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Abstract— Tuning parameters is crucial for the performance
of localization and mapping algorithms. In general, the tuning
of the parameters requires expert knowledge and is sensitive to
information about the structure of the environment. In order
to design truly autonomous systems the robot has to learn the
parameters automatically. Therefore, we propose a parameter
optimization approach for loop closure detection in closed envi-
ronments which requires neither any prior information, e.g. robot
model parameters, nor expert knowledge. It relies on several path
traversals along the boundary line of the closed environment. We
demonstrate the performance of our method in challenging real
world scenarios with limited sensing capabilities. These scenarios
are exemplary for a wide range of practical applications including
lawn mowers and household robots.

I. INTRODUCTION

Algorithms for simultaneous localization and mapping
(SLAM) [9], [2] such as FastSLAM [24], GMapping [13],
[12] or RTabMap [17], [18] require the tuning of a large
number of parameters. A correct setting of these parameters
is crucial for the performance of these algorithms [1].
In general, finding convenient parameters for a certain
mapping task requires prior knowledge on the structure of the
environment and the robot itself. However, truly autonomous
systems are expected to be able to adapt themselves to
any environment and thus, being able to learn the required
parameters autonomously. A well-known method for such
meta-parameter learning problems is classical Reinforcement
Learning (RL) [31], more specifically Bayesian Optimization
(BO) [29], [30]. BO is a black box optimizer that only
requires a definition of a cost function. A proper definition of
the cost function is critical for the success of the parameter
learning procedure. For mapping algorithms, a natural choice
would be to define the cost as the difference between the
estimated map and the respective ground truth. However,
the ground truth is not known a priori such that other cost
measures have to be developed for the meta-parameter
learning.

An area of increasing importance in the last decade is
the field of low-cost robotics [7], [15]. Robots such as
lawn mowers or vacuum cleaners are used ubiquitously in
households and work exclusively in closed environments,
e.g. on a lawn or in an apartment. In general, these robots
have only limited sensing capabilities due to the low-cost
design. Algorithms dealing with the mapping problem for
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this type of robots are proposed in [26] and [6], where
sonars or infrared sensors are used and linear features
required. An indoor mapping approach using a wall following
scheme has been presented in [34], where map rectification
has been used under the assumption of straight wall segments.

Where there is an active research for SLAM approaches for
autonomous vacuum cleaner, e.g. vision SLAM [16], [19],
[20], autonomous lawn mowers still move randomly within
the area of operation. Thereby, they use a boundary wire
enclosing the working area which emits an electromagnetic
signal that can be detected by the robot. Towards efficient
localization and planning, a first step can be taken by
mapping the enclosure. In [10], a map generation approach
based the loop closure detected by returning to the home
station has been introduced. Thereby, the lawn mower was
driving along the boundary wire while measuring movements
with the wheel odometry. However, using only a single loop
closure requires to distribute the error along all estimated
positions equally. Hence, detecting additional loop closures
is favorable for a robust mapping approach. In [28], the
authors proposed a loop closure detection approach for
low-cost robots based on odometry data only. The data
is collected when the robot is following the boundary of
the closed environment. The performance of this approach
depends highly on the correct meta-parameter setting which
requires a priori knowledge about the closed environment.
Hence, to enable truly autonomous behavior the robot has to
learn the parameter by itself such that it can adapt to any
arbitrary closed environment. Therefore, we developed a RL
approach for learning meta-parameters under the assumption
that the average distance traveled by the robot along a closed
environment is equal to its circumference. We demonstrate
the performance and robustness of our approach in different
challenging simulation and real world scenarios.

The contributions of the paper are three-fold. First, we adapt
and improve the method introduced in [28] by introducing
relative error measurements for each loop closure using
the Iterative Closest Point (ICP) approach [4]. Second, we
insert a feasibility check in order to cope with recurrent
symmetric structures and third, we introduce a RL scheme
for learning the meta-parameters to enable true autonomous
behavior. For our approach, we require that the robot is able
to travel several times along the boundary line of the closed
environment, e.g. by using a perimeter wire.

We start by summarizing and adapting the mapping method



from [28], Section II. In Section III, we derive the RL pro-
cedure for meta-parameter learning. The procedure is divided
into two stages, parameter learning for loop closure detection
and pose graph optimization. We evaluate our approach in
simulations and on real data in Section IV and in Section V
we conclude.

II. MAPPING PROCEDURE

As the robot follows the boundary line of the closed envi-
ronment, e.g. by means of the electromagnetic wire signal,
a path based on the robot odometry data can be recorded.
This path can then be transferred into the well-known pose
graph representation [11]. Loop closures can be identified
by comparing the neighborhoods of the pose graph vertices
with each other, e.g. due to shape comparison. Based on
the identified loop closing constraints the pose graph can be
optimized by reducing the sum of weighted residual errors.
Both, finding good loop closing constraints and optimizing the
pose graph are strongly dependent on the correct parameter
tuning. In the following, we shortly recapture pose graph
representation as well as the general idea for detecting loop
closing constraints. In Table I, we listed our notations for the
different variables used throughout this paper.

A. Pose Graph Representation

Let p = {p0, . . . ,pN} be a set of N+1 poses representing the
position and orientation of a mobile robot in a two dimensional
space, hence pi = [x>i , ϕi]

>. Here, xi ∈ R2 is the cartesian
position of the robot and ϕi ∈ [−π, π] the corresponding
orientation as an euler angle with the integer i = 0:N . The
relative measurement between two poses i and j is then given
as

ξij =

[
R>i (xj − xi)
ϕj − ϕi

]
= pj � pi, (1)

where Ri = Ri(ϕi) is a planar rotation matrix and � the
pose compounding operator introduced by [21]. The pose
graph is then a directed graph G(V, E) with N + 1 vertices,
representing the poses, and N + M edges, representing
the relative pose measurements. In our case, these pose
measurements are composed of N odometric constraints
and M loop closing constraints. In Figure 1, an example
of a pose graph with four odometric and one loop closing

TABLE I: Variable definitions used throughout this paper.

p R3 poses
x R2 positions in meters
ϕ R orientations in rad
R R2×2 two-dimensional rotation matrix
ξ R3 relative measurements
P R3×3 cov. matrix to the noise of the rel. measurements
N N number of odometric constraints
M N number of loop closing constraints
LNH R neighborhood length in meters
cmin R minimum comparison error
γ1, γ2 R pose graph optimization parameters
U R circumference of the closed environment in meters
u R path distance between loop closing pairs in meters
∆ϕ R difference in orientation in rad
ϕcycle R feasibility check parameter

Fig. 1: Pose graph with five vertices connected with five edges.
Four of the edges are odometric constraints and one is a loop
closing constraint. On the right, the incidence matrix is shown
divided into the parts containing the odometric constraints and
the loop closing constraints.

constraint is shown. The connection between the vertices
by the edges can be compactly written using an incident
matrixA, which is exemplarily shown on the right in Figure 1.

To account for noise in the relative pose measurements, we
include zero mean Gaussian noise εij ∼ N (0,Pij), where

ξ̂ij = ξij + εij , (2)

denotes the with noise corrupted relative pose measurements.
The overall optimization problem is then to minimize the sum
of weighted residual errors rij(p) with respect to the pose
estimates p,

min
p

∑
(i,j)∈E

||rij(p)||2Pij , (3)

where

||rij(p)||2Pij = [(pj � pi)− ξ̂ij ]>P−1ij [(pj � pi)− ξ̂ij ]. (4)

Here, Pij is the covariance matrix corresponding to the noise
of the relative measurements ξ̂ij .

B. Loop Closure Detection

Based on the pose graph, loop closing constraints are detected
by comparing the shape of the neighborhood regions of each
vertex with another. Therefore, a piecewise linear function

θ(x) = φi for li−1 ≤ x < li, i = 0, 1, . . . , N. (5)

representing the shape of the pose graph is constructed by
accumulating the orientation and distance differences between
the poses

φi = φi−1 + ∆φi

li = li−1 + ||vi||.
(6)

Here, vi = xi − xi−1 and ∆φi = ϕi − ϕi−1 starting by
φ0 = ϕ0 and l0 = 0. Figure 2 shows such a constructed piece-
wise orientation function. By defining the neighborhood of a
vertex i as [li − LNH, li + LNH], a comparison error between
two vertices i and j is given as

Cij =

∫ +LNH

−LNH

[θ(li + x)− φi]− [θ(lj + x)− φj ] dx. (7)
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Fig. 2: Example for the piecewise linear orientation function
θ(x). The green circled regions show similar path segments.
The vertices or dominant points (DPs) of the pose graph are
pictured as red dots. The estimated circumference U for the
closed environment is exemplarily depicted for a possible loop
closing pair.

We rewrite Equation (7) as a sum over m linearly distributed
evaluation points

Cij =
1

m

m∑
k=1

[θ(li + xk)− φi]− [θ(lj + xk)− φj ] (8)

with x1 = −LNH, xm = +LNH. In Figure 3, a resulting error
matrix between all vertices is graphically illustrated. A loop
closing pair SPk = {pi,pj} for i 6= j is defined as a local
minimum of Cij for which holds Cij,min < cmin. A local
minimum represents thereby the best possible loop closure
in a certain region of the error matrix and the threshold
cmin ensures that not every local minimum is selected as
loop closing pair, but only sufficient accurate ones. Thus,
the parameters LNH and cmin are crucial for efficiently
finding convenient loop closing pairs and will be learned
through Bayesian Optimization. This process is discussed in
Section III-A.

After detecting a loop closure between the vertices i and j
of the pose graph, the loop closing constraint as a relative
measurement ξ̂ij has to be added. Therefore, the neighborhood
regions of both poses i and j are discretized as distinct points,
represented by the sets Xi = {xi,1, . . . ,xi,K} and Xj =
{xj,1, . . . ,xj,K}, and transformed such that both poses i and
j are equal with p̂i = p̂j = [0, 0, 0]>. By using an adapted
ICP approach [3], which minimizes the distance error

min
Rβ ,t

Edist(Rβ , t) = min
Rβ ,t

K∑
k=1

||Rβxi,k + t− x∗i,k|| (9)

with x∗i,k being the point of Xj closest to xi,k, a two
dimensional rotation Rβ with β being the rotation angle and
a translation vector t = [tx, ty]> can be calculated. The loop
closing constraint can then be derived using Equation (1) by
transforming p̂j given the rotation and translation which leads
to

ξ̂ij =
[
tx ty β

]>
. (10)
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Fig. 3: Comparison error of the shapes of the neighborhood
between the vertices of the pose graph. For better reading we
plotted the error in the form log(1−Cij) and only a section
of the matrix. The variables xi and xj are representing the
position l of the vertices i and j in meter along the pose graph.
The estimated circumference U for the closed environment can
be read directly from the graphic.

The corresponding covariance matrix can be calculated using
the correlation error Cij and tuneable parameters γ1 and γ2

Plc,ij = diag
([
γ1 γ1 γ2

])
Cij . (11)

The parameters γ1 and γ2 are constant for all loop closing
constraints and will be learned through Bayesian Optimization.
This process is discussed in Section III-B. For the odometric
constraints we generate the covariance matrices as

Podometric,ij = diag

cos(ϕi)(α3δT + α4δR)
sin(ϕi)(α3δT + α4δR)

α1δR + α2δT

 (12)

on the basis of the odometry model presented in [32] and
under the assumption that only one translation δT and one
rotation δR occur. The parameters α1, . . . , α4 can be learned.
Here, we assume these parameters are given due to a known
odometry model of the underlying differential drive system.

C. Recurrent Symmetric Structures

A problem for the approach introduced above are recurrent
symmetric structures. Such structures are present in many real
world scenarios, and hence an autonomous robot needs to be
able to cope with them. Therefore, we introduce a feasibility
check

|π −mod (∆ϕij , 2π) | > ϕcycle (13)

for every loop closing pair {pi,pj} with the respective dif-
ference in orientation ∆ϕij = ϕj − ϕi. Here, mod(a, b)
is the modulo function which gives back the remainder of
the Euclidean division of a by b. Only loop closing pairs
which pass the check of Equation (13) are considered for
pose graph optimization. The feasibility check is based on
the assumption, that, on average, the orientation error of the



odometric measurements will sum up to zero. However, the
orientation difference can largely differ and thus the meta-
parameter ϕcycle ∈ [0, π] has to be selected accordingly.

III. META-PARAMETER LEARNING

To learn the unknown meta-parameters for the above map-
ping algorithm, we define an optimization problem with the
objective

min
θ
c(θ) (14)

as a general cost function. This cost is then minimized
through episodic BO [29] with expected improvement [23]. To
optimize both terms, the loop closing parameters LNH, cmin,
ϕcycle and the pose graph optimization parameters γ1, γ2 we
define a two-stage optimization process. First, we optimize
the loop closing parameters LNH, cmin, ϕcycle which gives
us as a by-product an estimate of the circumference of the
closed environment U . Based on the estimated circumference
U we can define a cost function for optimizing the pose
graph parameters γ1, γ2. Hence, a joint optimization of all
parameters is not suitable. In the following, we derive the two
cost functions required for the optimization process.

A. Stage 1 – Optimization of Loop Closing Parameters

We assume that the odometric error between two poses i and j
is on average zero. This is a quite strong assumption, however,
a non-zero mean value will be inherent in the generated map
and thus compensated when navigating with the same robot
odometry. To model this error, we use a Gaussian Distribution
ε ∼ N (0,P ) with the covariance matrix P . Let u then denote
the distance along the pose graph between a loop closing pair
i, j

u =

j−1∑
k=i

||xk+1 − xk||. (15)

Given the assumption from above, the path distances for all
loop closing pairs u = [u1, u2, . . . , uM ], identified by cycling
around a closed environment, are, on average, multiples of
the circumference nU . Here, n ∈ N+ is a positive integer,
representing the number of cycles before the loop closure
detection. Hence, if all loop closures are detected properly, a
histogram of the path distances u has only equally distributed
peaks at positions nU . The right panels of Figure 4 show
such histograms for ill-detected loop closures (top) and well-
detected loop closures (bottom). To transform this idea into a
cost function, we can learn a Gaussian Mixture Model (GMM)
[27] with the probability distribution

p(u) =

K∑
k=1

πkN (u|µk,Σk) (16)

from observed path distances u. Here, K is the number of
mixture components and πk, µk, Σk the mixture weight, the
mean and the variance of the k-th component respectively. As
part of the cost function we use the negative log likelihood of
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Fig. 4: For the top panels, the mapping parameters have
been ill-chosen. The upper left panel shows the negative log
likelihood history and the upper right panel the histogram for
the path distances of the loop closing pairs. In the bottom
panels the mapping parameters have been well-chosen. Again,
in the left panel the negative log likelihood history is shown
and in the right the histogram.

the GMM

−L = − ln p(u|π,µ,Σ) = −
M∑
i=1

ln

[
K∑
k=1

πkN (ui|µk,Σk)

]
(17)

over the data set u = [u1, u2, . . . , uM ]. The log likelihood
decreases if the dataset u meets the above assumption of
evenly distributed peaks at positions nU . A common strategy
for training GMMs is to iteratively increasing K until the
log likelihood does not improve further. In the left column
in Figure 4, the evolution of the negative log likelihood with
respect to the number of components of the GMM is shown.
For fitting the GMM the iterative Expectation-Maximization
(EM) algorithm is used [8], [22]. The EM algorithm starts with
a randomly selected model and then alternately optimizes the
allocation of the data u, i.e. the weighting πk, to the individual
parts of the model and the parameters of the model µk and
Σk. If there is no significant improvement, the procedure is
terminated.

We define the cost function for the loop closure detection as

min
θ
c(θ) = min

θ
(−L− log(M)) , (18)

with the unknown parameters θ = [LNH, cmin], the length of
the neighborhood and the minimum comparison error, and M
being the number of loop closures found. The cost function
represents a trade-off between the number of loop closures,



where more reliable loop closures result in a better pose
graph optimization, and a restrictive choice of loop closures
to avoid false detection. Based on the best GMM fit, the
circumference of the closed environment U can be estimated.

To also learn the meta-parameter ϕcycle for the feasibility
check for recurrent symmetric structures, we can calculate
the negative log likelihood for orientation differences of the
loop closing pairs ∆ϕij , similar to Equation (17), under the
assumption that all ∆ϕij for accurate loop closures are close
to n2π with n ∈ N+. Equation (18) than turns into

min
θ
c(θ) = min

θ
(−L− Lϕ − log(M)) , (19)

with θ being now θ = [LNH, cmin, ϕcycle]. The additional
cost term −Lϕ represents the negative log likelihood
of the GMM from Equation (17) over the data set
∆ϕ = {∆ϕ1,∆ϕ2, . . . ,∆ϕM}, thus

−Lϕ = − ln p(∆ϕ|π,µ,Σ). (20)

B. Stage 2 – Optimization of Pose Graph Parameters

Based on our assumption of a zero mean odometric error we
can assume the estimated circumference U from the first stage
of our optimization process to be the true circumference of the
closed environment. Hence, we can define a cost function for
learning the pose graph optimization parameters γ = [γ1, γ2]
as

min
γ
c(γ) = min

γ
|U − Û | (21)

where Û represents the estimated circumference after pose
graph optimization. Thus, we punish deviations between the
estimated circumference based on the original pose graph and
the optimized one. In order to estimate the circumference after
pose graph optimization, a fit onto GMMs is performed as
proposed in Section III-A.

IV. RESULTS

We evaluated the accuracy of the pose graph optimization
(performance) and the generality of our approach in different
environments (robustness). As a measure for the performance,
we used an error metric based on the relative displacement
between poses

Erel(ξ) =
1

N

∑
i,j

trans
(
ξi,j � ξ

∗
i,j

)2
+ rot

(
ξi,j � ξ

∗
i,j

)2
(22)

as introduced in [5]. Here, ξi,j are the relative transformations
after pose graph optimization, ξ∗i,j ideally the true relative
transformations and trans and rot separate the translational and
rotational components. Additionally, we used a second error
metric for comparing results obtained on real lawns where the
true poses of the robot are unknown but a groundtruth of the
environment is available. Therefore, we constructed a polygon
defined by the points X out of the optimized pose graph data
and compare this polygon with a polygon representing the
groundtruth, Xtrue. We then transform

X ← R ·X + t, (23)
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Fig. 5: Simulation environments used for evaluating the pro-
posed learning procedure for mapping in closed environments.
From left to right: A symmetric environment (U = 77m), a
curved environment (U = 52m) and an apartment environ-
ment (U = 100m).

such that the deviation between the enclosed areas A, Atrue of
the polygons

∆A = 1− Atrue ∩Aestimate

Atrue ∪Aestimate
(24)

is minimized. Here, R is a rotation matrix and t a translational
vector. The minimized difference then serves as secondary
error metric.

We compared to the original approach from [28] using hand
crafted and learned parameters. The handcrafted parameters
have been selected according to the following rules:
The neighborhood LNH should be chosen such that 2LNH is
slightly larger then half of the true circumference. Thus, we
like to use slightly more than 50 % of U for shape comparison.
The comparison error threshold cmin should be chosen accord-
ing to the complexity of the given map. A more complex map
requires a larger comparison error threshold to account for
more complicated comparisons. The meta-parameter ϕcycle has
to be chosen with regard to the recurrent symmetric structures
of the given map. Here, only Map 1 has such structures with
which we can cope by setting ϕcycle = π/2. The pose graph
optimization parameters γ1, γ2 are kept constant with γ1 = 1
and γ2 = 1.

A. Simulation

We show the robustness of the approach applying our mapping
procedure in different simulated closed environments with
hard features, such as recurrent structures, large dimensions
or curvatures. For the simulation environment, we used the
odometry motion model presented in [32]. We calibrated
the odometry model by tracking lawn mower movements
using a visual tracking system (OptiTrack) and computed
the parameters using maximum likelihood estimation [25].
The calibrated parameters for the Viking MI 422P robot
are presented in Table II and are used for the simulation.
To generate movement data, we used a wall-following
algorithm cycling for T = 2000 s along the boundary of the
closed environment. We statistically evaluated our approach



TABLE II: Measured Parameters for the odometry motion
model [32].

α1 α2 α3 α4

0.0849 0.0412 0.0316 0.0173
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(a) Odometry Measurements
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(b) Original Approach
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(c) Adjusted Approach
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(d) Learned Parameters

Fig. 6: Exemplary mapping results with the simulation en-
vironment ”Map 3” and an odometry error of αi = 0.2. In
(b)-(d) the blue line shows the true shape of the environment
and the red line the map estimate.

simulating 20 runs with a maximum of 30 iterations for the
Bayes Optimizer. This optimization is designed for global
optimization of black-box functions and does not require any
derivatives.

In Table III, the simulation results for the different maps from
Figure 5 with different combinations of hand-crafted param-
eters are presented. Our adjusted approach, using the ICP
method, clearly outperforms the original method. In all 20 runs
it leads to better map estimates after pose graph optimization.
Moreover, learning the parameters enables the algorithm to
generalize to different environments without prior knowledge
about the odometry error, the shape or the circumference of the
environment. This prior knowledge is essential for choosing
suitable hand-crafted parameters. Without such knowledge,
the parameters have to be manually tuned which might lead
to disastrous mapping results. For example, changing the
neighborhood parameter LNH for Map 3 to LNH = 15 results in
a large increase of the mapping errors. In addition, a change in
odometry error accuracy can be compensated by learning the
mapping meta-parameters, as demonstrated in simulations with
odometry model parameters αi = 0.1, 0.2 for i = 1, . . . , 4.

B. Real Data

For generating real data, we drove the lawn mower along
the boundary line of two different lawn areas. The velocity
of the lawn mower driving along the boundary has been set
to 0.3 m s−1. The odometry data has been sampled with a
frequency of approximately 20 Hz.
In Figure 7, the university courtyard, the measured odometry
data and the generated map estimate are shown. The ground
truth is available as CAD data, such that we can compare
our map estimations using Equation (24). Based on the
circumference U = 106.8m and the complexity of the
environment, the hand crafted parameters have been set to
LNH = 30, cmin = 0.3. The resulting mapping error for the
original approach is ∆A = 11.49%, for the adjusted approach
∆A = 9.77% and the mapping error with learned parameters
cmin = 0.1967, LNH = 32.32, ϕcycle = 1.57, γ1 = 0.0104,
γ2 = 0.0122 is ∆A = 9.24%. Again, the adjusted approach
outperforms the original approach and learning the parameters
with the proposed cost functions leads to sufficiently accurate
results.

In addition, we evaluated the mapping approach in a second
real environment, a representative of a typical private lawn. In
Figure 8 from left to right, we show a part of the private lawn,
the measured odometry data and the map estimate. Since we
do not have ground truth data for this lawn, we compared the
map results qualitatively with the image of the real garden.
As demonstrated, the approach is capable of mapping large
closed environments with narrow corridors based on severely
distorted odometry data.

V. CONCLUSION

Towards efficient localization and planning for low-cost
robots, a first step is the generation of an accurate map
estimate of the enclosed environment. Thereby, the robot
has to learn required meta-parameters automatically to be
able to adapt to different environments. Here, we have
made improvements to the mapping algorithms for closed
environment introduced in [28], which significantly enhance
the performance by allowing the algorithm to cope with
recurrent symmetric structures as well as reducing the relative
displacement error. Moreover, we proposed a cost function
for meta-parameter learning for mapping algorithms in
closed environments. This cost function does neither require
any a-priori information about the environment nor domain
expert knowledge and thus enables the robot to act truly
autonomously. We demonstrated the feasibility, robustness
and performance of our approach in both simulated and real
closed environments. Thereby, we showed that based on
the proposed mapping procedure, accurate map estimates of
underlying closed environments can be produced. These map
estimates are the first step towards intelligent behavior for
low-cost robots, such as autonomous lawn mowers.



TABLE III: Simulation results for different maps and hand-crafted parameters for the original approach from [28], the adapted
approach and with learned parameters. The table shows the mean and the standard deviations for the relative displacement
errors.
∗the measured odometry parameters from Table II are used

Map LNH cmin αi
Original Approach Adjusted Approach Learned Parameters

Etrans Erot Etrans Erot Etrans Erot

1 20 1.0 ∗ 0.0036 ± 0.0028 0.0076 ± 0.0053 0.0021± 0.0034 0.0052± 0.0055 0.0006 ± 0.0015 0.0093 ± 0.0166
2 15 0.5 ∗ 0.0406 ± 0.0943 0.0569 ± 0.0399 0.0183 ± 0.0068 0.0564 ± 0.0404 0.0002± 0.0005 0.0003± 0.0003
3 30 0.3 ∗ 0.1290 ± 0.5532 0.0049 ± 0.0098 0.0020± 0.0050 0.0021± 0.0021 0.0024 ± 0.0036 0.0262 ± 0.0780
3 30 1.5 ∗ 2.787 ± 12.16 0.0095 ± 0.0093 0.5442 ± 2.004 0.0063 ± 0.0136 0.0017± 0.0026 0.0335± 0.0607
3 15 0.3 ∗ 35.57 ± 158.0 0.0191 ± 0.0214 31.03 ± 137.6 0.0139 ± 0.0220 – –
3 30 0.3 0.1 0.0151 ± 0.0418 0.0060 ± 0.0086 0.0085 ± 0.0296 0.0025 ± 0.0020 0.0070± 0.0079 0.0665± 0.1932
3 30 0.3 0.2 44.54 ± 188.8 0.0304 ± 0.0580 1.65 ± 6.88 0.0158 ± 0.0285 0.0205± 0.0387 0.0352± 0.0642

(a) The courtyard of our Institute. We used the inner
lawn area for testing the proposed mapping method.

10 m

1
0

 m

(b) The estimated path of the robot generated from
its wheel odometry.

6 m

6
 m

(c) The estimated map (red) and the true shape of
the test environment (blue).

Fig. 7: The real courtyard depicted (a), the collected odometry data (b) and the map estimate with learned parameters (c).

(a) The top view onto a part of a lawn of a typical
private household.
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8
 m

(b) The estimated path of the robot generated from
its wheel odometry.

6 m

6
 m

(c) The estimated map.

Fig. 8: A typical lawn (a), the collected odometry data (b) and the map estimate with learned parameters (c).

A. Discussion

The underlying assumption of a zero mean odometry
error is quite strong and might not hold true under many
circumstances, for example if one of the wheels is slightly
smaller (e.g. due to air pressure). However, fusing the
wheel odometry with IMU measurements, we are able
to compensate for such inaccuracies. Moreover, we can
detect wheel slippage. Otherwise, a non-zero odometric
mean error will be inherited in the final map estimate and
thus compensated by navigating with the same robot odometry.

In future work, we will investigate the possibilities of prob-
abilistic approaches for efficiently mowing the lawn with
high-confidence. Therefore, coverage grid maps with ”already

mown lawn” probabilities similar as in [14] can be used in
combination with an adjusted intelligent complete coverage
path planning algorithm, e.g. neural network approach [33].
Thereby, the ”mowing probabilities” of the grid map are
actualized based on a particle filter estimation.
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Rainer Kümmerle, Christian Dornhege, Michael Ruhnke, Alexander
Kleiner, and Juan D Tardós. A comparison of slam algorithms based
on a graph of relations. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2089–2095. IEEE, 2009.

[6] Young-Ho Choi, Tae-Kyeong Lee, and Se-Young Oh. A line feature
based slam with low grade range sensors using geometric constraints
and active exploration for mobile robot. Autonomous Robots, 24(1):13–
27, 2008.

[7] V Ciupe and I Maniu. New trends in service robotics. In New trends
in medical and service robots, pages 57–74. Springer, 2014.

[8] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal of the
Royal Statistical Society: Series B (Methodological), 39(1):1–22, 1977.

[9] Hugh Durrant-Whyte and Tim Bailey. Simultaneous localization and
mapping: part i. IEEE robotics & automation magazine, 13(2):99–110,
2006.
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[11] Giorgio Grisetti, Rainer Kümmerle, Cyrill Stachniss, and Wolfram Bur-
gard. A tutorial on graph-based slam. IEEE Intelligent Transportation
Systems Magazine, 2(4):31–43, 2010.

[12] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improving
grid-based slam with rao-blackwellized particle filters by adaptive pro-
posals and selective resampling. In Proceedings of the 2005 IEEE
international conference on robotics and automation, pages 2432–2437.
IEEE, 2005.

[13] Giorgio Grisetti, Cyrill Stachniss, Wolfram Burgard, et al. Improved
techniques for grid mapping with rao-blackwellized particle filters. IEEE
transactions on Robotics, 23(1):34, 2007.

[14] Jürgen Hess, Maximilian Beinhofer, and Wolfram Burgard. A prob-
abilistic approach to high-confidence cleaning guarantees for low-cost
cleaning robots. In 2014 IEEE international conference on robotics and
automation (ICRA), pages 5600–5605. IEEE, 2014.
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