.6± 2.6 -20.4 ± 4.1 -206.0 ± 13.3
Point 4 -115.2 ± 2.7 -45.8 ± 4.4 -36.9 ± 2.6 -26.0 ± 6.8 -24.6 ± 5.5 −24.2± 7.2 -209.4 ± 18.2
Point 5 -99.7 ± 0.0 -75.7 ± 7.5 -58.5 ± 2.8 -40.1 ± 9.0 −28.8± 5.0 -29.0 ± 6.1 -214.5 ± 12.4
Point 6 -99.9 ± 0.0 -91.3 ± 5.2 -70.7 ± 5.1 -43.6 ± 4.5 -30.9 ± 4.0 −30.4± 5.0 -220.5 ± 19.9
Point 7 -100.2±0.4 -101.2 ± 3.6 -84.4 ± 9.2 -53.0 ± 3.8 −32.6± 2.7 -35.3 ± 6.9 -217.2 ± 13.4
Avg.Int -182.6 -54.3 -52.4 -36.0 −30.6 -31.5 -217.9
Point 8 -288.3 ± 1.2 -56.9 ± 11.2 -80.3 ± 47.9 −34.7± 8.1 -41.5 ± 12.4 -35.0 ± 9.4 -228.3 ± 29.8
Point 9 -288.1 ± 1.8 -65.0 ± 9.8 -75.1 ± 14.3 -47.8 ± 10.1 −25.0± 10.8 -26.4 ± 10.9 -250.1 ± 21.4

Point 10 -209.2 ± 43.4 -72.3 ± 8.7 -102.0 ± 13.7 -48.5 ± 6.2 -57.6 ± 14.0 −44.9± 9.7 -252.6 ± 23.0
Point 11 -216.9 ± 7.5 -46.0 ± 7.2 -45.2 ± 15.4 −28.0± 13.4 -40.6 ± 9.3 -51.7 ± 20.7 -200.0 ± 32.6
Point 12 -217.2 ± 5.6 -78.3 ± 7.1 -75.8 ± 10.4 -58.0 ± 23.4 -65.0 ± 21.7 −49.6± 8.8 -232.2 ± 19.3
Point 13 -192.9 ± 1.2 -83.9 ± 10.9 -75.1 ± 11.0 −52.5± 13.2 -63.1 ± 12.6 -62.7 ± 20.5 -233.9 ± 13.9
Avg.Ext -190.3 -60.2 -58.8 -37.3 -36.5 −33.6 -219.0

even if this is sometimes non-optimal, e.g., rotating 270◦

clockwise instead of 90◦ counter-clockwise. In extrapolated
cases, the agent rotates more stochastically. A higher stan-
dard deviation in extrapolated tasks than in interpolated ones
in Table III also verifies this point. As a summary, the agent
behaves nearly optimally regardless of initial orientations as
long as that state is frequently visited in training.

We notice that the NavACL+ agent can also fail when the
initial poses are too distant from the initial poses experienced
during training. Specifically, the agent performs circling
motions, some with a gradual trend of approaching the goal,
until it reaches the state that has been well trained. After that,
the agent follows a near-optimal policy towards the goal.
Our finding is analogous to the work [23]. In fact, DRL has
a limited degree of generalization and one practical way to
achieve generalizability is to include extrapolated domains
in the training phase. We verify this by two additional runs
of NavACL+(S)-16 with enlarged ACL-proposed regions
and some hyperparameter changes. The agent then behaves
almost optimally in extrapolated poses, as shown in our
video. The pedestrian also shows the averaged walking
velocity of around 1.9 m/s, when walking straight, which
approaches the maximal speed. This is desired, as our reward
setting encourages the agent to reach the goal as soon as
possible.

VI. CONCLUSIONS

In this paper, we use Deep Reinforcement Learning with
Automatic Curriculum Learning (ACL) to solve an end-to-
end first-person visual navigation problem in urban areas. In
our tasks, a pedestrian learns to cross the road and to reach
a goal area via zebra-crossings. To address the challenges of
severe partial observability and sparse positive experiences,
we propose a 3D Temporal Convolutional Network (3D-
TCN) and an improved ACL algorithm NavACL+. The
3D-TCN, together with auxiliary information of historical
rewards and actions, show its effectiveness in addressing
partial observability compared to a commonly-used Frame-

Stacking approach in RL. The Frame-Stacking approaches
often diverge during training. Our ACL algorithm NavACL+

generates meaningful curricula and therefore results in a 40%
higher success rate in solving the hard tasks. It also converges
0.7M decision step earlier than the original NavACL, given
a total training of 3.3M steps. Moreover, NavACL+ gener-
alizes to different initial states in the curriculum-proposed
regions. We also verify that by including the extrapolated
tasks in NavACL+ proposal regions, the agent also achieves
near-optimal policies in extrapolated tasks. Finally, our
experiments validate that our modified Distributional Soft
Actor-Critic algorithm can be extended to high-dimensional
visual input tasks. In future, we will extend our work with
additional traffic flow.

APPENDIX
Here we present the hyperparameters used in our modified
DSAC algorithm, NavACL and NavACL+ in Table IV. As
a supplement, PassFirstTask is defined as the average of 30
recent discounted returns ≥ −25. We also present the details
of the dual replay buffer in Algorithm 2.
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[13] J. Kulhánek, E. Derner, T. De Bruin, and R. Babuška, “Vision-based
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