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ABSTRACT

We propose a deep reinforcement learning approach for solving a mapless navigation problem in
warehouse scenarios. The automatic guided vehicle is equipped with LiDAR and frontal RGB
sensors and learns to reach underneath the target dolly. The challenges reside in the sparseness of
positive samples for learning, multi-modal sensor perception with partial observability, the demand for
accurate steering maneuvers together with long training cycles. To address these points, we proposed
NavACL-Q as an automatic curriculum learning together with distributed soft actor-critic. The
performance of the learning algorithm is evaluated exhaustively in a different warehouse environment
to check both robustness and generalizability of the learned policy. Results in NVIDIA Isaac Sim
demonstrates that our trained agent significantly outperforms the map-based navigation pipeline
provided by NVIDIA Isaac Sim in terms of higher agent-goal distances and relative orientations. The
ablation studies also confirmed that NavACL-Q greatly facilitates the whole learning process and a
pre-trained feature extractor manifestly boosts the training speed.

1 Introduction

Mobile robot navigation has received broad applications and has been intensively studied in recent decades, ranging
from urban driving [1, 2] to indoor navigation [3]. One popular approach is Simultaneous Localization and Mapping
(SLAM) [4] via a combination of various algorithms. In the SLAM procedure, the map is generated via sensors, and
planning algorithms [5] are used on top of the map. Nonetheless, the limitations are also manifest. In particular, the
efforts to build a map can be expensive in case of dynamic environments. Usually, disparate sensory sources are
necessary for non-stationary environment, which additionally requires sensor fusion [6, 7], complicating the process.
The generated map accuracy also plays a vital role for navigation quality and to generate a sufficiently accurate map,
extra human engagements for data acquisition are entailed [8].
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Figure 1: An Illustration of the dolly (blue) and the robot in our simulated warehouse environment. The lines connected
to the robot’s chassis visualize the LiDAR distance measuring beams. In this figure, NVIDIA Omniverse™ [17] is used
for visualization. The front-facing camera is placed right in the center of the chassis of the vehicle, highlighted by the
red square and captures images with a resolution of 80× 80 pixels.

On the other hand, Deep Reinforcement Learning (DRL) has found successful application in games [9, 10] and robotic
applications such as robot manipulation [11, 12] and navigation [13, 14] by combining the power of Deep Neural
Network (DNN) and Reinforcement Learning (RL) [15]. The component RL serves as an approach for optimal decision
making based on a Markov decision process, where the agent learns to act given the observations in a loop to maximize
the long-term utility. DNNs empower the RL with extension to high-dimensional observations, for instance, visual
data, LiDAR readings and etc. One major appealing point of DRL is the ability to learn from scratch without expert
demonstration, which makes DRL an end-to-end learning approach. A second benefit lies in its non-reliance on a
transition model (model-free). The agent learns via interactions with the environment in a trial-and-error manner. In
contrast, optimal control algorithms like model predictive control [16] necessitate a carefully derived physical model,
which can be demanding for computing. This could be particularly helpful in the case of multi-sensor observations,
where it is extremely sophisticating to manually define the rules for sensor fusion and to calculate transition dynamics.
We give an illustration of previous works on model-free DRL algorithms in Section 2.

In our work, we aim to address a navigation problem in a warehouse scenario, where the Automatic Guided Vehicle
(AVG) aims to navigate underneath a dolly purely relying on its own multi-modal sensor readings. The mobile robot
is equipped with frontal RGB camera and two LiDAR sensors measuring the distance, illustrated in Figure 1. In a
typical warehouse setting, the environment is non-stationary, where the location of the target and obstacles are subject to
change. In this work, we are especially interested in the ability of DRL to directly map the agent’s multi-modal sensory
reading to the control commands via neural networks, without the efforts to generate a map or human demonstrations or
manually processing multi-modal sensor fusions. Moreover, it is desired that the learned strategy shows generalizability
with respect to different interior settings, e.g., room sizes, position of the obstacles, etc.

Formulating the navigation task fulfilling the aforementioned criteria as a DRL problem introduces a lot of difficulties.
A first challenge is the sparseness of positive samples, where the sparseness stems from the low likelihood of reaching
a constricted goal space (underneath the dolly). It is shown in [18] that DRL algorithms learn a robust policy only
when both sufficient positive and negative samples are provided for learning. A second challenge is the multi-modal
sensor perception together with partial observability, where the mobile agent may not perceive the target given only
the frontal RGB camera and therefore loses the goal information. The robot needs to learn to behave rationally to
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search for the goal and to infer whether the goal is present merely from its own sensory readings. Moreover, DRL
algorithms converge to a reasonable performance after huge amounts of interaction experience [19], resulting in a long
training cycle. Hence, we investigate potential approaches to reduce the overall training duration without compromising
the reward design that can facilitate the training, which is only feasible in simulation but not in real application. It is
noteworthy that parking under the dolly is demanding as it requires accurate steering maneuvers and the robot directly
learns the low-level differential drive command instead of a set of pre-defined movement primitives.

To address these challenges, we proposed a distributed version of Soft Actor-Critic with automatic curriculum learning
(ACL) to increase the number of positive samples the and to reduce the overall training cycle. We extend one ACL
algorithm NavACL [20] to a more general case, named as NavACL-Q. The performance of the learned policy is also
systematically evaluated in a different testing scenario for robustness and generalizability check. The ablation studies
are conducted to check the effects of a pre-trained feature extractor and ACL on the performance gain respectively. We
finally show that our approach outperforms a baseline map-based navigation pipeline provided by Nvidia SDK [21].

2 Related Work

In this section, we present an overview on the recent progress of DRL algorithms and their applications in navigation
tasks. Moreover, previous work on curriculum learning on RL tasks are also investigated.

2.1 Model-free Deep Reinforcement Learning Algorithms

Model-free DRL algorithms have become increasingly successful in solving complex tasks featuring high dimensional
observations without the need of knowing the transition dynamics of the environment. In the first impressive work,
Deep Q-network (DQN)[19], an agent was trained to play Atari video games and reached human-level performance.
They applied a DNN to map raw-pixel visual input to the corresponding Q-values. The work introduced a frozen
target network to alleviate the deadly-triad problem [22, 15]. Another major contribution is the usage of an experience
replay buffer to decorrelate the temporal dependence between samples within one episode, therefore enhancing the
performance. These components are widely used in other off-policy DRL algorithms.

There are several improvements proposed to enhance the performance of DQNs. Double Deep Q-networks (DDQNs)
[23] address the problem of the maximization bias analogously to Double Q-learning [15]. Noisy networks [24]
improves the exploration strategy of the agent by replacing the standard ϵ-greedy algorithms by the noisy networks,
where the weights of network are injected with zero-mean Gaussian noises, resulting in randomness in choosing the
action.

All previous methods are designed for discrete action spaces. Other approaches generalize to continuous action space.
These algorithms, so-called Policy-Gradient (PG) methods, have an additional learnable component, actor, which maps
states to actions maximizing the return. The on-policy algorithm Asynchronous Advantage Actor-Critic (A3C) [25]
reduces the variance on actor learning compared to REINFORCE [15] and reduces the overall training cycle by having
multiple threads collecting the experience in parallel. A3C outperforms vanilla DQN on Atari Games. Proximal policy
optimization (PPO) [26] tries to achieve monotonic policy improvements while avoiding a large change of the policy
that could cause performance collapse. It updates the policy by additionally penalizing the KL-divergence between
previous policy and the new policy.

Despite the success of on-policy PG algorithms, they are not as sample-efficient as off-policy variants [27]. This
disadvantage becomes more apparent in case of an expensive simulator. The off-policy policy algorithm Deep
Deterministic Policy-Gradient (DDPG) [28] extends DQN to the continuous action case. The algorithm Twin-Delayed
Deep Deterministic Policy Gradient (TD3) [29] further improves DDPG by addressing maximization bias and proposes
to add noise to the action with delayed policy update for a more stable training.

However, the shortage of DDPG and TD3 is that the exploration scheme must be done explicitly and that they can
only model deterministic optimal policies. In their original work, they applied Gaussian noise to enable exploration. A
sufficient exploration is crucial for the final performance for any RL algorithm. However, in contrast to some explicit
exploration strategies [30, 10, 31, 32], the work in [33, 34] proposed a new category of RL algorithms, maximal-entropy
reinforcement learning, in particular, the Soft Actor-Critic (SAC) algorithm. SAC tries to address the exploration
problem by incorporating the entropy of policy as an exploration bonus into the return, equivalent to an implicit
exploration schedule. A second benefit of SAC is the ability to model multi-modal optimal policies with a probabilistic
characterization. SAC was reported to outperform DDPG and TD3 in some continuous control problems in Mujoco
[35] e.g., Half Cheetah, Humanoid.
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In our task of intralogistics navigation, the mobile robot requires accurate steering abilities, i.e., continuous action
commands, to navigate beneath the target dolly. Moreover, the agent only shows signs of learning with the presence of
adequate successful trials, which requires sufficient exploration in the environment. For these reasons, we choose SAC
for our use case.

2.2 Deep Reinforcement Learning for Robot Navigation Tasks

DRL has been investigated for the task of robot navigation in recent years. The contribution of [36] proposes virtual-to-
real DRL for mapless navigation on mobile robots with continuous actions. In their work, the mobile robots acquire
LiDAR observations, relative angles and distances from the current robot pose to the goal. They trained the agent using
A3C and demonstrated both success and generalizability in new environments in Gazebo simulator [37]. However, their
state and reward formulation is impractical for training directly in real environments, as they assume the knowledge
of goal position and current robot pose, which are expensive to acquire in the real world. The work of [38] explores
the potential of using discrete actions for navigating and they adopted the similar problem setting as [36]. In their
findings, training discrete action space using DDQN and PER is more efficient than a continuous action space via
DDPG and PPO. However, their approach has restricted the degree of freedom in trajectory space due to the choice of
discrete actions and also encounters the same problem in real application as [36]. The authors of [39] apply the similar
problem formulation on a multi-agent scenario, where a swarm of robots learn to navigate to their own targets (in group
formation) without colliding with each other. Despite the impressive result in simulation, the information on relative
pose to goal is still required. We also see such settings in [40, 41].

Some other work implements a target-driven approach for visual navigation, where an image of the target is also
provided as a part of the observation. In [42], they used a pre-trained network ResNet-50 [43] to transform both the
current and target visual observation into the embedding space and afterwards mapped to policy and critic values. Their
work mainly addresses the generalizability among different scenes and the learned agent demonstrates the ability to
reach manifold targets in various interior environments. However, the actor outputs only four discrete high-level actions,
which greatly alleviates the difficulty of DRL training. The work of [44] also exploits the same idea with two major
improvements. Firstly, they resorted to additional auxiliary tasks, e.g., learning meaningful segmentation and reward
prediction, for performance boost, where the convolutional encoders are learned end-to-end. Secondly, they mitigated
partial observability by keeping a longer historical observation using long short-term memory (LSTM) [45] instead of
frame stacking. The performance boost could be seen with their proposed approach. Both of the two works used A3C
as DRL algorithm.

A third category implements map-based DRL, where the map is either given or generated online. The work of [46]
generates egocentric local occupancy maps for local collision avoidance via SLAM. A second component local planner
proposes local goals given the final target position. This is ensued by a DRL algorithm that maps the agent’s velocity,
the planned local goal and local occupancy maps to 28 discrete actions. They used Dueling DDQN [47] with PER and
randomized the number of obstacles and initial position to facilitate learning. However, their problem formulation
only enables robot to navigate to the local goal instead of the final target, which greatly alleviates the difficulty in RL,
but heavily relies on the quality of SLAM and the local planner. In comparison, our approach does not require any
complicated SLAM-related information or any local planners. It only resorts to multi-modal sensor readouts, fuses
them, and maps to continuous control commands for reaching the final goal in a blackbox fashion, where we purely rely
on the power of DNNs.

2.3 Curriculum Learning for Reinforcement Learning Tasks

One main challenge of RL is that it requires prohibitive number of interactions steps with the environment to reach
a reasonable convergence. Moreover, it is also crucial that the agent keeps a reasonable proportion of the positive
experience leading to high returns and negative experiences with low returns so as to grant the agent a effective learning
signal. In our navigation task, where the robot has to go through a long time-horizon to reach its target state, the
probability of positive experiences, i.e., reaching goal state, is merely marginal. In such settings, the agent suffers
severely from the class imbalance problem and will mostly learn from negative experience, only avoiding obstacles
but failing to arrive at the goal. One solution is to resort to expert demonstrations. Nevertheless, it breaks the nice
property of learning from scratch. In some challenging tasks, it is even hard for a human to demonstrate. In this work,
we focus on learning from scratch. The second alternative is Curriculum Learning (CL). It proposes a set of curricula
(intermediate tasks) starting from easy tasks and progressively increasing the task difficulty until the desired task is
solved. With such curricula, the agent is more likely to get positive experience from easy tasks and can transfer the
gained knowledge to the upcoming tasks, which decreases the overall training time as compared to directly learning
from scratch on a hard task [48]. For these reasons, we also apply CL together with DRL for our case.
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The term Curriculum Learning was first proposed by [49]. They find providing an ordered sequence of the training
samples rather than random sequence can facilitate the learning speed and generalizability. Such ideas were present in
Prioritized Experience Replay (PER) [50], where the samples with high TD-errors get higher priorities to be sampled.
This is equivalent to an implicit curriculum on the samples. PER is reported to have better performance than normal
replay buffer in DQN. Alternatives for different definition of priorities on sample-level are also presented in [51],
where they further considered a user-defined self-paced priority function and a coverage function to avoid repetitive
sampling of only high priority samples. In [52], the PER is extended in another manner by using a network to predict
the significance of each training sample. It can therefore even predict the importance of unseen training samples.

The above work mainly proposes various heuristics to reach sample-level curriculum learning. Other work involves how
to generate intermediate tasks, how the tasks can be sequence properly to accelerate training and how to transfer the
knowledge between tasks. In [53], a number of methods are introduced to create intermediate tasks with the assumption
that all the tasks can be parameterized as a vector of features. The overall process is incrementally developing subtasks
that are dependent on the trajectories of learned policies and the current tasks. They propose several heuristics to
generate new subtasks, i.e., Task Dimension Simplification, Promising Initializations to deal with sparse-reward signals,
Mistake-Driven Subtasks with a focus on avoiding unwanted behaviors etc. Hindsight Experience Replay (HER) [54]
forms a curriculum by storing additional trajectories with imaginary goal states as training samples. HER incorporates
the goal state g together with the current state s to learn the value function vπ(s, g). The target task may be originally
hard to achieve, but positive experience could be easily obtained when the goal state is changed to the terminal state of
this episode. Relying on the expressiveness of DNNs, the policy learned from the ever-changing goal states can be
beneficial for generalizing to the desired goal tasks. The algorithm Curriculum-guided HER (CHER) [55] improves
the PER by adaptively selecting the imaginary goal state. The selection criteria are goal diversity and proximity to
the desired goal state. The curriculum is created by initially allowing for diverse imaginary goal sets and gradually
converging to the proximity to the true goal. However, these HER-variants necessitate the explicit knowledge of the
goal state and the fictitious reward function for arbitrary goal states.

Some other work defines the curriculum by generating a set of initial states instead of goal states. The work of [56]
proposes reverse curriculum generation, where the distribution of the initial states become farther away from the goal
states. Candidates of initial states for the next episode are generated by random walk from the existing starting states. To
select the exact starting state, the expected return for these candidates is computed and the one lying in the pre-defined
interval is selected. The approach in [57] shares a similar idea, whereas it generates the candidate starting states not by
random walk but via approximated transition dynamics, i.e., estimating the number of steps to reach the goal. They
sampled from a mixture of successfully-trained tasks and new candidates to avoid catastrophic forgetting.

Our work also generalizes a recent ACL approach NavACL [20]. NavACL generates a set of curricula based on a
parallelly-learned success prediction network that estimates the probability of the agent to reach goal given the current
policy. In the original work, NavACL is reported to greatly improve the whole learning procedure in terms of success
probability of the navigation task. The details are presented in Section 3.4.

3 Materials and Methods

The task of load carrier docking in the context of intralogistics considers the targeted navigation of a transport robot
underneath a target dolly. A first challenge of our task is to learn accurate steering commands so as to reach a very
constricted goal space, where the area underneath the target dolly is deemed as the goal. We provide the detailed
specification of navigation vehicle and the target dolly together with the simulation environment in Section 3.3 for
a direct view on how challenging the task is. In a goal-reaching task, one key for any DRL algorithm to reach a
reasonable performance is that the agent has an adequate number of successful trails. A first solution is to deploy
efficient exploration strategy, where we used soft actor-critic [34], introduced in Section 3.1. With a more informative
exploration strategy, the agent will reach the target given sufficient number of trials. Soft actor-critic also features
continuous action output and for accurate control. However, the agent behaves more exploratorily at the onset of
training. The majority of explorative trials can end up with failure, interpreted as negative experience, especially when
the required time horizon for reaching the goal is long and a constricted goal space. This results in sparseness of positive
experience, potentially making DRL fail in learning. Therefore, we apply automatic curriculum learning to increase the
probability of positive experience by starting training from easy tasks. We elaborate our proposed automatic curriculum
learning algorithm NavACl-Q as a generalization of NavACl in Section 3.4. To further accelerate DRL training, we
first parallelize multiple agents collecting the experience, giving rise to a distributed soft actor-critic. Moreover, some
ablation variants are conducted to examine if the performance can be further enhanced, shown in Section 3.5. A
complete formulation of the intralogistics navigation task as a DRL problem and algorithm hyperparameters are also
elaborated.
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3.1 Maximum Entropy Reinforcement Learning – Soft Actor-Critic

An RL problem can be seen as a sequential decision problem in a Markov Decision Process (MDP). It is defined as a
tuple (S,A, P,R, γ), where S and A are respectively the set of states and actions, P denotes state transition probability
matrix, specifically, the probability of transiting to a successor state st+1 from the state st by taking action at. The
reward function R : S×A→ R, which returns a number indicating the utility of performing an action in the current
state. The last element is the discount factor γ ∈ [0, 1], which leverages the importance on short-term rewards against
long-term rewards.

In RL, the agent interacts with the environment to collect experience and tries to learn an optimal policy π⋆ such that
the return, namely cumulative reward, is maximized.

π∗ = argmax
π

E
τ∼π

[
T∑

t=0

γtrt+1

]
, (1)

where rt refers to the immediate reward at time point t, τ is the trajectory, characterized as a sequence of
{s0, a0, r1, ..., sT , aT , rT+1} following the policy π and T is the time horizon to reach the terminal state.

The maximum entropy RL algorithm Soft Actor Critic (SAC) [33, 34] differs from the standard RL in that it changes
the goal by incorporating an additional weighted policy entropy termH, shown as follows:

π∗ = argmax
π

E
τ∼π

[
T∑

t=0

γt (rt+1 + αH (π (· | st)))

]
, (2)

where α is the weight, which can either be fixed by users [34] or can be even learned [33]. To enable a learnable α,
they simply impose a constraint that E(st,at)∼ρπ

[H (π (· | st))] ≥ H, whereH is a pre-defined entropy lower bound to
ensure a minimal level of exploration. The constraint can be cast into a dual optimization problem:

α∗
t = argmin

αt

Eat∼π∗
t

[
−αt log π

∗
t (at | st;αt)− αtH

]
. (3)

The critic part learns the Q-values with the additional policy entropy term based on a re-defined Bellman update:

Q̂ (st,at) = rt+1 + γ
(
Qϕ̃ (st+1, ãt+1)− α log πθ (ãt+1 | st+1)

)
, (4)

where ãt+1 ∼ πθ (· | st+1), ϕ and ϕ̃ refer respectively to the running and target critic network for training stability
similar to DQN. The critic loss is then computed by sampling a minibatch from the replay buffer D.

JQ(θ) = E(st,at)∼D

[
1

2

(
Qϕ (st,at)− Q̂ (st,at)

)2
]
. (5)

In the policy improvement step, the actor is updated towards an exponential of the Q-values to still allow for a
distribution of the policy via Kullback–Leibler divergence.

Jπ(ϕ) = Ese∼D

[
DKL

(
πθ (· | st) ∥

exp (Qϕ (st, ·))
Zθ (st)

)]
. (6)

In our implementation, we also apply similar tricks as Double Q-learning [58, 59] to avoid maximization bias.
Furthermore, SAC with a learnable temperature coefficient α [34] is used, as a fixed one requires good domain
knowledge which is assumed to be unknown in most cases.

3.2 Simulation Environment

We run our experiments on the simulator NVIDIA Isaac SDKTM [21]. The target dolly consists of a steel frame that can
be loaded with a pallet. The dolly stands on four passive wheels, which makes it transportable. Figure 1 illustrates the
mobile robot and the dolly used for this paper. The simulated vehicle is a platform robot which is specifically built for
load carrier docking and is actuated by a differential drive. The vehicle and dolly specification is shown in Appendix D.
It is noteworthy that the width of the dolly is only 21cm wider than vehicle so that very accurate steering efforts are
required to successfully navigate underneath the dolly, corresponding to a constricted goal space.
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U

U

Figure 2: An illustration of the Critic network architecture, consisting of ResNet blocks [43] for feature extraction
(highlighted by the yellow shape) and fully-connected layers for LiDAR inputs and historical action and rewards. We
concatenate the outputs of the three parts (illustrated by the ∪ symbol) to establish a learned sensor fusion. For actor
part, only the output layer is changed. The details of ResNet blocks are shown in Appendix A.

3.3 Reinforcement Learning Problem Setup

In this work, the observation space O is defined as a concatenation of [Ov, Ol, Oar]. To deal with partial observability,
we stack 4 most recent RGB image Ov along the channel dimension exactly as how DQN processed Atari games [19].
The second observation component is LiDAR observation Ol, since it mostly reaches fully-observability, we just retain
the most recent LiDAR readings. To further increase the information content, we also keep the same length of historical
actions and rewards as a part of observation similarly to [60]. Note that no additional handcrafted high-level information,
e.g., the position of the robot or the dolly is given. Furthermore, neither a method for localization nor mapping is used.
The complete state design is summarized in Table 1. The visual perception Ov and the LiDAR readings Ol are rescaled
to [0, 1]. All these post processed features serve as input to critic and actor network in SAC, as shown in Figure 2.

Table 1: Summary of the sensory observations and additional statistics that describe the state design of this thesis.

Observation Components
Description Dimensions
Sequence of the four most recent camera RGB images R4×3×80×80

Current LiDAR sensor input
(front and back sensor concatenated) R1×256

History of the four previously taken
actions R4×2

History of the four previously received
rewards R4×1

7
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The action space A is defined as differential drive command for the AVG, which is a 2-dimensional input a⃗t =
[
vt, ωt

]
with vt ∈ [−1 m/s, 1 m/s] and ωt ∈ [−1 rad/s, 1 rad/s]. Here vt and ωt are linear and angular target velocity
inputs for the differential drive. The actions are carried out for 180ms, resulting in an approximately 5.5Hz operation
frequency.

The reward function is formulated as:

r(t) = rS(t) + 1CDrCD(t) + 1CrC(t) + 1F rF (t) + 1GrG(t), (7)

where rS = −0.1 represents a negative reward for each time step, rCD = −0.1 denotes a small negative reward for
collision with the dolly, and rC = −10 corresponds to a large penalty for collision with non-dolly objects, i.e. walls or
other obstacles. We set a small penalty for collision with dolly so as to encourage the agent to reach the proximities to
the dolly. The term rG = 10 is a positive reward when the forklift ends up with successfully reaching underneath the
dolly. The last component rF = −0.05 acts as a penalty of not driving forwards, i.e., when the velocity of the AVG is
below 0.3m/s. The symbol 1CD, 1C , 1F and 1G denotes the corresponding indicator function of whether that event
happens. Note that our reward design does not require any map information, e.g., the distance between the dolly and the
agent, so that it can be well applicable also to real-world training. Terminal state is reached once the Euclidean distance
between the center of the dolly and the center of the robot is less than 0.3m. Collisions with any objects will also result
in an instant termination of the task.

To increase the generalizability of the learned policy, we inject domain randomization for each worker environment,
e.g., shift of light sources, shape of cells, pattern of the floors and walls etc. The designed arena is shown in Figure 3.
Particularly, we randomize the number of obstacles, the position of target dolly and initial pose of the AVG in the cell to
avoid overfitting of the sensor readings on a single environment. The exact randomization scheme is demonstrated in
Appendix C.

To accelerate training, we also implement proportional-based PER [50] as well as distributed RL, where we parallelize 9
agents for collecting the experience in different environments and a main training process. We followed an asynchronous
update approach. The worker thread sends the trajectory experience to the main training thread and gets an updated
model copied from as long as it finishes an episode, the training thread is in charge of updating the actor and critic
networks. The details of distributed version of SAC and its hyper-parameter setting are described in Appendix A.

Figure 3: An Illustration of the designed training arena. It consists of 9 total cells of different sizes and layouts. For
instance, the walls and floors feature different colors and patterns, the light sources differ also in each cell. The initial
pose of robot, target dolly and the obstacles are also placed with some random settings. For details, please refer to
Appendix C.

3.4 Automatic Curriculum Learning: Extension of NavACL to NavACL-Q

NavACL [20] is an Automatic Curriculum Learning method that specially addresses the challenges of robotic navigation.
The idea of NavACL is to autonomously propose tasks of suitable difficulty to reduce overall training cycle and enhance
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the final performance. To automatically form a curriculum, NavACL uses a neural network fπ to estimate the probability
of the current policy π solving task l, with f ∗

π (l) = 0 for certain failure and f ∗
π (l) = 1 for certain success. The

success probability f ∗
π (l) is estimated based on a list of pre-defined task-specific geometric properties l relevant of map

knowledge, i.e., geodesic distance between goal and initial state, agent/goal clearance, relative initial angle and etc.,
altogether 5 properties.

The neural network fπ is updated concurrently with the training of the policy π. For training, the network is provided
with the input of l from the most recent trained task and a binary label that indicates whether or not the respective task
was solved successfully.

To determine which curriculum should be posed next, NavACL samples on easy, frontier, and random tasks with some
defined probabilities. Frontier tasks refer to challenging situations and random tasks encourage exploration, while easy
task prevents the catastrophic forgetting. Since agent’s ability to solve the task changes dynamically during the training,
the authors of NavACL used adaptive filtering (AF) as a criterion to evaluate in which category the generated candidate
tasks fall into. Specifically, AF proposes a set of candidate tasks characterized by their respective geometric properties
Lc are forwarded through the network fπ. Then a normal distribution is fitted to the estimated success probabilities,
which is formally expressed as µf , σf ← FitNormal(f ∗

π (Lc)). A task is regarded as easy if f ∗
π (l) > µf + βσf and

is classified as frontier when µf − ησf < f ∗
π (l) < µf + ησf . The coefficients η and β are hyper-parameters.

Now we illustrate our improvements and extensions of NavACL algorithm to NavACL-Q algorithm. We adapt the
5 geometric properties of the network to our use case as shown in Table 2. Among them, we reduce the number of
geometric properties by one, and combine our proposed idea. Rather than fully relying on the map properties, it is
more favorable that the input features to success probability network can be more generalizable for tasks in different
domains, e.g., navigation tasks, robotic manipulation tasks, games, etc. In contrast, the current input features (geometric
properties) need redesigning to fit other tasks. To cope with this, we propose using the initial Q-value from the critic
network, as the learned Q-value should give a good estimate on how well the initial pose is, as shown in (2) and (4).
Thus, the Q-value is highly correlated to the success given the initial state. In this work, we append the estimated initial
Q-value with other geometric properties together as the input to NavACL.

Table 2: The inputs for the success prediction network fπ in NavACL-Q

Agent - Goal Distance Euclidean distance from s0 to sg
Agent Clearance Distance from s0 to the nearest obstacle
Goal Clearance Distance from sg to the nearest obstacle
Relative Angle The angle between the starting orientation and −−−→s0, sg
Initial Q-Value The predicted Q-value Qϕ(s0, a0) from SAC critic network

Moreover, we spot that AF could result in an undersampling on the easy tasks if µf + βσf > 1. This could happen
when either µf approaches 1 or σf is large. The first case indicates that the agent reaches near-final performance and is
thus of minor importance. Here we simply introduce an additional hyperparameter χ ∈ [0, 1), which acts as a threshold
for easy tasks during the final stage of the training. The second corner case is handled by an additional condition that
checks for the case that µf + βσf > 1. If so, the easy condition is replaced with f ∗

π (l) > µf .

In the original work, they used PPO [26], an on-policy DRL algorithm, whereas we implement SAC [34]. The advantage
of SAC is mentioned in Section 3.1. We elaborate on the hyper-parameter of NavACL-Q in Appendix B.

3.5 Pre-training of the Feature Extractor

We also investigate other alternatives to potentially increase the training speed besides automatic curriculum learning.
One potential way is to pre-train the convolutional encoder in unsupervised learning manner, e.g., via auto encoders [61].
After pre-training, we initialize and fixed the weights of convolutional blocks shown in Figure 2 during the whole DRL
training phase and the decoder are discarded. We examine whether a meaningful feature representation can facilitate
the learning or not.

Here we demonstrate the details of pre-training the convolutional encoders in actor and critic network. The encoder
structure is mentioned above. For decoder, we use symmetric architecture with transposed convolution [62] to increase
feature map size. The output of the decoder has exactly the same shape as input with 4 channels, i.e., 4 consecutive
frames. The loss function is defined as l2 pixel-loss between the reconstructed image and ground truth image averaged
over all channels so that the underlying temporal relation between each frame is also reckoned with. The dataset consists
of 50, 000 interaction sequences from the agent’s random interaction with the training environment.
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Algorithm 1: GetDynamicTask-Q
input :Training timestep t; fπ; µf ; σf ; Hyperparameters β, γ, χ, nT

output :Task l

1 taskType← GetTasktype(t);
2 for i = 0 to nT do
3 l← RandomTask();
4 switch taskType do
5 case easy do
6 if µf + βσf < 1 then
7 if f ∗

π (l) > µf + βσf or f ∗
π (l) > χ then

8 return l;
9 end if

10 else
11 if f ∗

π (l) > µf then
12 return l;
13 end if
14 end if
15 end case
16 case frontier do
17 if µf − γσf < f ∗

π (l) < µf + γσf then
18 return l;
19 end if
20 end case
21 case random do
22 return l;
23 end case
24 end switch
25 end for
26 return RandomTask()

4 Results

In this section, we present the training results of the navigation task using the NavACL-Q with distributed SAC and
the ablation studies. In the ablation studies, the effects of the ACL approach are examined and compared to training
with random starts. To reduce the overall training time, we conduct other variants as ablation studies, i.e. a pre-trained
convolutional encoder for visual input against a completely end-to-end training fashion. Moreover, we evaluate the
learned policy systematically in an unseen environment featuring larger space with different layout and obstacles. The
robustness of the learned policy and performance is investigated. Finally, we compare this result to a map-based pipeline
approach provided by Nvidia Isaac SDK [63] to check whether our DRL agent outperforms the standard approach for
navigation task.

4.1 Training Results

During the experimental phase, we investigate three variants for ablation studies. We name the variant that combines
both NavACL-Q algorithm and pre-trained convolutional blocks as NavACL-Q p.t., the variant with NavACL-Q algorithm
but with end-to-end training (i.e., the convolutional encoder is also learned from scratch) as NavACL-Q e.t.e., while the
variant with pre-trained convolutional encoder but with random initial poses is abbreviated as RND. A comprehensive
comparison among 3 variants reveals how automatic curriculum learning and pre-trained feature extractor can facilitate
learning process, which is presented in Section 4.3. In this section, we first demonstrate the training result of the best
variant NavACL-Q p.t.

4.1.1 Pre-trained Convolutional Encoders

In this section, we are presenting the quality of the pre-trained convolutional blocks using auto encoder in Figure 4 with
the training procedure mentioned in Section 3.5. After 100 epochs of training, the auto-encoder is able to reconstruct
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the image sequences with reasonable accuracy. We use these trained weights as initialization for actor and critic network
of SAC and freeze them during training.

(a)

(b)

Figure 4: Comparison of (a) groundtruth image sequence and (b) reconstructed image sequence from auto-encoders.

4.1.2 Performance of NavACL-Q SAC with Pre-trained Convolutional Encoders

We are presenting the learning curves of the best DRL variant during the complete training episodes in Figure 6.
The algorithm is run a total number of three times, with each run consisting of 0.25M episodes. This approximately
corresponds to the wall clock time of 28 hours and 5M frames, where the training is split across three GPUs (Quadro
RTX 8000 48GB) with the CPU Intel Xeon Gold 5217. Figure 6 outlines the episodic return and success probability of
reaching underneath the dolly. It can be observed that the final success probability approached 1, i.e., the mobile robot
succeeds mostly in navigation from arbitrary defined initial position domain as shown in Table C. The episodic return
also converges to the final value stably, which can be interpreted as converging to a near-optimal policy. The variance of
episodic return and success probability is small at the end of training, signifying the learned policy registers similar
patterns among three runs. The robustness of our algorithm is therefore evident. Moreover, our trained DRL agent
further exhibits the adaptability to a non-stationary environment. We show that the agent is even able to reach the goal
dolly that changes its location during the navigation process. For instance, the dolly is originally placed left front to the
AVG, and the agent steers towards the goal direction. Then the target dolly is shifted from the left front of the agent to
its right front, the AVG drives first backwards and adjusts its orientation towards the goal direction and then advances to
the goal. The video illustrations of leaned policy are available on the online data repository 1. The generalizability of
the trained agent serves as a great advantage of DRL and will be further discussed in Section 5.1.

4.2 Grid-Based Testing Scenarios

To exactly examine the robustness and the generalizability of the trained policy, we perform a systematic testing in an
arena distinct from training. The test environment differs from the training environments in terms of shape, texture, and
lighting conditions to enable the analysis of the methods generalization potential. We set the initial pose of the (2D
location and orientation) in an exhaustive grid-based manner and checked the success probability of each initial position.
The exhaustive testing features a 5m× 5m grid, partitioned into 0.5m grid-cells, centered in front of the dolly. The
grid thus represents 11× 11 initial positions for the mobile robot. Figure 5 illustrates a schematic representation of the
testing scenario. Furthermore, we test each initial positions with eight different initial robot orientations, given by the
following list: {0◦,±45◦,±90◦,±135◦, 180◦}. For simplicity, the orientation of 0◦ can be approximately understood
as the case where the robot is facing straight towards the goal and 180◦ corresponds to facing backwards from the goal.
Please refer to Appendix C for details. The effect of partial observability aggregates with the increasing angle. Each

1Some demonstrations of our trained DRL agent can be found in https://github.com/ai-lab-science/
Deep-Reinforcement-Learning-for-mapless-navigation-in-intralogistics
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combination of position and rotation is tested 9 times to obtain an averaged estimation of the success probability for
each configuration (x, y, orientation). Figure 5 visualizes the test-scenario graphically.

It is noteworthy that the testing case features wider initial AVG orientation, lying between the interval of [−180◦, 180◦],
which extrapolates the defined one of [−90◦, 90◦] in the training phase. In this way, one can also examine the
performance of learned policy under the effect of partial observability.

Grid

Y

X

D

(a) (b)

Figure 5: Schematic representation of the grid-based test-scenario. The coordinate system to which the test-scenario
refers is shown in red. The fixed dolly position is marked with “D”. The blue grid represents the test zone divided
into 11 × 11 positions. The grid and the dolly are scaled up for this illustration to improve visibility. (b) Graphical
illustration of a 0◦ rotation test, conducted in the simulated testing-environment.

The best run among the three runs of NavACL p.t. is illustrated in Figure 7(a). It is manifest that the agent scores
approximately 100% probability to reach the dolly from a favorable initial starting position. The term ‘favorable’
stands for a relatively small initial robot orientation from the target dolly, e.g., 0◦,±45◦,−90◦. These cases suffer
minimally from partial observation and the agent can reach goal mostly with proper turning and maneuvering. With
aforementioned favorable initial rotation angle, the mobile agent mostly succeeds in navigating to the goal, except for
left/right upper corner cases, i.e. the region near −3m in x-axis and −2m in y-axis for rotation angle −90◦. This result
is reasonable as such corner case is deemed as difficult start position as the robot cannot capture the target from the
RGB camera and the mobile robot has to make a series of adjusting maneuvers to reach upright underneath the dolly,
similar to parking the cars to a narrow slot, hence resulting in a sub-optimal policy. Additionally, such corner cases are
not sufficiently frequently sampled, resulting in a potential class imbalance problem. Consequentially, DRL algorithm
fails to learn from these samples well.

With the increasing initial rotation angle of ±135◦ and 180◦, which extrapolates the defined orientation domain of
[−90◦, 90◦] during training, the success probability drops significantly and the partial observability severely affects
the performance. For the majority of failure cases, the mobile robot exhibits one of following behavior patterns: (i)
Consistently making cycling movement, with some runs tending to gradually approach the target, but ending up with
reaching maximal allowed steps. (ii) Going straight towards collision without moving forwards or backwards. (iii)
Going towards an obstacle, but circling around in its proximity, exceeding maximal allowed steps. A potential reason
for such failure cases is that the learned policy cannot generalize well to extrapolated tasks not seen in training, whereas
the for intrapolated tasks (±45◦ and 0◦), the policy generalizes well.

4.3 Ablation Studies

In the above sections, we demonstrate the training and testing results of the best variant NavACL-Q p.t. In this section,
we examine the effect of a pre-trained convolutional encoder and NavACL-Q on the learning performance, which
respectively corresponds to two additional variants RND and NavACL e.t.e. We also run the remaining two variants in
the exact setting as NavACL-Q p.t. also with three runs for each variant and demonstrate the complete training and
testing results in Figure 6 and 7.
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(a) (b)

p.t.p.t.

Figure 6: Learning curves of the three variants. (a) The episodic return, (b) The docking success probability per
episode. These two statistics are presented as a moving-average over 500 episodes, where the solid line and shaded area
illustrates respectively the mean and the variance over three runs.

4.3.1 Ablation Studies: Effects of Automatic Curriculum Learning

To investigate the effects of our automatic curriculum approach NavACL-Q, we compare it with the variant RND, where
RND has the same setting as NavACL-Q p.t. except that it samples the initial state randomly from the defined boundary.
It is first to be noted that RND is already an approach encouraging the exploration and alleviates the task difficulty
compared to a fixed distant initial position from the target [15]. If a better training performance can be witnessed from
NavACL-Q, then the effectiveness of our automatic curriculum learning approach can be verified. We demonstrate the
comparison both in training and testing performance.

Figure 6 reveals that in the training phase the RND method imposes the highest training variance. One of the three
trials meets the 90% threshold in the RND case, though the other two trials have not exceeded 40% performance,
resulting in an average final performance of approximately 50%. In contrast, the variance of NavACL-Q e.t.e. remains
small, i.e., more robust. This can also be validated from the variant NavACL-Q e.t.e., which also incorporates the
component of NavACL-Q. Moreover, the NavACL-Q p.t. exhibits a consistently faster improvement at the initial stage
of training. With 1M steps, RND just starts to show a sign of improving in terms of success probability whereas
NavACL-Q p.t. has already reached the average success probability of 30% in Figure 6(b). From these observations,
it can be concluded that NavACL-Q indeed facilitates the training in terms of both final converged value and rate of
convergence. In the grid test, NavACL-Q e.t.e. shows a superior performance to RND among initial robot orientation
angle of 0◦, ±45◦, −90◦ and −135◦. Overall speaking, NavACL-Q e.t.e. converges to a better policy than RND in the
testing case.

We take a closer look at whether the success prediction network fπ in NavACL-Q p.t. shows meaningful predicted
success probability and how it evolves with the training stages. To examine this effect, the outputs of fπ are evaluated
across different stages of training from one of the three runs.

Figure 8 illustrates predicted task success rate in the defined regions with respect to two geometric properties, initial
robot orientation and the Euclidean distance between initial robot pose and target dolly. These two properties give a
straightforward view on the task difficulty. For instance, a small initial rotation angle with close distance is regarded
as optimistic initial position. It is hypothesized that a well-learned fπ should show a increasing tendency on success
probability as the training progresses. Besides, the prediction network should also distinguish favorable initial poses
from unfavorable ones.

As can be observed from Figure 8, at the initial training stage, e.g., episode 0, the agent behaves totally in a random
fashion and a general low predicted success value can be expected. With the training progressing, e.g., episodes 50, 000
and 100, 000, the prediction network suggests an increment in success rate in the regions of favorable initial poses,
where the increment also spreads to non-favorable initial pose. In both cases, tasks with low relative rotation and
distances less than 4m exhibits a significantly higher success probability. Towards the end of training, the entire task
space reaches an estimated success probability close to 100%.
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(a)

(b)

(c)

Figure 7: Color-coded illustration on the grid-based testing result of one fully trained NavACL-Q agent. The average
performance for each position on the grid is represented by a colorized circle, where yellow color indicates a high
success rate and blue color indicates near-zero success probability. (a) The testing result of NavACL-Q p.t. (b) The
testing result of RND (c) The testing result of NavACL-Q e.t.e.
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Figure 8: Two-dimensional interpolation of the success probability estimated by fπ at different stages of training, where
red areas indicate high success probability estimates and blue areas indicate low success probability estimates. In this
case, the plot is generated across the geometric properties Agent - Goal Distance and Relative Angle. The individual
plots consist of the success predictions of the 10, 000 tasks that followed the displayed episode.

We further inspect task distribution from the curriculum in different training stages. Figure 9 displays a set of histograms,
which accounts for the number of tasks in terms of one geometric property Agent - Goal Distance. In the first 10, 000
episodes, a random pattern with respect to the Agent - Goal Distance for the agent NavACL p.t. is present. This is
reasonable as the agent behaves more randomly at the beginning and mostly ends up with not reaching the target. With
merely negative experience, the success prediction network cannot distinguish easy task from frontier task, hence
reaching a more or less random pattern. In the intermediate stage, represented by episodes 50, 000 : 60, 000, where
the agent starts to learn in the initial positions with small relative distance but still fails in large initial distance. This
can additionally be verified in Figure 8. In this phase, easy and frontier task corresponds to the regions with close
distances. This is referred to as a more concentrated distribution that can be found with the featured goal distances in the
range of 1.5m to 2.5m. Note that the definition of easy and frontier task also evolves with the training stage. In a later
training stage, represented by episodes 150, 000 : 160, 000, the success prediction network fπ has mostly successful
predictions covering all the relative distances in Figure 8. In this case, large initial distances can also be classified as
easy task or frontier one, resulting in a random sampling. This tendency is in accordance with the anticipated behavior
of NavACL-Q. The RND agent on the other hand, is trained based on randomly sampled tasks only, therefore it shows
a uniform distribution across the defined distance domain.

4.3.2 Ablation Studies: Effects of Pre-trained Convolutional Encoder

For the training performance, Figure 6 demonstrates that NavACL-Q and NavACL-Q e.t.e. perform similarly in terms
of return and success rate during the first quarter of the training stage. Intermediate training performance with an
approximately 30% success rate is reliably achieved by both approaches. Nevertheless, robust policies with final
performance over 90% are exclusively learned by agents that utilize the pre-trained feature extractor. NavACL-Q e.t.e.
attain similar variances as NavACL-Q, but the final performance stagnates around 30%. In an additional experiment, the
maximum number of episodes is increased to 0.4M , yet still no robust policy with success rates above 60% can be
achieved in the NavACL-Q e.t.e. case.

In the grid test case, NavACL-Q e.t.e. also ends up with overall worse performance than NavACL-Q p.t. and RND. The
most successful navigation trials happen when the initial robot rotation is 0◦, corresponding to the easiest scenario. As
the rotation angles increases, the successful probability drops quickly. With such comparison, it is obvious that the
pre-trained network greatly boosts the performance as well as reduces the overall computation expense. We discuss this
effect in Section 5.4.

4.4 Comparison to a Map-based Navigation Approach

We further compare the result of our learning approach to a full perception and navigation pipeline provided by NVIDIA
Isaac SDK™ [21], which is deemed as a baseline approach. This baseline application is specifically designed for the
load carrier docking task. In contrast to our solution, the baseline uses a global map for multi-LiDAR Localization
of the robot. The target pose for the robot is determined by object detection followed by 3D pose estimation of the
dolly. In the baseline application the camera resolution is 720× 1280 and the number of the LiDAR beams used for
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localization is 577 per sensor, which have a maximum detectable range of 20m. The used mobile robot except for the
camera and the LiDAR resolution, remains the same.

To find the goal position for the robot, the pose of the dolly is inferred from the frontal facing camera of the robot. This
poses a constraint that the dolly has to be detected in the input image. For the baseline approach, this is done by using
DetectNetv2 [64], which was pre-trained on real images and then fine-tuned for dolly detection by using randomized
images of the dolly, created with IsaacSim Unity3D [21]. DetectNetv2 generates a 2D axis-aligned bounding box for a
detected dolly. The detected bounding box is used to create a cropped image of the dolly, which forms the input into a
pose estimation model. In this case, the pose estimation model is based on PoseCNN [65]. The output of the PoseCNN
network is an estimated orientation and translation of the dolly. Given an image of the dolly, the perception pipeline
estimates the 3D pose of the dolly. This pose is transformed into the global coordinate-frame and serves as a target pose.
Then, a local planner based on the linear quadratic regulator navigates the robot under the dolly.

We also conduct the same grid testing as mentioned in Section 4.2 for the baseline approach. Since the baseline
approach enforces that the target dolly must be captured with a RGB camera, it is only possible to show the result
with the initial orientation angle of 0◦ and ±45◦. The baseline method achieves the success rate of 100% in the 0◦

orientation case under the condition that the displacement on x-axis remains below 1m, and the distance in y-direction
remains below 5m, which is illustrated in Figure 10. However, the baseline approach proves incapable of performing
the docking maneuver once the distance on the x- or y-axis surpasses the mentioned limitations. In the ±45◦ case,
only few positions are solved successfully, all of which provide full visibility of the dolly. The ±45◦ cases require
y-displacements between −2m and −4m for successful docking maneuvers. As a conclusion, our learning approach
definitely outperforms the baseline with larger initial orientation and distances to the target.

5 Discussion

In this section, we discuss the pros and cons of our learning approach compared to the map-based baseline approach by
illustrating the learned trajectories from two approaches respectively. Moreover, we interpret the results from ablation
studies in correlation to other works. The result of intermediate trials and potential improvements of NavACL-Q
approach as future work are discussed.

(a) (b)

Figure 9: Comparison of the task selection histograms with respect to the Agent - Goal Distance geometric property
of exemplary training outcomes. We have recorded the statistics of initial position in terms of Agent - Goal Distance
among different training stages, each with 10, 000 episodes. The histogram counts the corresponding number of initial
states in the defined distance bins among each 10, 000 episodes. (a) represents task distribution of a NavACL-Q agent
and (b) illustrates the task distribution of an RND agent.
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5.1 Learned Behavior of the Agent

As mentioned in Section 4.1.2, one major advantage of a successfully-trained DRL agent on the navigation task is the
adaptability to a non-stationary environment. The mapping from raw sensory observation to the action fully relies on
the learned DNN. As a comparison, map-based approaches require updating of a map and perform re-planning, which
causes additional computation overhead and suffers from potential error of an inaccurate map. The corrective maneuver
of DRL agent is naturally acquired from the experience encountered during training given sufficient exploration, i.e.,
learning from trial and error.

In addition, we are illustrating the learned trajectories of the map-based baseline approach and DRL variants. For a fair
comparison, three scenarios have been chosen in a way that the baseline is able to perform the navigation successfully,
i.e., dolly visibility in the frontal RGB camera is given. Each of subplots in Figure 11 illustrates one scenario with the
leaned trajectories from NavACL-Q p.t., NavACL-Q e.t.e., RND and baseline given the same initial and goal state.

The quantitative illustration shows that the map-based approach provided by NVIDIA Isaac SDK returns optimal
trajectory with minimal maneuvers in orientation adjustments, while DRL agents exhibit near-optimal ones. This
sinusoidal behavior is natural as the DNNs can hardly eliminate approximation errors to 0. Additionally, SAC encourages
the agent to show stochastic behavior by maximizing the policy entropy and the illustrated trajectory is one sample
from the learned policy distribution.

Our intermediate trials also reveals that a good randomization of the training is essential to a more generalized policy.
In our setting, the position of the goal dolly needs to be sufficiently randomized in the cells. In some intermediate
trials, where the degree of the randomization of the goal dolly is limited, e.g., more concentrated on one area in the
cell, the ultimately learned agent tends to merely reach the defined target regions in training, but not towards the true
target position in testing. This interesting phenomenon indicates that the robot is sometime more reliant on the LiDAR
readings to infer the goal position instead of visual observation. Therefore, a good randomization of the target’s position
in the arena helps prevent the agent from relying merely on the LiDAR distance reading to infer the goal position.

We have also tested the agent’s ability to navigate from very far distance to the goal, i.e., larger than 10m. It is first
spotted that the agent also makes cycling movements with a tendency of approaching the target, when the agent is
within the distance of roughly 4m away. Then it ceases the cycling motion and behaves near-optimally towards the
goal. This motion pattern can be interpreted as having not yet learned to reach the goal positions in extrapolated task
with larger initial distance than in the training task. Hence, our hypothesis for further improving the generalizability of
learned policy is to equate the training domain to the target domain, otherwise the DRL is likely to exhibit very limited
performance in extrapolated tasks.

5.2 Effects of Pre-trained Feature extractor

We have already seen that the variant NavACL-Q p.t. definitely outperforms NavACL-Q e.t.e. Such findings are
also consistent with other research work. In [66], the car (agent) learns to drive in the street rationally with frontal
cameras and it is expected to stop at the red light. They pre-train a feature extraction layer similar to an auto-encoder
version with additional loss on the traffic lights, so that the information from traffic lights is accentuated. Hence, the
car has learned to react correctly to the traffic light signal. They report a significantly better training efficiency and

2 0 2
x [m]

7

6

5

4

3

2

y 
[m

]

Robot Rotation: 0°

2 0 2
7

6

5

4

3

2
Robot Rotation: -45°

2 0 2
7

6

5

4

3

2
Robot Rotation: 45°

0.0
0.2
0.4
0.6
0.8
1.0

Figure 10: Similar to Figure 7, we demonstrate a color-coded illustration of the grid-based testing result of the baseline
approach. The yellow color indicates a high success rate and blue color indicates near-zero success probability.
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converged performance with a pre-trained semantic segmentation feature extraction layer than learning from scratch.
The work of [67] further explores the possibility of performance enhancement when decoupling feature extraction from
policy learning. They propose learning meaningful feature extraction via considering inverse dynamics p(at|st, st+1),
reward prediction p(rt+1|st, at) and reconstruction from visual observations. In their ablation studies, the variants
of auto-encoder, random feature extraction and end-to-end learning are also compared jointly. The result shows that
there is no variant dominating other pre-trained feature extractor, but with pre-trained feature extraction, it generally
outperforms end-to-end learning. This is also similar to the findings of [68], where the agent behaves better with a set
of pre-trained feature extractors than its counterpart. In addition, different sets of pre-trained feature extractors are
beneficial to different purposes, e.g., exploring the environment or reaching the goal state. With a pre-trained network,
the overall training time is also greatly reduced, however, at a cost of being no more end-to-end learning.

5.3 Potential improvements on NavACL-Q

We have indeed verified the effectiveness of our automatic curriculum learning approach NavACL-Q in Section 4.3.1.
Nonetheless, we still spot some cases where NavACL-Q may fail despite the improvements on the original NavACL
algorithm. This happens when the agent fails even in the initial optimistic regions quite often, ending up with much
more negative samples than positive ones. As a result, NavACL cannot distinguish easy tasks from frontier ones or
random tasks due to severe class imbalance problems. Under these circumstances, the initial poses with low success
probability are interpreted as easy. Consequentially, the curriculum fails to propose beneficial intermediate tasks, and is
behaving similarly to random starts.

One potential solution to this issue is to start curriculum proposing when the agent performs sufficiently well on the
favorable initial state. With guaranteed success on a favorable initial task, the NavACL algorithm can distinguish easy
task from frontier task. This idea will be investigated in our future work.

The other improvement is the generalization of NavACL-Q to be domain independent. The current input of the success
prediction network fπ still considers the domain dependent properties such as distance to goal and initial rotation,
which requires additional manual design. A more meaningful approach is to leave out domain-dependent handcrafted
features and to retain only domain-independent ones, for instance, Q-value of the initial state-action pair, which will be
used in most DRL algorithms. Such settings will easily generalize NavACL-Q to other tasks, which is worth future
investigation.

5.4 Effects of Problem Formulations on the Performance

To address the partial observability, we have taken a simple approach by stacking 3 previous frames along the channel
dimension according to [19]. However, the trained agent still shows limited performance with larger initial rotation
angle away from the target dolly. One potential explanation is that the historical observation is still not long enough to
mitigate partial observability. In the work of [44], they use LSTM with increasing the historical length of 20 steps. The
performance is reported to be better than stacking 3 previous frames. This approach be potentially effective, but at the
cost of a longer training duration.

Figure 11: A selection of driven trajectories from three different initial positions, where the orange line represents the
baseline trajectory, the blue line represents the NavACL-Q e.t.e. trajectory, the green line illustrates the NavACL-Q
trajectory and the red line depicts the trajectory of the RND case. Some clipped trajectories signifies that the agent
ended up with collision.
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We have also tried a simpler environmental setting, where the agent tries to navigate to the door and the mobile robot is
only equipped with frontal grey-scaled camera and 3 previous frames are stacked. Importantly, the door is designed
with distinct grey-scaled color from other objects so that the agent can recognize the target state from the grey-scaled
observation. We have merely implemented the SAC algorithm with random starts, but without pre-trained feature
encoders. Interestingly, the learned policy is mostly optimal and the agent learns to rotate at the beginning to search for
the goal and moves towards the door as soon as it gets detected. An investigation of whether increasing historical length
can significantly increase the performance with larger initial rotation angles will be investigated further.

In some intermediate trials, we have found that the agent relies on the LiDAR readings to infer the goal position
instead of relying on the visual observations. Therefore, we have tried one variant forcing our RL agent to perform
goal detection via visual observation, whereas LiDAR readings are only intended for collision avoidance. To this end,
the maximal detectable range of LiDARs has been set to a maximum of 1.5m, and the pre-processing of the LiDAR
observation is also rescaled into [0, 1] correspondingly. Strangely, only with this change, the complete training ends
up with failure. The agent fails highly frequently even with the simplest optimistic initial state. The reason for this is
still unknown, might be potentially related with network initialization as mostly of beams ends up with the maximal
readings of 1 after rescaling, breaking the assumption that the input features a normal distribution on which most weight
initialization is based.

We have also conducted some simple trials for reward shaping. In one attempt, the reward term rCD has been set to be
of the same as rC , namely, not distinguishing collision with dolly or other obstacles. Our findings show that the small
penalty of dolly collision definitely encourages the agent to approach that area and simplifies the training.

6 Conclusions

In this paper, we have demonstrated an approach of deep reinforcement learning with automatic curriculum learning on
solving challenging navigation tasks with LiDAR and frontal-view visual sensors in intralogistics. The key challenge of
task lies in a DRL problem formulation to deal with sparse positive experience, multi-modal sensory perception with
partial observability, long training cycles and the need for accurate maneuvering. To address these problems, distributed
soft actor-critic with NavACL-Q algorithm haven been proposed. Our learning approach is completely mapless (no
efforts for mapping and localization) and without human demonstration and relies entirely on the power of neural
networks to directly map multi-modal sensory readouts to the continuous steering command. In addition, the reward
formulation has been designed in a manner that can be directly used in real case.

The results show that our DRL-agent has a significantly better performance than the baseline map-based navigation
approach provided by Nvidia. The baseline approach is only applicable to the case where the frontal RGB camera
captures the target dolly and is merely within 3m distance from the goal. In contrast, our DRL-agent has managed
navigation task with higher relative rotation and translation between agent and target, showing more robustness and
generalizability. Furthermore, our ablation studies reveal that our automatic curriculum learning approach NavACL-Q
indeed facilitates the learning efficiency compared to random starts, and a pre-trained feature extractor also greatly
accelerates the training.
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Appendices
Appendix A Details for Training via Soft Actor-Critic

In this part, we elaborate on the settings of distributed SAC as our DRL algorithm.

The network architecture of actor and critic is firstly shown. Figure 2 has already demonstrated an overall network
design, and the detailed structure of convolutional blocks is illustrated in Figure 12. We also perform zero-padding for
all previous rewards and actions Oar when the current time horizon is smaller than the defined historical length, i.e. 4
in our case. For the visual observation Ov , we perform replicate paddings of the RGB image at t = 0.

64 x 40 x 40

Residual Block, 64

128 x 20 x 20

Residual Block, 128

256 x 10 x 10

Residual Block, 256

Residual Block, 128

Flatten(128 x 5 x 5)

1 x 3200

Stacked
Camera Images

4 x 3 x 80 x 80Residual Block

Conv2d (3x3) Padding =1

ReLU

128 x 40 x 40

Conv2d (3x3) Padding =1

ReLU

Conv2d (2x2)

128 x 20 x 20

ReLU

64 x 40 x 40

128 x 40 x 40

128 x 40 x 40

Conv2d (1x1)

Figure 12: Illustration of encoder part for the stacked camera images. Four Residual blocks are used. In the left panel,
the architecture of the residual blocks is illustrated. The first two convolutions use (3× 3) filters, then the identity is
concatenated to the output of the first two convolutions. Finally, we down-sample the image by half using a convolution
with a filter of (2× 2) and a stride of 2 according to [69].

As described in Section 3.3, we accelerate the training speed and improve the generalizability of the agent by paralleling
9 agents, resulting in a distributed version of SAC. We show the pseudo code in Algorithm 2 and 3 for both worker
process and master process. The asynchronous method for experience gathering is analogous to A3C [25]. Each
worker process gets a copy of the shared actor from the main process and collects experience asynchronously. After
one worker has completed an episode, the gathered experience is stored in a shared episode replay queue, and a new
version of the shared policy is obtained from the master process. Concurrently, the master process updates the actor
and critic networks and gathers all workers’ experience from the shared episode replay queue to fill a PER buffer. The
hyper-parameter settings are demonstrated in Table 3.
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Table 3: Hyperparameter settings of SAC algorithm

Distributed Soft Actor-Critic Hyperparameters
Parameter Value
Discount factor γ 0.999
Target smoothing coefficient τ 1 (hard update)
Target network update interval η 1000
Initial temperature coefficient α0 0.2
Learning rates for network optimizer λQ, λα, λπ 2× 10−4

Optimizer Adam
Replay buffer capacity 220 (Binary Tree)
(PER) prioritization parameter c 0.6
(PER) initial prioritization weight b0 0.4
(PER) final prioritization weight b1 0.6

Appendix B Details for training the NavACL-Q Algorithm

Here, we show the hyper-parameters of NavACL-Q algorithm. The success prediction network fπ consists of two dense
hidden layers with 32 nodes each and the ReLU [70] as non-linear activation function. We use a sigmoid function for
the output layer to limit the output-range to [0, 1] together with binary entropy loss. Relevant details are listed in Table
4.

Table 4: Hyper-parameter settings related to the NavACL-Q algorithm.

NavACL-Q Hyperparameters
Parameter Value
Batch size m 16
Upper-confidence coefficient for easy task β 1.0
Upper-confidence coefficient for frontier task γ 0.1
Additional threshold for easy task χ 0.95
Maximal number of trials to generate a task nT 100
Learning rate for fπ 4× 10−4

Appendix C Arena Randomization

In this part, we show the randomization for each training arena cells including the initial pose of mobile robot and the
target dolly in Table 5. For instance, the initial Yaw-Rotation (either robot or dolly) of 0◦ corresponds to alignment with
the y-axis illustrated by Figure 5 (frontal robot camera heads towards the dolly), and −90◦ corresponds to alignment
with the x-axis (frontal camera points towards the right wall).

Appendix D Mobile Robot and Target Dolly Specification

In Table 7, we show the specification of mobile robots and the target dolly. One can see that the goal state for the mobile
robot is strict and therefore posing great challenges to DRL algorithms.
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Table 5: Summary of the task randomization, including the initial pose of AVG, the pose of the target dolly and
obstacles.

Description Randomization
Induced Randomization
with respect to
Geometric Property

Initial Robot Yaw-Rotation Uniform sampled from the
interval [−90◦, 90◦] Relative Rotation:

[1.5m, 5m]
Initial Dolly Yaw-Rotation Uniform sampled from the

interval [−15◦, 15◦]
Number of Obstacles 1 to 4 Agent Clearance /

Goal Clearance:
[2m, 8m]Position of Obstacles

Randomly placed left and right
of the dolly, with a distance
uniformly sampled from the
interval [2m, 5m]

Initial Robot Position −0.5m to 0.5m
on y- and x-axis Agent - Goal Distance:

[1.5m, 5m]

Initial Dolly Position

Uniformly sampled from a circle
segment with radius = 5m and
central angle 30◦, where
the center of the segment
corresponds to the center of
the robot, with minimum 1.5m
distance to the robot

Table 7: Technical details of the mobile robot and the target dolly.

Mobile Robot
Length, Width, Height 1, 273mm× 630mm× 300mm
Maximum Speed 1.2m/s

LiDAR Sensor 2x 128 Beams, each FOV 225°,
Max Distance: 6m

Frontal RGB Camera 80× 80× 3 pixel , FOV 47◦

Dolly
Length, Width 1, 230mm× 820mm

Algorithm 2: Distributed Soft Actor-Critic — Worker Process

input :ϕ, θ, fπ , Es, env ; ▷ Shared parameters for the policy, the Q-Function and the NavACL-Q

network, shared episode replay queue, and a target environment for interaction

input :L ; ▷ A task database consisting of initial states based on env
1 while True do
2 E ← ∅ ; ▷ Initialize an empty local episode replay buffer

3 ϕ← ϕ ; ▷ Create a local policy network copy ϕ for the next episode

4 Lr ← randomly sample 100 tasks from L µf , σf ← FitNormal (f ∗
π (Hr))

task = GetDynamikTask −Q(θ, µf , σf , H) ; ▷ Use Nav-ACL-Q to get a task that fits the

current ability of ϕ
5 while maximal episodic length not reached do
6 at ∼ πϕ(at|st) ; ▷ Sample an action according to the local policy

7 st+1 ∼ p(st+1|st, at) ; ▷ Sample transition from the environment

8 E ← E ∪ {(st, at, rt, st+1)} ; ▷ Store the transition in the local episode replay buffer

9 end while
10 Es ← Es ∪ E ; ▷ Append the locally recorded episode to the shared episode replay queue

11 end while
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Algorithm 3: Distributed Soft Actor-Critic — Master Process
input :θ1, θ2, ϕ, Env, b,m ; ▷ List of environments and the batch sizes for the SAC and the NavACL

updates

1 θ1 ← θ1, θ2 ← θ2 ; ▷ Initialize target network weights

2 D ← ∅ ; ▷ Initialize an empty PER replay buffer

3 Es ← ∅ ; ▷ Initialize an empty, shared episode replay queue

4 Lm ← ∅ ; ▷ Initialize an empty task result set

5 init(fπ) ; ▷ Initialize the NavACL-Q network weights

6 n_updates← 0 ; ▷ Number of SAC updates

7 for agent_index← 0 to num_agents do
8 Spawn Process
9 AsynchronousExperienceGathering(ϕ, θ, fπ, Es, env = Env[agent_index])

10 end
11 end for
12 while True do
13 for agent_index← 0 to num_agents do
14 if Es ̸= ∅ then
15 Ep← Es.pop() ; ▷ Pop one episode from Es

16 D ← D ∪ Ep ; ▷ Append the episode to the PER buffer

17 Lm ← Tm ∪ Epl ; ▷ Append the task of Ep and the result of Ep to Lm

18 end if
19 if Lm contains m tasks and task-results then
20 fπ ← Train(fπ,Lm) ; ▷ Train fπ
21 Lm ← ∅
22 end if
23 end for
24 B, wi ← sample(D, b) ; ▷ Sample a batch of interactions from the PER replay buffer

25 for each iteration in B do
26 for each gradient step do
27 θi ← θi − λQ∇̂θiwiJQ(θi) for i ∈ {1, 2} ; ▷ Update the Q-function parameters

28 ϕ← ϕ− λπ∇̂ϕJπ(ϕ) ; ▷ Update policy weights

29 α← α− λ∇̂αJ(α) ; ▷ Adjust Temperature

30 end for
31 end for
32 n_updates← n_updates+ 1;
33 if n_updates % η = 0 then
34 θi ← θi for {1, 2} ; ▷ Hard Update since τ = 1
35 end if
36 end while
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