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Abstract— Physical interaction in robotics is a complex prob-
lem that requires not only accurate reproduction of the kine-
matic trajectories but also of the forces and torques exhibited
during the movement. We base our approach on Movement
Primitives (MP), as MPs provide a framework for modelling
complex movements and introduce useful operations on the
movements, such as generalization to novel situations, time
scaling, and others. Usually, MPs are trained with imitation
learning, where an expert demonstrates the trajectories. How-
ever, MPs used in physical interaction either require additional
learning approaches, e.g., reinforcement learning, or are based
on handcrafted solutions. Our goal is to learn and generate
movements for physical interaction that are learned with imi-
tation learning, from a small set of demonstrated trajectories.
The Probabilistic Movement Primitives (ProMPs) framework
is a recent MP approach that introduces beneficial properties,
such as combination and blending of MPs, and represents the
correlations present in the movement. The ProMPs provides
a variable stiffness controller that reproduces the movement
but it requires a dynamics model of the system. Learning such
a model is not a trivial task, and, therefore, we introduce the
model-free ProMPs, that are learning jointly the movement and
the necessary actions from a few demonstrations. We derive
a variable stiffness controller analytically. We further extent
the ProMPs to include force and torque signals, necessary for
physical interaction. We evaluate our approach in simulated
and real robot tasks.

I. INTRODUCTION

Developing robots that can operate in the same environ-
ment with humans and physically interacting with every-day
objects requires accurate control of the contact forces that
occur during the interaction. While non-compliant robots can
achieve a great accuracy, the uncertainty of complex and less-
structured environment prohibits physical interaction. In this
paper, we focus on providing a compliant control scheme that
can enable robots to manipulate their environment without
damaging it. Typically, force-control requires an accurate
dynamics model of the robot and its environment that is not
easy to obtain. Other approaches suggest to learn a dynamics
model, however, this process can be time-consuming and
is prone to model-errors. We present an approach that can
jointly learn the desired movement of the robot and the
contact forces by human demonstrations, without relying on
a learned forward or inverse model.
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Fig. 1. The iCub robot is taught by imitation how to tilt a grate that we
use of during the experimental evaluation of our approach. We demonstrated
how to lift a grate from three different positions. Grasping from different
positions change the dynamics of the task. Our method provides online
adaptation and generalizes in the area of the grasps

Existing approaches for motor skill learning that are based
on movement primitives [1], [2], [3], [4], [5], often incorpo-
rate into the movement primitive representation the forces
needed for the physical interactions [6], [7], [8]. However,
such approaches model a single successful reproduction of
the task. Multiple demonstrations are typically averaged,
despite that they actually represent similar, but different,
solutions of the task. Thus, the applied contact forces are
not correlated with the state of the robot nor sensory values
that indicate the state of the environment, e.g. how heavy an
object is.

In this paper, we propose learning the coordination of the
interaction forces, with the kinematic state of the system, as
well as the control actions needed to reproduce the movement
exclusively from demonstration. Motor skill learning for such
interaction tasks for high-dimensional redundant robots is
challenging. This task requires real-time feedback control
laws that process sensory data including joint encoders,
tactile feedback and force-torque readings. We present a
model-free version of the Probabilistic Movement Primitives
(ProMPs) [9] that enables robots to acquire complex motor
skills from demonstrations, while it can coordinate the move-
ment with force, torque, or tactile sensing. The ProMPs have
several beneficial properties, such us generalization to novel
situations, combination of primitives and time-scaling, which
we inherit in our approach.

ProMPs assume a locally linearizable dynamics models to



compute time-varying feedback control laws. However, such
dynamics models are hard to obtain for physical interaction
tasks. Therefore we obtain a time varying feedback controller
directly from the demonstration without requiring such a
model. In the model-free extension of the ProMPs, we
condition the joint distribution over states and controls on
the current state of the system, and obtain a distribution
over the controls. We show that this distribution represents
a time-varying stochastic linear feedback controller. Due to
the time-varying feedback gains, the controller can exhibit
behavior with variable stiffness and, thus, it is safe to use in
physical interaction. A similar control approach has recently
been presented in [10].

Our approach inherits many beneficial properties of the
original ProMP formulation. We can reproduce the variability
in the demonstrations and use probabilistic operators for
generalization to new tasks or the co-activation of learned
primitives. The resulting feedback controller shows similar
properties as in the model-based ProMP approach, it can
reproduce optimal behavior for stochastic systems and ex-
actly follow the learned trajectory distribution, at least, if the
real system dynamics are approximately linear for each time
step. For non-linear systems, the estimated variable stiffness
controller can get unstable if the robot reaches configurations
that are far away from the set of demonstrations. To avoid this
problem, we smoothly switch between a stable PD-controller
and the ProMP controller if the support of the learned
distribution for the current situation is small. We show
that this extension allows us to track trajectory distributions
accurately even for non-linear systems.

The model-free ProMP approach is evaluated in simulation
with linear and non-linear dynamical systems in Section V.
In a real task, we tilt a grate which is grasped at different
positions. We show that the model-free ProMPs can gen-
eralize to different grasping locations on a grate through
exploiting the correlations between motor commands and
force feedback.

II. RELATED WORK

In this section, we review related work on movement
primitives for imitation learning that combine position and
force tracking, model the coupling between kinematics and
forces and are able to capture the correlations between these
two quantities.

The benefit of an additional feedback controller to track
desired reference forces was demonstrated in grasping tasks
in [6]. Individual dynamical systems (DMPs) [5] were trained
for both, position and force profiles in imitation learning. The
force feedback controller substantially improved the success
rate of grasps in tracking demonstrated contact forces under
changing conditions. For manipulation tasks like opening a
door, the authors showed that the learned force profiles can
be further improved through reinforcement learning [7].

For many tasks, such as like bi-manual manipulations, the
feedback controller needs to be coupled. Gams et al. [11]
proposed cooperative dynamical systems, where deviations
from desired forces modulate the velocity forcing term in the

DMPs for position control. This approach was tested on two
independently operating robot arms solving cooperative tasks
like lifting a stick [8]. Deviations in the sensed contact forces
in one robot were used to adapt the DMP of the other robot
and the coupling parameters were obtained through iterative
learning control. A related probabilistic imitation learning
approach to capture the couplings in time was proposed in
[12]. In this approach, Gaussian mixture models were used to
represent the variance of the demonstrations. The approach
was evaluated successfully on complex physical interaction
tasks such as ironing, opening a door, or pushing against a
wall.

Adapting Gaussian Mixture Models (GMMs) [13], [14],
[15], [16] have been proposed for use in physical interaction
tasks. The major difference to the dynamical systems ap-
proach is that GMMs can represent the variance of the move-
ment. Closely related to our approach, Evrard et al. in [17]
used GMMs to learn joint distributions of positions and
forces. Joint distributions capture the correlations between
positions and forces and were used to improve adaptation
to perturbations in cooperative human robot tasks for object
lifting. In this approach, the control gains were fixed to track
the mean of the demonstrated trajectories. In [18], it was
shown that by assuming known forward dynamics, variable
stiffness control gains can be derived in closed form to match
the demonstrations. We address here an important related
question of how these gains can be learned in a model-free
approach from the demonstrations.

III. MODEL-FREE PROBABILISTIC MOVEMENT
PRIMITIVES

We propose a novel framework for robot control which
can be employed in physical interaction scenarios. In our
approach, we jointly learn the desired trajectory distribution
of the robot’s joints or end-effectors and the corresponding
controls signals. We train our approach from a limited set of
demonstrations. We refer to the joint distribution as state-
action distribution. Further, we incorporate proprioceptive
sensing, such as force or tactile sensing, into our state
representation. The additional sensing capabilities are of high
importance for physical interaction as they can disambiguate
kinetically similar states. We present our approach by, first,
extending the Probabilistic Movement Primitives (ProMPs)
framework [9] to encode the state-action distribution and,
second, we derive a stochastic feedback controller without
the use of a given system dynamics model. Finally, we
extend our control approach for states which are relatively
far from the vicinity of the learned state-action distribution.
In that case, our control approach can no longer produce
correcting actions, and an additional backup controller with
high gains is needed. Our framework inherits most of the
beneficial properties introduced by the ProMPs that sig-
nificantly improved generalization to novel situations and
enables the generation of primitives that concurrently solve
multiple tasks [9].



A. Encoding the Time-Varying State-Action Distribution of
the Movement

We avoid explicitly learning robot and environment mod-
els by learning directly the appropriate control inputs, while
keeping the beneficial properties of the ProMP approach,
such us generalization and concurrent execution.

In order to simplify the illustration of our approach, we
first discuss the special case of a single Degree of Freedom
(DoF) and, subsequently, we expand our description to the
generic case of multiple DoF. The description is based in [9],
but modified appropriately to clarify how the actions can be
modelled. First, we define the extended state of the system
as

yt = [qt, q̇t, ut]
T , (1)

where qt is the position of the joint, q̇t the velocity, and ut
the control applied at time-step t. Similar to ProMPs, we use
a linear basis function model to encode the trajectory of the
extended state yt. The feature matrix and the weight vector
of the non-linear function approximation model become

yt =

qtq̇t
ut

 = Φ̃tw, Φ̃t =

φ
T
t 0

φ̇
T

t 0

0 ψT
t

 ,w =

[
wq

wu

]
, (2)

where the vectors φt and ψt represent the feature vectors for
the position qt and the control ut respectively. The derivative
of the position feature vector φ̇t is used to compute the
velocity of the joint q̇t. The weight vector w contains the
weight vector for the position wq and the weight vector
for the control wu. The dimensionality of the feature φt

and weight wq vectors is N × 1, where N is the number
of features used to encode the joint position. Similarly,
the dimensionality of ψt and wu vectors is M × 1. The
remaining entries of Φ̃t, denoted by 0, are zero-matrices with
the appropriate dimensionality. In our approach, we distinct
between the features used to encode the position from the
features used to encode the control signal due to the different
properties of the two signals. The distinction allows us to use
of different type of basis functions, different parameters, or
a different number of basis functions.

We extend our description to the multidimensional case.
First, we extend the state of the system from Equation (2) to

yt =
[
qTt , q̇

T
t ,u

T
t

]T
, (3)

where the vector qt is a concatenation of the positions of
all joints of the robot, the vector q̇t of the velocities of the
joints, and ut of the controls respectively. The feature matrix
Φ̃t now becomes a block matrix

Φ̃t =
[
ΦT

t , Φ̇
T

t ,Ψ
T
t

]T
, (4)

where

Φt =

 φT
t · · · 0
...

. . .
... 0

0 · · · φT
t

 , (5)

Ψt =

 ψT
t · · · 0

0 ...
. . .

...
0 · · · ψT

t

 , (6)

define the features for the joint positions and the joint
controls. Similarly to the single DoF, the features used for
the joint velocities Φ̇t are the time derivatives of the features
of the joint positions Φt. We use the same features for every
DoF. The dimensionality of the feature matrices Φt and Ψt

is K ×K · (N +M), where K denotes the number of DoF.
The weight vectorw has a similar structure to Equation (2)

and, for the multi-DoF case, is given by

w =
[

1wT
q , · · · , KwT

q︸ ︷︷ ︸
weights for joint positions

, 1wT
u , · · · , KwT

u︸ ︷︷ ︸
weights for joint controls

]T
, (7)

where iw denotes the weight vector for joint i ∈ [1,K ].
The probability of a single trajectory τ = {yt, t ∈

[1 · · ·T ]}, composed from states of T subsequent time steps,
given the parameters w, is computed by

p(τ |w) =
∏
t

N (yt|Φtw,Σy) , (8)

where we assume i.i.d. Gaussian observation noise with zero
mean and Σy covariance. Representing multiple trajectories
would require a set of weights {w}. Instead of explicitly
maintaining such a set, we introduce a distribution over
the weights p(w;θ), where the parameter vector θ defines
the parameters of the distribution. Given the distribution
parameters θ, the probability of the trajectory becomes

p(τ ;θ) =

ˆ
p(τ |w)p(w;θ)dw, (9)

where we marginalize over the weights w. As in the
ProMP approach, we use a Gaussian distribution to represent
p(w;θ), where θ = {µw,Σw}. Using a Gaussian distribu-
tion enables the marginal to be computed analytically and
facilitates learning. The distribution over the weight vector
p(w;θ) correlates (couples) the DoFs of the robot to the
action vector at every time-step t. The probability of the
current state-action vector yt given θ is computed by

p(yt;θ) =

ˆ
N (yt|Φtw,Σy)N (w|µw,Σw) dw

= N
(
yt

∣∣∣Φtµw,ΦtΣwΦT
t + Σy

)
, (10)

in closed form. We use normalized Gaussian basis functions
as features. Each basis function is defined in the time domain
by

φi(t) =
bi(t)∑n
j=1 bj(t)

, (11)

bi(t) = exp

(
− (t− ci)2

2h

)
, (12)
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Fig. 2. We evaluate our approach on a simulated 1-DoF linear system.
We use N = 30 demonstrations (red) for training. During the reproduction
(blue) our approach matches exactly the demonstrations.

where ci denotes the center of the ith basis function and h
the bandwidth. The centers of the basis functions are spread
uniformly in [−2h, Tend+2h]. The number of basis functions
and the bandwidth value we used, depend on the complexity
of task. Typically, complex task require higher number of
basis functions in order to represent them accurately.

B. Imitation Learning for Model-Free ProMPs

We use multiple demonstrations to estimate the parameters
θ = {µw,Σw} of the distribution over the weights p(w|θ).
First, for each demonstration i, we use linear ridge regression
to estimate the parameter vectorwi associated to that specific
demonstration, i.e.,

wi = (ΦT
t Φt + λI)−1ΦT

t Y i, (13)

where λ denotes the ridge factor and Y i the observations of
the state and action for all the time steps of that demon-
stration. We set λ to zero, unless numerical issues arise.
Subsequently, we estimate the parameters θ from the set
of weights {wi, i ∈ [1, N ]} using the ML estimators for
Gaussians, i.e.,

µw =
1

L

L∑
i=1

wi,

Σw =
1

L

L∑
i=1

(wi − µw)(wi − µw)T , (14)

where L is the number of demonstrations.

C. Integration of Proprioceptive Feedback

Additional sensory feedback integration, e.g., force-torque
feedback, is beneficial for physical interaction scenarios as
we can capture the correlation of the trajectory, the controls
and the sensory signal. This correlation might contain useful
information for the reproduction of the movement. We extend
our approach to additionally contain the sensory signal st.
The extension require the state yt to include the sensory
signal st. We estimate an individual weight vector ws that
we include in the concatenated weight vector w. Hence,
by learning the distribution p(w), we can represent the
correlations between the sensory signal and the control
commands. We use the sensory signal to get a new desired
trajectory distribution and its controls.
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Fig. 3. We evaluate the generalization capabilities of our approach with
conditioning. The initial distribution is depicted in blue. At time t = 0.75s
we condition the initial distribution to pass at a specific position q =
{0.5, 0.8, 1.3} with low variance. We generate N = 30 demonstrations
for every conditioning point and we show the resulting distribution in red.
The X markers denotes the position at the conditioning point.
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Fig. 4. We evaluate our approach on an non-linear system with D = 4
DoF. While the dynamics of the task are non-linear we are able to reproduce
(blue) accurately the demonstrated distribution (red). We show the trajectory
distribution of the “y” dimension of the task-space of the robot. Our
approach captures the correlations between the DoF of the robot and reduces
the variance of the trajectory reproduction at both via-points.

D. Generalization with Conditioning

The modulation of via-points and final positions is an
important property of any MP framework to adapt to new
situations. Generalization to different via-points or final
targets can be implemented by conditioning the distribution
at reaching the desired position q∗t (or by conditioning on
any other sensory value) at time step t.

By applying Bayes theorem, we obtain a new distribution
p(w|q∗t ) for w which is Gaussian with mean and variance

µ[new]
w = µw +Qt

(
q∗t −ΨT

t µw

)
, (15)

Σ[new]
w = Σw −QtΨ

T
t Σw, (16)

Qt = ΣwΨt

(
Σ∗

q + ΨT
t ΣwΨt

)−1

, (17)

where Σ∗
q is a covariance matrix specifying the accuracy of

the conditioning. As the weight vectors for the controls are
also contained in the distribution, the distribution over the
controls will change accordingly, such that, by executing the
controls, we will reach the desired state q∗t .

E. Robot Control with Model-Free ProMPs

We derive a stochastic feedback controller which is ideally
capable of reproducing the learned distribution. We define as
ỹt the observable state of the system, that contains the joint
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Fig. 5. The evaluation of our approach on the quad-link robot. We present the results of the of the DoF in joint space. The demonstrated distribution
is plotted in red and the reproduction in blue. The two distributions match. The two via-points of the movement, which were set in task-space, are not
visible in joint-space.

positions, velocities, and potentially force or torque data, but
not the action. We rewrite the joint probability

p(yt) = p(ỹt,ut)

= N
([
ỹt

ut

]∣∣∣∣Φ̃tµw, Φ̃tΣwΦ̃
T

t + Σy

)
, (18)

where

Φ̃tΣwΦ̃
T

t =

[
ΦtΣwΦT

t ΦtΣwΨT
t

ΨtΣwΦT
t ΨtΣwΨT

t

]
, (19)

and condition on the current observable state ỹt to obtain
the desired action. From the Bayes theorem, we obtain the
probability of the desired action

p(ut|ỹt) =
p(ỹt,ut)

p(ỹt)
= N (ut|µu,Σu) , (20)

which is a Gaussian distribution as both p(ỹt) and p(ut) are
Gaussian. The mean and covariance of p(ut) are computed
by

µu = Ψtµw +Kt, (ỹt −Φtµw) (21)

Σu = ΨtΣwΨT
t +Kt ΦtΣwΦT

t , (22)

Kt = ΨtΣwΦT
t

(
ΦtΣwΦT

t

)−1

, (23)

using Gaussian identities. We rewrite the mean control given
the observable state ỹt as

µu = Ψtµw +Ktỹt −KtΦtµw

=Ktỹt + kt, (24)

and observe that it has the same structure as a feedback
controller with time varying gains. The feedback gain matrix
Kt couples the DoF and the additional force-torque signals
of the system. The control covariance matrix Σu introduces
correlated noise in the controls. The noise used only if
we want to match the variability of the demonstrations.
Alternatively, we can disable the noise and replay the noise-
free behavior.

F. Correction Terms for Non-Linear Systems

A basic assumption for the linear feedback controller
obtained by the ProMP approach is that the movement is
defined in a local vicinity such that a linear controller is
sufficient. Whenever the robot’s state “leaves” this vicinity,
due to the non-linearities of the dynamics, the learned
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Fig. 6. An animation of the movement of the quad-link non-linear robot
during the execution of our approach. We use darker colors at the beginning
of the movement and lighter at the end.

feedback controller might not be able to direct the robot back
to the desired trajectory distribution. Therefore, we apply a
correction controller that is active only when the state is
sufficiently “far” outside the distribution and directs the sys-
tem to the mean of the demonstrated state distribution. The
correction controller is defined as a standard PD controller
with hand-tuned gains, i.e.,

uC
t =KP

(
µq,t − qt

)
+KD

(
µq̇,t − q̇

)
+ uff,t, (25)

where the feed forward term uff,t is still estimated from the
ProMP and given by the mean action of the ProMP for time
step t, i.e.,

uff,t =KtΦtµw + kt. (26)

The correcting action uC
t is only applied if we are outside

the given trajectory distribution. We use a sigmoid activation
function that depends on the log-likelihood of the current
state to switch between the ProMP feedback controller and
the correction controller,

σ (qt, q̇t) =
1

1 + exp (− log (p (qt, q̇t;θ))β
−1 − α)

, (27)

where α and β are hand tuned parameters of the activation
function. We linearly interpolate between the controls of the
ProMP and the correction action. For a high likelihood, e.g.,
σ(qt, q̇t) = 1 we fully activate the feedback controller from
the ProMP. For σ(qt, q̇t) = 0 we fully activate the correction
action.



0 0.25 0.5 0.75 1

−40

−20

0

time [s]

q
[r

ad
]

Fig. 7. The trajectory distribution of the wrist joint of the iCub during
our experiment. The demonstrated distribution is presented in blue and
the reproduction in red. The demonstrated distribution contain trajectories
from all three grasping locations. The reproduction distribution contain
trajectories from seven grasping locations. The Model-Free ProMPs can
reproduce the demonstrated distribution in new grasping locations.

IV. EXPERIMENTAL EVALUATION

We begin our experimental evaluation with different toy
tasks to demonstrate the properties of the model-free ProMP
approach. First, we demonstrate that our model-free ProMP
controller can reproduce the demonstrated trajectory distribu-
tion accurately on a linear 1-D system. Then, we change the
desired trajectory distribution by conditioning, to generalize
to different via-points and we execute our controller. We shot
that the resulting distribution exactly reaches the via-points.

In a sub-sequent experiment, we test the model-free
ProMP on a non-linear Quad-Link pendulum. We show that
by the use of the correcting PD controller we can still track
the distribution accurately.

Finally, we performed first experiments on the iCub, where
the humanoid is grasping a grate at different grasp locations
and has to tilt it. By learning the correlation between the
force-torque readings and the demonstrated control actions
the iCub should learn to compensate for gravitational effects.

A. Reproduction of the Trajectory Distribution

We illustrate our approach in an one dimensional linear
second order integrator as the underlying dynamical system.
We created the demonstrations by first creating different
desired trajectories with splines that go through different
via-points. The real trajectories are created by following a
given spline with a PD control law. We also added noise
to the acceleration of the system. The resulting trajectory
distribution is given in Fig. 2 (red). In the same figure,
we illustrated the resulting trajectory distribution by using
the ProMP controller from the learned model-free ProMP.
As we can see, the controller could match the distribution
accurately.

B. Generalization by Conditioning to Different Via-Points

We test the conditioning operations that can be performed
upon the trajectory distribution to generalize to different via-
points. We conditioned the trajectory distribution to reach
the positions 0.5, 0.8 and 1.3 respectively at time point t =
0.75s. The resulting via points are indicated by a red cross
in Fig. 3. For each of the conditioning scenarios, we plot the
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Fig. 8. The torque distribution of all grasping locations used during
the demonstrations. Each location created a distinct offset in the measured
torque. We present the demonstrated torque distributions in blue. Addition-
ally, we show that our approach can reproduce the torque distribution when
we position the grate at the same locations as in the demonstrations. We
present the reproduction results in red.
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Fig. 9. The trajectory distribution of the wrist joint of the robot, when
we disable the torque feedback. Depending on the grasping location, the
robot either fails to lift the grate to the same height as demonstrated, or,
it overshoots the lifting task due to gravity. In the later case, it should be
noted that the center of mass of the grate is moved over the axis of the
joint and, thus, gravity forces the grate to lift. For comparison, we present
the demonstration distribution from all grasping locations in blue.

resulting trajectory distribution when executing the controller
of the conditioned ProMP. The model-free ProMP controller
keeps the shape of the distribution while reaching the desired
via-points.

C. Non-Linear Quad-Link Pendulum

To evaluate the quality of our controller on a non-linear
system, we tested our model-free ProMP approach on a non-
linear quad-link planar pendulum. Each link had a mass of
1kg and a length of 1m. We used the standard rigid body
dynamics equations, where the gravity and the Coriolis forces
are the major non-linear terms. We collected demonstrations
by defining the desired trajectory as a spline with two via-
point at t = 0.3, 0.8 in the task-space of the robot. We gener-
ated the demonstration trajectories using inverse kinematics
for generating the joint space reference trajectories. Then,
we used a inverse dynamics controller to track the reference
trajectories and we collected the joint state-action data. We
trained our approach using N = 30 demonstrations.

The resulting trajectory distribution for the y-dimension
of the task-space is show in Fig. 4. The robot can track with
its end-effector the desired distribution accurately and can
reproduce the two via-points. In Fig. 5 we show all four



the joint trajectories. In the joint space distributions the via-
points are not visible but are captured in the covariance
matrix of the weights. While the distribution is a wide,
the controller could match the mean and variance of the
demonstrated trajectory distribution. In Fig. 6, we illustrated
the resulting trajectory from the controller in the task space
of the robot. The activation of the correcting controller is
around 1% of the total execution time.

D. Adaptation to External Forces on the ICub

In this experiment we used the presented model-free
ProMP approach to learn a one-dimensional torque feedback
controller in the humanoid robot iCub. The task is to tilt a
grate multiple times from an initial distribution to a goal
distribution, as show in Fig. 7. In our experiments we
use the wrist joint. The grate is attached to the robot at
different lengths, to simulate different grasping locations.
We demonstrate 20 movements per grasping location to
train our approach. The data where recorded through tele-
operation. In this experiment the state encodes the joint
angle encoder value and the joint torque reading in the
wrist. We present the recored torques from the sensor of
the robot for all three demonstrated grasping locations in
Fig. 8. By placing the grate on the same location as during
the demonstration and reproducing the movement with our
approach, we show that we observe the same torque profile.
The force measurement is crucial in our experiment as it
is used for applying the correct forces during the execution
of the movement. When disabled, the robot either fails to
lift the grate to the demonstrated location or it overshoots.
The overshooting is due to gravity, as in that grasping
location the center of the mass of the grate is moved over
the axis of wrist rotation. The results are shown in Fig. 9.
The reproduction distributions where created using twenty
executions of the model-free ProMP controller per grasping
location. Our approach can generalize to different grasping
locations between the demonstrations. We generalized into
four new locations and executed our controller. The robot
reproduces the same joint distribution while compensating
for the different dynamics, as shown in Fig.7.

V. CONCLUSION

In this paper, we presented a model-free approach for
Probabilistic Movement Primitives (ProMP) that can be
used for learning skills for physical interaction with the
environment from demonstrations. In contrast to the original
approach, the model-free ProMP approach does not require
a known model of the system dynamics as the stochastic
feedback controller is directly obtained from the estimated
distribution over the trajectories, which includes the control
signals. We showed that the model-free ProMP approach
inherits many beneficial properties from the original ProMPs
such as reproducing the variability in the demonstrations as
well as using probabilistic operations such as conditioning
for generalization to different via points. Our approach is
different from directly encoding the actions, as generates the
action through a model that depends on the state and the time.

Hence, our approach can generalize well in the vicinity of
the demonstrations. Our approach can be used in tasks where
time is critical for the execution of the task, e.g. pushing a
button at a specific movement, or grasping a moving object.

For learning physical interaction tasks, we showed that we
can include sensory signals, for example the measure torques,
in our distribution. By learning the correlations of this
sensory signal, we can coordinate the controls needed for the
physical interaction with the measured torques and forces.
Such coordination is essential for the complex interaction
tasks. In a preliminary study, we showed how the model-free
ProMP approach can be applied to the iCub to apply forces
to objects with unknown masses. In future work, we will
investigate the use of model-free ProMPs for more complex
scenarios.
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