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Abstract— Sensor gloves are gaining importance in tracking
hand and finger movements in virtual reality applications as
well as in scientific research. They introduce an unrestricted
way of capturing motion without the dependence on direct
line of sight as for visual tracking systems. With such sensor
gloves, data of complex motion tasks can be recorded and
used for modeling probabilistic trajectories or teleoperation
of robotic arms. While a multitude of sensor glove designs
relying on different functional principles exist, these approaches
require either sensitive calibration and sensor fusion methods
or complex manufacturing processes. In this paper, we propose
a low-budget, yet accurate sensor glove system that uses flex
sensors for fast and efficient motion tracking. We evaluate the
performance of our sensor glove, such as accuracy and latency,
and demonstrate the functionality by recording motion data for
learning probabilistic movement models.

I. INTRODUCTION

In times of virtual reality (VR) and augmented reality
(AR) applications, motion tracking of human body parts
gains more importance, especially in the field of robotics,
the precise tracking of hand and finger movements is of high
interest. The tracked data can be used for trajectory model
learning of complex tasks or for real world applications
with robotic arms like human-robot collaboration.

The tracking and display of the user’s field of view
is a mature technique and available for the mainstream
consumer. However, the availability of tracking extremities
like hands is lagging far behind and is mostly exclusive
for high-budget products. For the former, VR goggles
use internal sensors and can therefore be used anywhere
and without external setup. Meanwhile, the tracking of
extremities is restricted to external optical sensor setups,
e.g. Valve Index [1], Optitrack [2]. These setups rely on
optical markers that are worn by the user, in combination
with multiple, precisely calibrated cameras to capture the
relative poses of the trackers in the setup space. Thus,
those systems are not very versatile, since they require a
dedicated setup of the working space as well as equipping
the user with external markers. Furthermore, these setups
incur a high expense, especially when a high accuracy and
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Fig. 1: Example of the here developed sensor glove together
with an illustration using Unity.

the tracking of smaller body parts, like fingers, is required.

Other approaches for tracking finger motions are for
example realized by a camera attached to the VR goggles,
which points down towards the hands of the user. Devices
such as Leap Motion [3] abstract the position of the bones
in each finger to display the three dimensional model of the
hand including the finger joints. However, this still restricts
the working area of the sensor to its line of sight.

Since all of these strategies rely on the line of sight of
the used sensor and therefore heavily confine the working
space, the optimal approach of a user-worn device should
use gloves that are equipped with multiple sensors to track
the movement of the joints in each finger. Thereby, it is
important not to restrict the user in his/her movements, thus
to keep the user’s experience as unaffected as possible. In
such settings, capturing motion data on real, complex tasks
is possible without restrictions. The resulting data can then
be processed to be applied on robotic arms as well as in
virtual environments.

The goal of this project is to design a versatile, while low-
budget sensor glove for modeling and comparing different
hand movements. The measured data from the sensor glove is
later used to learn probabilistic movement primitive models.
These learned models can be used for finding similarities



between the recordings.

A. Related Work

Considering a variety of sensor gloves, they can be
divided into different groups, depending on the sensors used
for hand motion detection. Every approach has its benefits
for varying fields of applications, as well as dealing with
various challenges. In the following, we will take a look at
different sensor glove design concepts.

In Lin et al. [4] and Liu et al. [5], multiple inertial
measurement units (IMU) were mounted on each finger
to calculate the hand posture by looking at the difference
of each bone in the finger in relation to the others. With
their design, it is possible to capture multiple degrees of
freedom for each joint and a very extensive representation
of the whole hand. Nonetheless, the rigid and bulky sensors
might constrain complex hand movements. Additionally,
the calibration method and sensor fusion algorithm for the
IMU’s raw data can be difficult to adjust in order to achieve
a high accuracy. A comparison between inertial sensing and
an opto-electronic marker system can be found in [6].

Other approaches rely on soft materials ranging from
capacitive silicone arrays [7] to conductive liquid for
soft-strain sensors embedded in a glove [8], [9], [10]
or knitted piezoresistive fabrics [11]. Those soft sensor
gloves have one major advantage over other methods: The
thin and flexible gloves fit the hand better and therefore
allow complex hand movements with minimal constraints.
However, the manufacturing of soft sensors requires elevated
techniques and equipment for printing liquid metal into
soft silicone [12]. Consequently, it is a complex process to
construct the sensor glove, which is not straightforward to
replicate.

In [13] and [14], linear potentiometers with flexible
wires or optical linear encoders are used to measure finger
movements. Both approaches lead to reasonably accurate
measurements. However, the natural finger motion is
restricted by the sensors on the glove. These sensor gloves
only measure the flexion and not the abduction/adduction
of fingers, which restricts the detection of complex hand
motion. Furthermore, the sensor design is not suitable for
additional sensor of this type due to the limited space on
a hand. Thus, such type of sensor gloves only allows the
tracking of simple motions.

Lastly, one of the most intuitive approaches is the usage
of flex sensors. One commercially successful sensor glove
using such flex sensors is the CyberGlove [15]. It has
18 flex sensors embedded in a fabric glove to measure
flexion as well as abduction/adduction which allows the
measurement of complex finger motion. However, the
high-cost, non open-source solution makes it unavailable
for the mainstream consumer. Nevertheless, there are
multiple low-cost implementations of such a sensor glove

[16], [17]. Both use flex sensors sewn into a fabric
glove, whereas [17] also places flex sensors between each
finger to capture abduction/adduction. They are able to
carry out accurate measurements and also to successfully
teleoperate a robot gripper [16]. However, Gentner et
al. [17] require modifications of the flex sensors and
calibration method in order to reproduce its results. This
leads to more complex amplifier circuits for reading the flex
sensors. In addition, both implementations do not support
WiFi communication between microcontroller and computer.

For learning suitable trajectory models from recorded
sensor glove data [18], the requirements of such models
include the ability to model time-depending multi-
dimensional data that is affected by sensor noise, missing
sensor values and human motion variability [19], [20]. The
latter property is inherent to human motion and is a result of
the fact that the same task can be solved in numerous ways
[21]. This is commonly discussed as Bernstein’s redundancy
problem, which is not further discussed in this paper.

For learning such trajectory models, there exist a number
of potential candidate that fulfill the requirements [22]–[24].
Our choice was motivated by the popularity of the model
in the robotics community, the availability of many code
resources [25], [26], and that the model was applied already
in related work for human motion modeling [16], [27].

B. Contribution & Paper Organization

Our aim is to construct a simple, budget-friendly, yet
accurate sensor glove with low latency, suited for recording
hand motion data to learn trajectory models. Most sensor
glove implementations require elevated techniques for
construction and are not suited for easy and low-cost
replication. Our contribution here is threefold: (1) an open-
source realization of an intuitive sensor glove which keeps
up with the state-of-the-art hand motion capture techniques,
in which we payed attention to the user experience by
avoiding bulkiness and movement confining parts in the
glove design, since the sensor is ultimately developed
for transfer learning and teleoperation, (2) a ROS (Robot
Operating System [28]) interface for realizing wireless and
straight forward access to the sensory data and complex
visualization in Unity [29] for direct visual feedback, and
(3) a comparison between our proposed sensor glove design
and existing approaches together with a functionality proof
for trajectory model learning.

We start with Section II by giving insights into the
hardware design and software realization of the sensor glove,
as well as explaining the calibration methods and the un-
derlying processes of trajectory model learning. We proceed
in Section III by evaluating the accuracy and latency of
our implementation in comparison to the provided related
work. Additionally, we will test the sensor glove in different
experimental setups using music instruments. In Section IV



Fig. 2: Simplified schematic diagram of the system architecture for our sensor glove design: (a) Glove layout with sensor
placements, the orange fields denote the flex sensors, while the IMU is marked as a green rectangle, (b) Circuit board
which is wired with the sensor glove, has 10 voltage dividers for reading each flex sensor connected to ADC pins of the
microcontoller ESP32-S2 and the IMU is connected to I2C pins, (c) The ESP32-S2 sends the raw data via WiFi as ROS
messages to the computer, which allows a real-time visualization in Unity or Gazebo, (d) Post-processing of the recorded
data, e.g. learning probabilistic movement models and searching for similarities

we conclude our findings and give an outlook on future work
regarding our sensor glove.

II. METHODS
In this section, we present the methods we used to design

and build our sensor glove as well as the trajectory learning
algorithms for generating probabilistic motion models.

A. Sensor glove design

For easy donning and doffing, the sensors and further
components are mounted on a fabric glove. To achieve a
highly versatile glove that fits different users and does not
disturb the users by being too tight or by having excess
material especially on the finger tips, we chose to use
special soft fabric gloves made for osteoarthritis patients.
These gloves are highly stretchable and therefore adjust to
many hand types and sizes, while being very pleasant to
wear.

We used 10 flex sensors in total [30], [31], where two
of them are smaller to fit the thumb and pinkie finger
(see Figure 3). The reading of each sensor requires a
voltage divider circuit, illustrated in Figure 2(b). Since
we use two different types of flex sensors, two different
resistors are required. We chose 47kΩ resistors for the
long flex sensors and 10kΩ for the smaller ones to ensure
the voltage change lies between the range of the input
pins. As shown in Figure 3, our sensor glove measures
the flexion of the proximal interphalangeal (PIP) and
metacarpophalangeal (MCP) joints for each finger in
addition to the interphalangeal (IP) and carpometacarpal
(CMC) joints of the thumb. To mount the sensors on the
glove, we designed and printed custom 3D pieces shown
in Figure 4, out of slightly flexible filament. First, the
sensors were fixed on these pieces and afterwards glued
onto the glove. The flex sensors were secured in place

Fig. 3: Placement of the flex sensors to measure human hand
articulations: Proximal interphalangeal (PIP), metacarpopha-
langeal (MCP), interphalangeal (IP) and carpometacarpal
(CMC) joints.

through this construction, while allowing the fingers to
move without constraints. This enables a consistent bending
of the sensors to maintain the precision of our measurements.

As for the controller of our sensor glove, we chose
ESP32-S2 [32] microcontroller which provides a built-in
WiFi module for connectivity, a 10-channel 13-bit analog
to digital converter (ADC) for the connection of the 10
bend sensors and an I2C-bus for the IMU. This controller
holds just the right amount of analog input channels for



Fig. 4: Two flex sensors mounted onto the 3D printed guiding
shapes. This represents the arrangement on one finger.

our sensor layout while providing a higher resolution than
most competitive microcontrollers. It is also programmable
through the widely-used Arduino IDE [33] that allows the
use of many pre-build libraries.

For tracking rotation and hand movement, we attached an
Adafruit BNO055 [34] Inertial Measurement Unit (IMU) to
the center of the back of the glove, which allows for rea-
sonably good orientation tracking of the hand posture. This
breakout board provides a 9-degree-of-freedom IMU coupled
with a controller to calculate the absolute orientation, then
making it accessible through the I2C-bus that is hooked up
to our microcontroller.

Furthermore, a WiFi connection offers more flexibility by
being able to broadcast information to every other device
in one network, while a Bluetooth connection is restricted
to peer-to-peer communication with one other device. The
resulting availability of the sensor data is furthermore sup-
ported by our usage of a ROS interface. In summary, we
benefit from the intuitive, inexpensive and accurate way of
realizing a sensor glove by using flex sensors. Additionaly,
we are elevating our system by incorporating a WiFi con-
nection, offering a ROS interface and providing a real-time
visualization.

B. Software implementation

As mentioned before, the microcontroller used in our
setup is programmable through the widely-used Arduino IDE
[33]. We therefore can make use of many prebuild libraries
that allow the implementation of a ROS interface on the
glove, publish the sampled sensor data in ROS messages
and make it available to any other machine running ROS in
the WiFi network. We furthermore implemented a complex
simulation environment in Unity, shown in Figure 1, that can
display the published data in real time, allowing the user a
good understanding of the raw sensor data generated by the
glove. Since this is only available on Windows platform,
we also implemented a simpler simulation in Gazebo. For
better visualization, we also simulated the flexion of the
interphalangeal joints of each finger, that has no flex sensor
attached to it, by presuming it to be half as flexed as the
proximal interphalangeal joints of that finger.

Moreover, as proposed in [35], we also used hyper sam-
pling for collecting smooth sensor data, which means for
each flex sensor 50 measurements are taken, 10% of the
highest and lowest values were discarded. Afterwards, the
average of the remaining 80% of measurements are taken.
This minimizes jittering in the sensor data and drastically
smoothes the output.

C. Calibration

The calibration of the sensors before data acquisition
is essential for precise and accurate output. This process
should be executed always before usage of the sensor glove.
The IMU already includes internal algorithms to calibrate
the gyroscope, accelerometer and magnetometer inside
the device. Therefore, the calibration method is started
and carried through until the calibration status reaches its
maximum.

The flex sensors are calibrated using two different
approaches, a fast, but less accurate and a complex but
accurate one. For the first calibration approach, different
hand poses are performed. The sensor values are measured
in straight position (0°) by laying the stretched hand on a flat
surface. Afterwards, the calibration pose of the hand is a fist
with the thumb laying outside. In this position, the sensor
values are measured for a bending of approximately 90°
except the two sensors for the thumb. Lastly, the thumb is
bent inwards for its calibration. It is important to point out,
that this calibration procedure is the simplest and quickest,
but has some major drawbacks in the resulting sensor
accuracy. Since one can not be sure of the exact bend of the
joints when performing a fist, the resulting accuracy of the
sensors may suffer from an offset, which can not be ignored.

Therefore, the second approach is attempted to reach a
more accurate calibration. Since the joint positions for these
different hand poses may not exactly match the assumed
positions of 0° and 90°, we will use 3D-printed guiding
shapes to ensure a precise flexion. These guiding shapes
match the previously printed pieces for the flex sensors and
allow a seamless placement of the fingers within the guiding
shapes. Subsequently, every sensor has to be calibrated
individually with placing the guiding shapes, which leads
to a longer calibration phase of the whole hand.

D. Trajectory Learning with Movement Primitives

We assume that measurements are given as trajectory, i.e.,
a sequence of multi-dimensional sensor values denoted by
the matrix τ = [y1,y2, . . . ,yT ]. Here, τ is modeled through
a basis function approximation using the parameter vectorw,

p(τ |w) =

T∏
t=1

N (yt|Φtw,Σy) = N (y1:T |Φ1:Tw,Σy),

where Φt denote the basis function matrix defined in
[23], [24]. Σy denotes the measurement noise which is
often specified manually, i.e., we used Σy = 10−12I , where



TABLE I: Comparison of different sensor gloves

Reference Sensing method Raw data Wireless Measurement accuracy Sampling rate
Nassour et al. [8] Electrolyte solution KI-Gly 14 (Bend, Abd.) Yes (Bluetooth) 0.885° 100 Hz
W. Park et al. [9] Conductive liquid metal 15 (Bend, Abd.) Not mentioned 1.39° Not provided
Chossat et al. [10] Ionic liquid and liquid metal 11 (Bend) No Not provided 200 Hz
Glauser et al [7] Capacitive sendors 44 (Bend, Abd.) No 7.6° 60 Hz
Lin et al. [4] IMU arrays 17 (9-axes IMU’s) Yes (Bluetooth) 3° 50 Hz
Li et al. [14] Optical linear encoders 10 (Bend) Yes (Bluetooth) 1° 150 Hz
Y. Park et al. [13] Linear potentiometers 10 (Bend) Not mentioned 0.65° Not provided
Cyberglove [15] HyperSensor™ 18 (Bend, Abd.) Yes(WiFi) 1° 120 Hz
Gentner et al. [17] Flex sensors 14 (Bend, Abd.) No 0.1° 50 Hz
Weber et al. [16] Flex sensors 10 (Bend) Yes (Bluetooth) Not Provided 25 Hz
Our proposed glove Flex sensors 10 (Bend) Yes (WiFi) ≤ 2° 20 Hz

I is the identity matrix with convenient dimension.

To compute the movement model p(τ ), the parameter
vector w is integrated out, i.e.,

p(τ ) =

∫
p(τ |w)p(w)dw

=

∫
N (y1:T |Φ1:Tw,Σy)N (w|µw,Σw)dw

= N (y1:T |Φ1:Tw,Φ1:TΣwΦ
T
1:T + Σy).

This marginalization process can be computed in closed
form and results in a single Gaussian distribution. The core
of the movement model is the Gaussian priorN (w|µw,Σw),
which can be computed from the sensor measurements (i.e.,
the training data) through maximum likelihood [36] or in the
simplest case through ridge regression,

w[i] = (Φᵀ
1:TΦ1:T + λI)−1Φᵀ

1:T τ
[i].

The regularization term λ is set to λ = 10−6 in our
experiments.

Note that the correlation of the multi-dimensional data is
captured through the covariance matrix Σw. This covariance
can be used to predict individual dimensions (exemplary
shown in Figure 2(d)). For example in [27], the right wrist
motion is predicted from a few measurements of optical
markers placed on the left wrist.

In the following, we summarize how to compute model
similarities. For further probabilistic operations like the
computation of predictions or likelihoods, we refer to [23],
[27]. In a training phase, measurements of elementary
movement primitives like the playing of a guitar were
collected. This training data is used, as discussed above,
to compute model priors, like N (wguitar|µguitar,Σguitar),
N (wsax|µsax,Σsax), etc. To evaluate the similarities of differ-
ent movement primitives, we computed the Kullback-Leibler
divergence of the two Gaussian prior distributions,

KL(N1||N2) =
1

2
log
|Σ2|
|Σ1|

− n+ tr(Σ−1
2 Σ1)+

(µ2 − µ1)ᵀΣ−1
2 (µ2 − µ1),

where N1 denotes a Gaussian distribution with the n-
dimensional mean µ1 and the covariance Σ1. The symbol tr
denotes the matrix trace. This probabilistic measure in the
parameter space is also compared to a deterministic measure
computing Euclidean distances in the trajectory space (ex-
emplary shown in Figure 2(d)). The evaluation results are
shown in Subsection III-B in the experiments.

III. RESULTS

In this section, we start by evaluating the performance of
our sensor glove and give insights into our experiments to
record the movement primitives used for trajectory learning.
In the later part, we demonstrate motion model learning
based on recorded movement data.

A. Performance

The performance of our sensor glove is evaluated by
three criteria, namely, the accuracy of the flex sensors in
our design, the sampling rate, in which the sensor data is
collected and also the latency of the whole system connected
to the simulation.

The measurement of the accuracy is, in our terms,
described with the repeatability of the sensors when
performing the same finger motion. By performing the
same bending positions for different finger joints with the
assistance of 3D-printed guiding shapes to secure the finger,
we evaluated the accuracy of our flex sensors and therefore
of our sensor glove to be below 2°. In comparison to the
different approaches presented in Subsection I-A, that are
also displayed in Table I, we can rank our sensor glove in
the midfield of the comparable approaches. However, it must
be considered that a direct comparison regarding results of
related work is not always possible, since every approach
differs in the method used for measuring the accuracy.

The second important aspect is the sampling rate of the
whole sensor glove. This is highly dependent on the used
microcontroller, or precisely the analog-to-digital converter
to read the sensor values. While the overall sampling rate of
the integrated ADC is sufficient to reach high amounts of
measurements, the switching between the several channels is
the main cause for longer sampling duration. Therefore, the
amount of samples per sensor used for the hyper sampling
and smoothing of the data is not very influential on the



whole sampling rate. Due to these properties of the ADC,
we reached a sampling rate of 20 Hz which ranks our glove
at the bottom of the other designs shown in Table I. To
achieve a higher sampling rate, one should include external
ADC chips with a high sample rate for each flex sensor
and then hook them up to a serial peripheral interface (SPI)
bus. We did not take this approach, as it would raise the
costs of our design significantly while also complicating the
building and replicating process. Furthermore, our achieved
sampling rate of 20 Hz is sufficient for our purpose of
transfer learning and teleoperation.

Especially for the teleoperation of robotic arms, it is
important to have a real-time system with very low latency.
In our setup with a normal WiFi router, we observed
none to little latency of 1-10 milliseconds. This is not a
noticeable delay for the human eye, so online teleoperation
can be done with fast reactions to external influences.
However, it should be considered, that this can vary and is
highly dependent on the available network, but since we are
working with very small data packages, the latency should
always stay in an acceptable range for real-time applications.

In summary, the performance of our sensor glove has some
minor drawbacks in the sampling rate when comparing it
to the other approaches, while keeping up in measurement
accuracy and also providing a real-time latency. But it
fully satisfies the constraints of being low-budget (below
200C), highly accurate and very versatile, which makes it an
appropriate fit for transfer learning of movement trajectories
and also for teleoperating robot arms.

B. Movement Evaluation

To analyze the performance of our sensor glove with
respect to motion model learning scenarios, we recorded the
hand motion while playing music instruments: a trumpet,
a flute, a saxophone, a guitar and a keyboard. For every
instrument, a short melody is repeatedly performed. This
results in a data-set of 60 trajectories of each joint for
each instrument respectively. In our experiment, we only
captured the right hand finger motion. This is sufficient
for our proof-of-concept. However, for future work, the
additional data from the left hand may increase the detection
of differences between the hand motions while playing
these instruments.

We were able to generate movement primitives which
allow a good representation of the given motion of each joint.
Two exemplary generated trajectories are shown in Figure 5.
Furthermore, we calculated the learned model similarities
between each instrument (see Figure 6). It shows that our
developed sensor glove is able to capture accurate hand
motion to learn a motion model and also to show differences
between them.
Since our main focus here were on the design and devel-
opment of the sensor glove, this experiment only gives an
insight into future work and is a proof-of-concept.

(a) trumpet

(b) keyboard

Fig. 5: Exemplary movement primitives in unit time derived
from trajectories of the index finger MCP joint for different
music instruments: (a) trumpet and (b) keyboard. The data-
set of trajectories is illustrated as the thin blue lines, while
the mean of the given trajectories is shown as a solid black
line. The shaded area illustrates the 1-sigma confidence level.

Fig. 6: Kullback-Leibler divergence of model similarities
between each instrument. A low distance value denotes a
high similarity and vice versa.

IV. CONCLUSION

In in this paper, we proposed a low-cost sensor glove
design that satisfies the prerequisites for trajectory learning
with dynamic movement primitives. Our sensor glove
reaches a high accuracy and repeatability as well as
very low latency, which renders it suitable for other
real-time application, for example teleoperation of robotic
manipulators. Furthermore, our approach has a high
flexibility due to the integrated WiFi connection and the
implemented integration to ROS in combination with a real
time simulation in Unity. It is also easily replicable, due to
its low-cost design, i.e., only requires some 3D-printed parts.
Our whole implementation is open source and available on



GitHub (https://github.com/ai-lab-science/
SensorGloves). The main drawback of this simple
approach is in the low sampling rate of the whole setup,
which might be counteracted by extending the design
with external analog-to-digital converters to get faster
measurements of the multiple flex sensors. Nevertheless, we
were still able to use our sensor glove to record different
movement trajectories and successfully applied machine
learning algorithms to analyze them. We also illustrated an
initial result by fitting probabilistic movement primitives
on our sensor recordings for playing different instrument,
verifying our design for future experiments.

To further extend our sensor glove, we will enhance our
design by the addition of coin vibration motors on the
fingertips to be able to give force feedback to the user
during teleoperation tasks. Furthermore, we will use the
generated probabilistic model to generate new data for robot
hand control. Additionally, we will enhance our experimental
setup with a real robot arm to test the model and also the
real time teleoperation of it using the sensor glove.
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movement models show that postural control precedes and predicts
volitional motor control,” Scientific reports, vol. 6, no. 1, pp. 1–12,
2016.

[28] O. Robotics. Ros. [Online]. Available: https://www.ros.org/
[29] U. Technologies. Unity. [Online]. Available: https://unity.com/
[30] . F. S. Systems. Flexpoint bend sensor. [Online]. Available:

https://www.flexpoint.com
[31] S. Electronics. Sparkfun bend sensor. [Online]. Available: https:

//www.sparkfun.com/
[32] E. Systems. Esp32s2. [Online]. Available: https://www.espressif.com/

en/products/socs/esp32-s2
[33] Arduino. Arduino ide. [Online]. Available: https://www.arduino.cc/

en/software
[34] Adafruit. Adafruit bno055. [Online]. Available: https://www.adafruit.

com/product/2472
[35] O. Nisar, M. A. Imtiaz, S. Hussain, and O. Saleem, “Performance

optimization of a flex sensor based glove for hand gestures recognition
and translation,” International Journal of Engineering Research &
Technology, vol. 3, no. 5, pp. 1565–1570, 2014.

[36] E. Rueckert, J. Mundo, A. Paraschos, J. Peters, and G. Neumann, “Ex-
tracting low-dimensional control variables for movement primitives,”
in 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2015, pp. 1511–1518.


