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Abstract—Detecting cost-effectively and accurately the work-
ing area for autonomous lawn mowers is key for widespread
automation of garden care. At present this is realized by means
of perimeter wire, which leads to high setup and maintenance
costs. Here, we propose an active low-cost sensor approach
for detecting chlorophyll fluorescence response. Our novel and
innovative sensing concept allows for a robust working area
detection. The classification is thereby based on the averaging of
multiple measurements using LED pulses and sensed fluorescence
responses. By selecting only low-cost consumer components for
the sensor design, we allow for high-volume production under
low-cost aspects.
We evaluated our novel sensor system by analyzing theoreti-
cally the signal path. Among other we investigated sampling
frequencies, sensed surface areas and environmental influences.
In real world experiments, we evaluated the performance of
our sensor in an exemplary garden and on collected grass
samples. Our theoretical and practical evaluations show that the
sensor classification result is robust under different environmental
conditions, such as changes in lawn quality.

I. INTRODUCTION

Many strategies were proposed to detect the boundaries of
the working area for autonomous lawn mowers, for example
vision based localization and mapping strategies [1], [2] or
capacity based sensor technology for detecting humidity [3].
However, since for autonomous mowers the safety impact on
leaving the mowing area is high, the sensory systems have
to be reliable. Vision based system use color and texture
identifiers to detect grass-containing regions using statistical
methods, e.g. Bayes classifier [4] and reach accuracies of
90 %, shaded grass, and 95 %, illuminated grass [5]. Capacity
based system have to be calibrated and are sensitive with
respect to change in air conditions, such as rain or fog.
In addition, there are local positioning systems which rely
on active beacons using triangulation [6]. However, such
local positioning systems require a-priori an exact map of
the environment. The only working electronics in consumer
market nowadays use bounding wire, electro-magnetic field
measurement technology which safely detects wire crossing
and in/outside area estimation. Such technique has been firstly
introduced in lawn mowers in [7]. However, it requires the
installation of a perimeter wire surrounding the lawn which
results in additional time and maintenance costs. In order to
overcome these problems, we introduce a cost-efficient grass
detection system based on remote chlorophyll fluorescence
sensing, Figure 1. A three page abstract paper, giving an
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(a) The classifcation accuracy for
the proposed chlorophyll fluores-
cence sensor evaluated with different
grass qualities where 1 is the lowest
and 9 the best.

(b) The novel chlorophyll fluores-
cence based sensor. The main com-
ponents are the LED for the illumi-
nation and the phototransistor for de-
tecting the chlorophyll fluorescence
response

Fig. 1: The remote chlorophyll fluorescence sensor and the
classification accuracy with respect to different lawn types,
Figure 11.

overview of our approach, will be presented at the IEEE
Sensors conference [8].

Current remote chlorophyll fluorescence sensing systems
can be grouped into ground based measurement and long
distance systems [9]. The ground based measurement systems
can be further partitioned into active and passive ones.
The most popular group of sensors for active chlorophyll
fluorescence sensing are FLiDAR (Fluorescence Light
Detection and Ranging) [10], where brief periodic excitation
pulses (< 1µs) with defined wavelength (e.g. 355nm) are
used for excitation. Current FLiDARs are using multiple
excitation wavelength, e.g. for identifying plant species
[11] or the stress level [12]. Passive remote sensing, in
comparison, relies on the fluorescence induced by the natural
sunlight. Since the fluorescence represents only a very small
fraction of the recorded spectrum, Fraunhofer lines are used
in order to measure the fluorescence signal, for example
using FLD (Fraunhofer Line Discrimination) [13], which
has been extended in [14],[15]. In general, passive remote
sensing techniques can be partitioned into radiance-based
(including FLD) and reflectance-based methods, e.g. using the
physiological reflectance index (PRI) [16], where reflectance
at 531nm and 570nm is used for indexing. For a more
detailed description about passive remote sensing techniques
the reader is referred to a more comprehensive review [17].
Lastly, there are long distance chlorophyll fluorescence sensing
techniques, e.g. using satellite images to detect chlorophyll
in cyanobacterial blooms [18] or globally identifying the
functional status of vegetation [19].



II. CHLOROPHYLL SENSOR DEVELOPMENT

We do not consider long distance sensing techniques as
applicable for autonomous mowers. FLiDARs on the other
hand can be used for accurately identifying the mowing
area. However, since autonomous mowers are designed for
low purchase and maintenance costs, FLiDARs in general
are too expensive. Passive sensing might be a cost effective
solution but requiring sunlight which limits its applicability,
for example when the mowing time should be over night. The
same argument holds for vision based systems which are in
addition unreliable due to their statistical nature. To overcome
these problems, i.e. low maintenance and acquisition costs,
reliable detection of the mowing area and constant operational
readiness, we propose our novel active chlorophyll sensor
which
(1) stimulates the chlorophyll fluorescence by emitting blue

light with a standard 432nm light emitting diode (LED).
(2) detects the chlorophyll fluorescence response using a

standard infrared phototransistor.
(3) filtering the sunlight response by using high stimulation

frequencies.

We start in Section II by summarizing the main aspects of
chlorophyll fluorescence, Section II-A, from which we then
derive the required design of our low-cost sensor, Section II-B.
Furthermore, we then proceed to a theoretical consideration of
the signal path, Section III. In Section IV, we shortly analyze
the sensor components in order to define optimal operating
settings. In the following, we evaluate the performance of the
sensor statistically on grass collected samples, Section V-A,
and with a mobile robot on an exemplary garden, Section V-B.
We end with a discussion in Section VI and conclude in
Section VII.
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Fig. 2: Example diagram for Chlorophyll Fluorescence inspired
by [20]. About 78 % of the incident radiation is absorbed,
while the rest is either transmitted or reflected. About 20 % is
dissipated through heat and only 2 % emitted as fluorescence.
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Fig. 3: Examples of different normalized absorption and emis-
sion spectra. The blue and red lines show the absorption and
emission fluorescence spectra for Chlorophyll a in diethyl-
ether taken from the PhotochemCAD database [23],[24]. The
yellow line represents the measured emission spectrum of a
consumer LED with emission peak at 432nm. The purple
and green lines show the spectral sensitivities for the RPT-
37PB3F Phototransistor from Rohm Semiconductor and the
PT480 from SHARP.

In this section, we investigate chlorophyll fluorescence as a
unique feature of plants and grass. We first introduce the main
concepts of chlorophyll fluorescence required for the sensor
design, such as the absorption and emission fluorescence spec-
tra, the “Kautsky-Effect” and the chlorophyll fluorescence life
time. Based on the specific characteristics we then introduce
a cost-efficient sensor design using available analog consumer
electronic in combination with a small microcontroller.

A. Chlorophyll Flourescence Principle

We first review the main concepts in regard to chlorophyll
fluorescence. For a detailed survey, we refer to [21] and
[22]. Light energy absorbed by plants, more specifically by
the chlorophyll molecules, can either drive photosynthesis
reaction, it can be dissipated as heat or re-emitted as light
which is called chlorophyll fluorescence, Figure 2. These three
processes are in competition to each other, thus a decrease
in efficiency at one process will increase the efficiency at
another. In general, the light re-emitted by the chlorophyll
fluorescence is of a magnitude much lower than the absorbed
light, between 1 − 2 %. However, since it is possible to
stimulate chlorophyll fluorescence given a certain wavelength,
it can be exploited for a sensor system. Therefore, the
excitation wavelength has to be around 430 nm to optimally
exploit the chlorophyll absorption spectrum, Figure 3, blue
curve. The light re-emitted by the chlorophyll fluorescence is
of longer wavelength with a peak at around 684 nm, Figure 3,
red curve.

An important characteristic for chlorophyll fluorescence is
the so called “Kautsky-Effect” [27], where a plant’s reaction
to sudden light changes is investigated, e.g. the plant is
unveiled in the sunlight. This change of setting results in an
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Fig. 4: The figure shows the chlorophyll a fluorescence
yield change in the dark-adapted cells of the green alga
Chlorella after a saturating nanosecond laser flash (adjusted
from [25],[26]).

increase in the yield of chlorophyll fluorescence. This holds
for the first second after which the fluorescence level drops
down over a few minutes until it reaches a steady state.
This drop down effect is known as fluorescence quenching
[28]. In Figure 4, the “Kautsky-Effect” is shown which is
induced by the photosystem II (PSII) [29] reaction centers
being in a “closed” state. This decreases the photosynthesis
process which on the other hand increases the chlorophyll
fluorescence. Based on the “Kautsky-Effect”, certain effects
such as plant stress can be measured by recording the relative
fluorescence yield from plants even under full sunlight [30].

A much more important characteristic for our sensor design
is the life time of chlorophyll fluorescence, which gives a
lower bound for the sampling period of our sensor. The life
time is thereby the time after stimulation in which chlorophyll
fluorescence can be measured and lies around one nanosecond.
For example, Schmuck and Moya [31] showed for spinach
leaves that at steady state conditions the mean lifetime is
0.415ns and when closing all reaction centers of the PSII,
thus enhancing chlorophyll fluorescence, the mean lifetime
is around 2ns, see also Figure 5. Similar results have been
achieved in [32] with maple and spinach leaves and in [33]
with maize and spruce leaves.

B. Core Sensor Design

As shown in Figure 3 the absorption spectrum of chlorophyll
is particularly strong in the range around 430nm, whereas
the emission spectrum is located in the area of 650− 750nm.
Thus, we require as stimulation source a consumer LED
with emission peak at around 430nm and as absorption sink
a standard phototransistor with a sufficient good spectral
sensitivity between 650 − 750nm. Moreover, the emission
spectrum of the chosen LED and the spectral sensitivity of
the phototransistor should not overlap. Otherwise we can not
distinguish between fluorescence response and LED radiation.
The emission spectrum for the chosen LED (yellow) together
with the spectral sensitivities for two different phototransistors
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Fig. 5: The figure shows the chlorophyll fluorescence decay for
a spinach leaf measured at 684nm after an excitation impulse
with a width of 70− 80 ps (adjusted from [31]).

(purple, green) are drawn in Figure 3. The RPT-37PB3F has
just a low spectral sensitivity in the desired area whereas the
PT480 shows there high yield but intersects with the emission
spectrum of the LED. Here, we use the RPT-37PB3F [34]
since its spectral sensitivity does not intersect with the LED
emission spectrum. In Figure 7, a detailed view of the spectral
sensitivity and the resulting collector current with respect to
the received illuminance is given.

In order to distinguish between the excited chlorophyll
fluorescence and the ambient light (e.g. sunlight), the LED
signal is modulated with a certain frequency fLED. The current
signal captured by the phototransistor is transformed using a
current-to-voltage converter (transimpedance amplifier), the
output voltage is further amplified and the resulting signal
band pass filtered such that it is freed of ambient light
influences.

Fig. 6: The signal path for the proposed low cost sensor. The
microprocessor controls the LED which emits a pulsed light
for stimulating the chlorophyll process. The light radiated back
is then absorbed by the PT and the result further processed and
send back to the microprocessor for evaluation.
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(a) Spectral sensitivity of the RPT-
37PB3F with respect to the wave-
length of the received light.
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(b) Resulting collector current with
respect to the illuminance filtered by
the spectral sensitivity.

Fig. 7: Spectral sensitivity and collector current of the RPT-
37PB3F.

The control unit of the sensor is a small microprocessor,
the ATMEGA32U4 [35], which generates the excitation signal
for the LED and receives the amplified and filtered chlorophyll
fluorescence signal. To achieve high excitation frequencies, the
in- and output signals are generated and captured by directly
using interrupt routines. In addition, plastic lenses were used
for emitting and receiving optics to focus the light onto and
from the measurement area. The whole setting allows for high-
volume lowest cost sensor.

III. SIGNAL PATH ANALYSIS

We now analyze the signal path as presented in Figure 6,
where we use the shorthand notation PT as acronym for
phototransistor. We show that various parameters have to be
considered when designing the sensor in order to achieve
robust classification results, e.g. sensor apertures or electronic
component characteristics. Parameters which play essential
roles in the analysis are listed in Table I. While analyzing the
signal path, we require different spectral functions f(λ) similar
to those as shown in Figure 3, where λ is the wavelength. If
we refer to function f(λ) as to be normalized, then∫

f(λ)dλ = 1, (1)

and if we refer to function f(λ) as to be relative, then

f(λ) ∈ [0, 1] ∀λ. (2)

A. Sensor Apertures & Chlorophyll Fluorescence

In Figure 8, a sketch of the apertures for the LED and PT
of the designed sensor are shown. Let ΦLED be the luminous
flux of the LED. First, the light of the LED is conically sent
to the grass and illuminates a certain area

ALED = π (tan(βLED)hLED)
2
, (3)

where βLED is the lens angle and hLED the distance of
the sensor to the ground. In order to estimate the resulting

Fig. 8: A sketch of the sensor emission (LED) and absorption
(PT) apertures. Optimally, the apertures are aligned to the same
focus point with ALED = APT.

luminous flux response of the chlorophyll to the PT we
use the normalized emission spectrum, fLED(λ), and relative
absorption spectrum, gChl(λ), of the LED and chlorophyll a
respectively in combination with the re-emission magnitude
for chlorophyll fluorescence γ, which leads to

ΦChl = γ ΦLED

∫
fLED(λ) gChl(λ) dλ. (4)

The amount of luminous flux from the chlorophyll fluorescence
response received by the PT varies depending on the lens
aperture. Here, we assume that PT’s lens aperture is such
positioned, that the complete illuminated area ALED can be
seen, which leads to a luminous flux from the chlorophyll
fluorescence response into the the PT of

ΦPT,AC = ϕΦChl

∫
fChl(λ) gPT(λ) dλ. (5)

Here, fChl(λ) is the normalized emission spectrum for the
chlorophyll fluorescence, gPT(λ) the relative spectral sensitiv-
ity of the PT and ϕ is the part of the scattered light from the
lawn surface which is received by the PT. For calculating ϕ, we
assume that the reflected scattered light is equally distributed
in a half sphere from each point of the illuminated area. The
distance between the active measurement surface APT,act and
the illuminated area is hPT, where hPT differs with respect to
the considered points of the active measurement surface and
the illuminated area. To simplify our calculations, we assume
that we can define a mean distance between the PT and the
illuminated lawn area h̄PT. We then define ϕ as the part of the
hemisphere of the emitted fluorescence which is received by
the active measurement surface

ϕ = APT,act/(2πh̄
2
PT). (6)

B. Sun Radiation

In addition to the desired high frequency signal from the
LED excitation, the PT also registers a low frequency signal
from an ambient light source, the sun, which directly emits
with ESun. To determine the amount of luminous flux reflected
by grass and received by the PT, we use the surface Albedo



TABLE I: Important parameters for the analysis of the signal path.

Symbol Value Unit Description
ALED 2.30 × 10−3 m2 illuminated area by the LED
APT 3.40 × 10−3 m2 scanned area by the PT
APT,act 7.55 × 10−6 m2 active measurement surface of the PT
ESun 0 − 105 lx illuminance of the sun with 105 by summer and clear sky
fLED 38000 Hz pulsing frequency of the LED
fsensor 179 Hz classification frequency of the sensor
hLED 0.1 m distance from the sensor to the ground
h̄PT 0.12 m mean distance between the PT and the illuminated area
IC,AC 2.7 × 10−5 A collector current of the PT, AC signal
IC,DC 0 − 3 × 10−3 A collector current of the PT, DC signal
fLED(λ) see Figure 3 1 normalized emission spectrum of the LED
fChl(λ) see Figure 3 1 normalized emission spectrum of the chlorophyll fluorescence
fGrass(λ) see [36] 1 normalized reflection spectrum of grass
gChl(λ) see Figure 3 1 relative absorption spectrum of chlorophyll a
gPT(λ) see Figure 3 1 relative spectral sensitivity of the PT
α 0.25 1 surface Albedo

βLED 15 ◦ lens angle of the LED
γ 0.02 1 re-emission magnitude for the chlorophyll fluorescence
ϕ 8.34 × 10−5 1 part of scattered light from the lawn surface received by the PT

ΦLED 145 lm luminous flux of the LED under full power
ΦChl 2.112 lm luminous flux from chlorophyll fluorescence response of the grass

ΦPT,AC 3.39 × 10−5 lm luminous flux received by the PT, modulated AC signal
ΦPT,DC 0 − 3.8 × 10−3 lm luminous flux received by the PT, sunlight DC signal

α ≈ 0.25 [37] and the normalized reflectance spectrum of grass
fGrass(λ) [36]. With the same assumptions and simplifications
as above, we get

ΦPT,DC = αϕESun APT

∫
fGrass(λ) gPT(λ) dλ (7)

for the luminous flux to the PT based on emitted sun radiation.

C. Light Emission Acquisition

The luminous flux ΦPT = ΦPT,DC + ΦPT,AC induces a re-
sponse of the PT, resulting in a collector current IC based
on the collector emitter voltage VCE applied to the PT. For
example, let VCE = 5V then

IC ≈
3mA

500 lx

ΦPT

APT,act
, (8)

where the active measurement surface of the PT is given with
APT,act = 7.55mm2. The AC part of the PT response generated
by the pulsing LED is around IC,AC ≈ 27µA whereas the
the DC part increases linearly with increasing sun radiation,
e.g. for ESun = 105 lx we get IC,DC ≈ 3mA. However, the
VSOP98260 [38] can only resolve currents up to 400µA. Thus,
the maximum sun radiation with which the sensor works is
around ESun = 104 lx. To solve this problem, the sensor can
be shaded or a resistance bridge can be included to discharge
part of the current. We discuss these options in more detail in
Section VI. Finally, the VSOP98260 amplifies and filters the
signal and forwards it to the microprocessor.

D. Signal Generation & Classification

Autonomous lawn mower in general move with a maximum
velocity of vmax = 1 m/s. Given an area detection radius for
the sensor of rLED ≈ 0.025 m and requiring an overlapping

between measurement areas of rLED, the sensor’s measurement
frequency has to be at least

fsensor,min =
vmax

rLED
= 40 Hz. (9)

Given the Bode plot and cut off frequency of the used LED,
Figure 9b, a preamplifier circuit (VSOP98260) with a carrier
frequency of fVSOP = 38 KHz and a range for the pass
band of 20 KHz− 60 KHz is chosen. Thus, pulsing the LED
with the carrier frequency fVSOP exploits optimal the trade-off
between high sampling frequencies and sensor light intensity.
The chlorophyll fluorescence response speed lies around 2 ns,
Section II-A, and thus is with approximately 500 MHz multiple
orders of magnitude faster than our sensor. However, in order
to ensure stability in the presence of measurement noise which
might result to false positives or false negatives, we perform
N = 200 measurements. The sensor frequency then becomes

fsensor =
1

N
fLED − ε ≈ 180Hz − ε, (10)

where ε reflects the time required for sending the data over
the serial connection during which no measurements are pro-
cessed. Here, we got fsensor ≈ 179Hz and thus ε ≈ 1Hz. As
classification result we get

c =
n

N
, (11)

where n is the number of measured chlorophyll fluorescence
responses within N LED pulses.

IV. HARDWARE COMPONENT EVALUATION

We evaluated the individual components of the sensor in
order to determine optimal settings in regard to range, ambient
light tolerance and noise suppression.
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Fig. 9: Relative light emission and Bode plot for the used
high-power LED.

A. Light Emission

For the light emission we use a high-power LED with
1W maximum power consumption and a resulting luminous
flux of approximately 145 lm. First, the LED was examined
for its behavior with increasing power supply under constant
current flow using the CCS200 spectrometer from Thorlabs,
Inc. In Figure 9a, the measured data are depicted where the
red curve shows the relative intensity at 430nm and the
blue curve the relative intensity at the peak of the measured
spectrum. The emitted light intensity increases nearly linear
with a small decrease in the slope. Second, we evaluated the
frequency response of the LED measuring the light emission
with a BPX 65 photodiode connected to an oscilloscope
(DSO6014A from Agilent Technologies). The photodiode has
a rise and fall time of tr, tf = 0.012µs. Thus, it can resolve
a maximum frequency of 41, 6̄MHz. To drive the LED
with different frequencies we used a programmable function
generator (HM8131.2 from HAMEG). In Figure 9b, a bode plot
for the LED emission is shown. The cutoff frequency here is
approx. fc = 43 kHz.

B. Fluorescence Detection

For the chlorophyll fluorescence signal detection we use in-
frared, high-sensitivity phototransistor, the RPT-37PB3F. First,
we evaluated the frequency response of the PT with an
oscilloscope (DSO6014A from Agilent Technologies) using
a OVP214VC laser driven by the programmable function
generator (HM8131.2 from HAMEG). The PT can easily reach
the in the data sheet specified response (rise and fall) times of
tr = tf = 10µs. Hence, the PT is able to detect signals with
a frequency up to f = 50 kHz without loss of sensitivity.
Second, we evaluated the saturation illuminance of the sensor,
which is mainly limited by the maximum input current to
the VSOP98260, Section III-C. The maximum utilization was
achieved under direct light on the sensor at 3000 lx, which at
an surface Albedo of 0.25 corresponds to a solar radiation of
about 12000 lx. This is consistent with the previous calcula-
tions in Section III.

V. SENSOR EVALUATION

The sensor was tested in 9 different garden environments,
which have been sorted according to their visual grass quality,
and on 3 different non-grass environments, see Figure 11. In
total 280579 samples have been collected. In addition, the
sensor was tested on a mobile robot where an exemplary
garden was scanned.

A. Statistical Analysis in 9 different Garden Environments

We collected samples in 9 different lawn environments
by attaching the sensor onto a lawn mower. For each lawn
type approximately 23500 samples have been collected. In
addition, data samples for 3 non-grass environments have
been collected in order to analyze sensor noise. The non-grass
as well as the grass environments are shown in Figure 11,
where we classified them according to their visual grass
quality. Here, a grass quality of 1 represents the lowest
grass quality and 9 the highest. The sensor noise, analyzed
by evaluating the sensor results collected on the non-lawn
environments, approximated as a normal distribution has
a mean classification result of µ ≈ 0.177 and a standard
deviation of σ ≈ 0.051. Defining a positive classification
result (grass detection) as c > µ + 3σ, results in exclusion
of nearly all false positive results, since 99.73% of all errors
are within the µ ± 3σ region. In Figure 10a, a histogram for
the classification values c for the non-grass measurements are
shown.

Based on the µ+3σ decision boundary, we can now decide
when grass has been detected. In Figure 10b, the classification
results c for the different lawn environments are shown, where
we inflated the grass-quality values with some random noise
for better readability. Above each lawn type, we added the
classification accuracy, thus the amount of correctly classified
samples, which already have been shown in Figure 1a. All of
the different lawn types reach approximately 100 % accurate
classification results except the lawn with the lowest quality,
which still reach a classification accuracy of approximately
75 %.

B. Mowing Area Classification

We tested the proposed chlorophyll fluorescence sensor in a
realistic garden environment on an autonomous lawn mower.
For the localization of the lawn mower we used the real-
time locating system (RTLS) MDEK1001 from Decawave. In
Figure 12, the relative classification results c are shown. Fig-
ure 12a shows the evaluated section of the garden environment
from the bird’s eye perspective and Figure 12b the interpolated
sensor measurements. The proposed chlorophyll fluorescence
sensor reliably detects grass and thus the working space for
the autonomous lawn mower.

VI. DISCUSSION

As demonstrated in Section V, our chlorophyll fluorescence
sensor is able to reliably detect grass and thus classify the



(a) The classification results c for the non-lawn
environments with a mean and standard deviation of
µ = 0.177 and σ = 0.051. The µ + 3σ decision
line for grass detection is shown in red.

(b) The classification results c for the 9 different lawn environments, where the environments are sorted
based on their visual grass quality with 1 being the lowest and 9 the highest grass quality. Above each
lawn category the amount of correctly classified measurements is shown.

Fig. 10: Statistical evaluation of the chlorophyll fluorescence sensor on 9 different lawn and 3 different non-lawn environments,
Figure 11, given the classification results c defined in Equation (11). The sensor shows stable and reliable classification results
with approximately 100 % accuracy for different lawn types, except for the lawn with the lowest quality, whereas even for such
grass an accuracy of approximately 75 % could be reached.

working area for autonomous lawn mowers. However, there
are three issues we like to discuss: the limitation due to high
sun radiation mentioned in Section III-C, the measurement
noise of the sensor shown in Figure 10a and further possible
fields of application for the presented sensor.

A. Limitation due to High Sun Radiation

The limitation due to high sun radiation comes from the
choice of sensor components and the design itself. Possible
workarounds are to shade the grass sensor, add a resistor
bridge to discharge a part of the current or choose other
electronic components with larger resolvable currents. Shading
the sensor might be not always possible, especially if the
sensor is placed at the front of the lawn mower where bumper
sensor are also often situated. Adding a resistor bridge to
discharge a part of the current leads to better performance
under high sun radiation but due to the current discharging,
we get problems for low sun radiation, e.g. measuring at
night. During the development of the sensor we tested various
electronic components, such as different LEDs and PTs.
Keeping in mind our low-cost approach, the proposed design
fulfills our requirements to the best of our knowledge.

B. Sensor Measurement Noise

Following the physical principle of chlorophyll fluorescence,
an ideal sensor should not detect anything if sensing non-
grass environments. However, we saw that there is some
measurement noise caused by several error sources, e.g. non-
ideal emission and absorption spectra of the LED and the PT
or noise of the individual electronic components due to voltage

or current fluctuations. We reduced these errors to the best of
our knowledge to ensure reliable detection of grass, keeping
in mind our low-cost approach. For example, we continuously
improved the design of the printed circuit board (PCB).

C. Fields of Application

As mentioned in the introduction, we designed the sensor as
mowing area classifier for autonomous lawn mower. However,
the proposed sensor is not restricted to this field of application.
Rather, all areas in which chlorophyll fluorescence plays a
role can be considered as possible fields of application, e.g.
agriculture or gardening in general. For example, plant stress
recognition, which is of high importance in modern agriculture,
can be measured by exploiting the “Kautsky-Effect” as demon-
strated in [30]. Such plant stress measuring systems have been
introduced in [39] or [40]. However, current systems require
an enclosure around the plant for executing the measurements.
By adapting our sensor design, plant stress recognition can be
potentially added as new feature.

VII. CONCLUSION

We proposed a low-cost sensor approach using chlorophyll
fluorescence for working space detection for autonomous lawn
mowers. We demonstrated, that our sensor produces stable
and reliable results for grass detection by collecting multiple
samples on lawns with different grass quality. Furthermore, we
showed that our sensor reliably detects the lawn area under real
life conditions by evaluating the sensor in a realistic garden
environment. Due to the low-cost approach, our proposed
sensor allows to develop more cost-effective garden robots. In
further steps, we will compare our sensor with the currently
used perimeter sensors on autonomous lawn mowers.
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Fig. 11: Diffferent lawn types, sorted and classified based on
the observable relative quality.
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