
Articles
https://doi.org/10.1038/s42256-020-00255-1

1Intelligent Autonomous Systems, Technische Universität Darmstadt, Darmstadt, Germany. 2Institute for Robotics and Cognitive Systems, Universität zu
Lübeck, Lübeck, Germany. 3Robot Learning Group, Max Planck Institute for Intelligent Systems, Tübingen, Germany. ✉e-mail: daniel@robot-learning.de

A crucial ability for intelligent behaviour is to transfer strate-
gies from one problem to another, studied, for example, in
the fields of lifelong and transfer learning1–4. Learning and

especially deep learning systems have been shown to learn a vari-
ety of complex specialized tasks5–10, but extracting the underlying
structure of the solution for effective transfer is an open research
question3.

The key for effective transfer—and a main pillar of (human)
intelligence—is the concept of structure and abstraction11–13. To
study the learning of such abstract strategies, the concept of algo-
rithms (such as in computer science14) is an ideal example for such
transferable, abstract and structured solution strategies.

An algorithm is a sequence of instructions, which often repre-
sent solutions to smaller subproblems. This sequence of instruc-
tions solves a given problem when executed, independent of the
specific instantiation of the problem. For example, consider the task
of sorting a set of objects. The algorithmic solution, specified as the
sequence of instructions, is able to sort any number of arbitrary
classes of objects in any order (for example, toys by colour, waste by
type or numbers by value) by using the same sequence of instruc-
tions, as long as the features and comparison operators that define
the order are specified.

Learning such structured, abstract strategies enables the effective
transfer to new domains and representations as the abstract solu-
tion is independent of both. By contrast, transfer learning usually
focuses on improving learning speed on a new task by leveraging
knowledge from previously learned tasks, whereas algorithmic solu-
tions do not need to (re)learn at all, only the data-specific operations
need to adapt. In other words, the sequence of instructions does not
need to be adapted, only the instructions, that is, the solutions to
smaller subproblems. Moreover, such structured abstract strategies
have built-in generalization capabilities to new task configurations
and complexities and can be interpreted better than, for example,
common blackbox models such as deep end-to-end networks.

The problem of learning algorithmic solutions
To study the learning of such abstract and structured strategies, we
investigate the problem of learning algorithmic solutions, which we
characterize by three requirements:

•	 R1—generalization and scaling to different and unseen task
configurations and complexities

•	 R2—independence of the data representation
•	 R3—independence of the task domain

Picking up the sorting algorithm example again, R1 represents
the generalization and scaling properties, which allow sorting of
lists of arbitrary length and initial order, whereas R2 and R3 rep-
resent the abstract nature of the solution. This abstraction enables
the algorithm, for example, to sort a list of binary numbers while
being trained only on hexadecimal numbers (R2). Furthermore, the
algorithm trained on numbers is able to sort lists of strings (R3). If
R1–R3 are fulfilled, the algorithmic solution does not need to be
retrained or adapted to solve unforeseen task instantiations—only
the data-specific operations need to be adjusted.

Earlier research on solving algorithmic problems has been
undertaken, for example, in grammar learning15–17, and is becoming
a more and more active field in recent years outside of it18–32, with a
typical focus on identifying algorithmic-generated patterns or solv-
ing algorithmic problems in an end-to-end set-up18–27, and less on
finding algorithmic solutions28–32 that consider the three discussed
requirements R1–R3 for generalization, scaling and abstraction.

Although R1 is typically tackled in some (relaxed) form, as it
represents the overall goal of generalization in machine learning,
the abstraction abilities R2 and R3 are missing. Furthermore, most
algorithms require a form of feedback, using computed intermedi-
ate results from one computational step in subsequent steps and a
variable number of computational steps to solve a problem instance.
It is therefore necessary to be able to cope with varying numbers

Evolutionary training and abstraction yields
algorithmic generalization of neural computers
Daniel Tanneberg   1 ✉, Elmar Rueckert1,2 and Jan Peters1,3

A key feature of intelligent behaviour is the ability to learn abstract strategies that scale and transfer to unfamiliar problems. An
abstract strategy solves every sample from a problem class, no matter its representation or complexity—similar to algorithms in
computer science. Neural networks are powerful models for processing sensory data, discovering hidden patterns and learning
complex functions, but they struggle to learn such iterative, sequential or hierarchical algorithmic strategies. Extending neural
networks with external memories has increased their capacities to learn such strategies, but they are still prone to data varia-
tions, struggle to learn scalable and transferable solutions, and require massive training data. We present the neural Harvard
computer, a memory-augmented network-based architecture that employs abstraction by decoupling algorithmic operations
from data manipulations, realized by splitting the information flow and separated modules. This abstraction mechanism and
evolutionary training enable the learning of robust and scalable algorithmic solutions. On a diverse set of 11 algorithms with
varying complexities, we show that the neural Harvard computer reliably learns algorithmic solutions with strong generaliza-
tion and abstraction, achieves perfect generalization and scaling to arbitrary task configurations and complexities far beyond
seen during training, and independence of the data representation and the task domain.

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell 753

mailto:daniel@robot-learning.de
http://orcid.org/0000-0002-1363-7970
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-020-00255-1&domain=pdf
http://www.nature.com/natmachintell

Articles NATurE MAcHiNE iNTElligENcE

of steps and determining when to stop, in contrast to using a fixed
number of steps21,33, and to be able to re-use intermediate results,
that is, feeding back the models output as its input. These features
make the learning problem even more challenging.

The neural harvard computer
The proposed neural Harvard computer (NHC) is a modular
architecture that is based on memory-augmented neural net-
works15–21,23,24,27–29,33–39 and inspired by modern computer architec-
tures (see Fig. 1 for a sketch of the NHC). Memory-augmented
networks add external memory to a neural network that allows
separation of computation and memorization—in classical neural
networks both are encoded into the synaptic weights.

The external memory can be realized differently, for example,
as a memory matrix20, tape23 or stack19, and the so-called controller
network can write and read information through a defined inter-
face that controls the memory access, for example, moving the head
one step to the right for a tape memory, or pop the top informa-
tion in a stack memory. In the NHC, the external memory is real-
ized as a matrix and interaction with the memory is performed via
write and read heads, similar to the differentiable neural computer
(DNC)20. These heads interact with the memory by writing or read-
ing information into or from the memory matrix, where each row
corresponds to a memory location with a specified word size, that
is, length of the information vector.

Information split. Learning algorithmic solutions requires the
decoupling of algorithmic computations from data-dependent
manipulations and domains. An abstraction level is therefore
introduced by dividing the information flow into two streams: the
data stream d and control stream c. The introduction of external
memories to neural networks helps to separate computation and

memorization, the information flow split similarly helps to separate
algorithmic computations and data-specific manipulations.

This information split induces two major features of the NHC:
(1) the split into data modules that operate on d and algorithmic
modules that operate on c; and (2) the introduction of two cou-
pled memories. The algorithmic modules operate on c, that is,
AlgModule(c) ⟶ c, whereas the data modules Input and arithmetic
logic unit (ALU) are operating on d, that is, DataModule(d, c) ⟶ d, c.
They create an abstract interface and separation between algorith-
mic computation and data-specific processing. Although the Input
module receives the external data and provides algorithm-specific
control signals, the ALU receives data and control information to
manipulate the data to create new data (hence the name arithmetic
logic unit) that is fed back to Input to be available in the next com-
putation step. These two modules are data specific and need to be
adapted for a new data representation or domain.

The algorithmic modules. These modules consist of the Controller,
Memory and Bus. These modules form the core of the NHC (see
Fig. 1) and are responsible for encoding and learning the algorith-
mic solution based on c.

The Controller. The controller receives the control signals from the
Input and the information read from the memory in the previous
step; depending on the task to learn, it can also receive feedback
from the Bus and ALU. It learns an internal representation of the
algorithm state that is sent to the Memory and Bus modules.

The Memory. The memory module uses this representation in addi-
tion to the control signals from the Input to learn a set of interfaces
for interacting with the memory matrices. These learned interfaces
control the write and read heads and hence, what information is

Memory

Prev. write gate

Free gates

Read modes

Data memoryControl memory

Write

Prev. write

Prev. erase

Read

Read data

Read

Prev

Write data

H1 H2 B F P C
H1 H2 B F P C

Usage

Temporal
linkage

Ancestry
linkage

Algorithmic modules

Controller

Bus

Data
Control

Previous
Time-step

Write Read 1 Read 2

Write

Input

ALU

Fig. 1 | The Nhc architecture. Information flow is divided into data (green) and control (orange) streams. The modules inside the light grey area—the
controller, the memory and the bus—are learning the algorithmic solution on the control stream, whereas the data modules are either learned beforehand
or hand-designed. The algorithmic solution operates solely on the control stream to steer the data access and manipulation, whereas the learning signal
can be provided on any connection in the architecture (data or control) due to the evolution-based training. Inside the memory module the learnable
interfaces that control the data access to the two memory matrices are shown. Sign and magnitude of vectors are shown as the colour and size of the
boxes and circles.

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell754

http://www.nature.com/natmachintell

ArticlesNATurE MAcHiNE iNTElligENcE

accessed. First, the locations read in the previous step are potentially
updated (prev), then new information is written via the write heads
(write) and, finally, the read heads read information (read) that is sent
back to controller and the Bus. Write and read heads are using hard
decisions, that is, each head interacts with one memory location.

The abstraction introduced by the information split also creates
the necessity to store data and control information separately. The
Memory module therefore uses two memory matrices (Mc:N × C
and Md:N × D) to store the control and data information, respec-
tively, with N locations, where C and D are control memory and
data memory word sizes, respectively. The two memories are cou-
pled such that the same locations are accessed at each step, which
allows algorithmic control information to be stored alongside the
data information. New information is written via the write heads to
unused memory locations and locations can be freed by free gates
to be reused. For reading information from the memory, there are
several read modes to steer the read heads.

The HALT modes move the read head to the previously read
location of the associated head. For example, with two read heads,
each head can use two modes (H1 and H2) to move to the location
previously read by the corresponding head.

To read data in the order in which it was written, the DNC intro-
duced a temporal linkage mechanism that keeps track of the order
of written locations. The NHC uses a simplified version of this tem-
poral linkage. This temporal linkage provides two read modes: one

to move the read head forward to the location that was written next
(F) and one to move the head backwards to the location that was
written before (B).

Algorithms often require hierarchical data structures or depen-
dencies. To provide such dependencies, the NHC employs an
ancestry linkage mechanism. This mechanism keeps track of which
location was read before for each written location and therefore pro-
vides two read modes: one to move the read head to the parent (P),
the location that was read before, and one to move the read head to
the child (C), the location that was written after.

The Bus. The Bus combines the representation learned by the
Controller with the information read out from the Memory to pro-
duce the control signal that is sent to the ALU, indicating which
operation to apply on the read data. By using the information read
from memory, the Bus can incorporate this new information in the
same computational step.

learning algorithmic solutions
For evaluating the proposed NHC on the three algorithmic require-
ments R1–R3, a diverse set of algorithms was learned and the solu-
tions were tested on their generalization, scaling and abstraction
abilities.

The 11 learned algorithms solve search, plan, addition, sorting,
evaluating arithmetic expressions and sequence-retrievals problems.

Search and plan

Level 3

Backtracking

Goal

Level l = #explored nodes
complexity: O (4l) steps

Start

a4a2
a1

a2 a3
a1 a3 a4

s0

s1 s2 s3

s9s8s7s6s4

Level l = #length of numbers ∣ complexity: O (l) steps

Level 3

Sort

Level 3

Level 10

Level 10

Level l = #list elements + 1 ∣ O (l 2) steps Level l = #operations ∣ O (3l) steps

Level l = #duplicates & #objects + 1 ∣ O (l)RepeatCopy: level l = #copies & #objects + 1 ∣ O (l 2)

Copy & reverse : level l = #objects + 1 ∣ O (l)

Level 3

Duplicated

Level 3

Copy Reverse

repeatCopy

Arithmetic

Addition

Level 3

Level 10

4

4

254712411665

1 2 4 5 6 7 11 12 16 41 54

11 4 1

1

1

19

19

6

6

3 4 + 9 4 = 59–*

= –6**/473––+782–63936 * / –

4 4 4 1 1 1 6 6 6 8 8 8

8614

4 19 6

6

66

6

6

4

444

4 1

111

1 19

191919

19

1

Copy, repeatCopy and reverse

Input : Start and goal state (s0, g)

Input : unordered list L
Output: ordered list O

Output: Sum a + b

O = [], seen = []

idx = 0

idx = j

idx = j
seen.push (idx)
O.push(L [idx])

O.push (o)

O.push (o)

O = []

for i ← 1 to c do
for o in L do

return O

return O
return O

last = o
O.push (o)

else

for i ← 0 to L.length – 1 do

for j ← 0 to L.length – 1 do
if j ∉ seen and idx ∉ seen then

if j ∉ seen and idx ∈ seen then

if compare(L[idx], L [j]) then

Output: BFS traversal (+ backtracking)

sn = unexplored.popLeft ()

for a Є A do
su = apply(sn, a)

sn = g

sn = parent (sn)

unexplored.push (su)
output.push ((sn, a))

output.push ((sn, nop))
return output

// additional for plan & plan+

// a Є A (sn) (search+ & plan+)

unexplored = [s0], su = Ø, output = []
while su ≠ g do

while sn ≠ s0 do

Input : List of objects L

Input : Two numbers a, b 0101

+ 0011

1000

1001011001

+ 0110011011

1111110100

Output: c copies of L // copy & repeatCopy

// copy & repeatCopy

// reverse

Output: Reversed copy of L // reverse

for o in reverse (L) do

for o in L do
if o ≠ last then

sum = 0
carry = 0
for i ← a.length –1 to 0 do

val, carry = add(a [i], b [i], carry)
sum = sum + val

return sum

return r

Input : Arithmetic expression E
Output: Result r of E
stack = []
for o in E do

if isnumber(o) then
stack.push (o)

stack.push (r)

else
right = stack.pop ()
left = stack.pop ()
r = compute(left, o, right)

r = stack.pop ()

Input : List L = [o1, o1, o2, o2, ..., on, on]
Output: O = [o1, o2, ..., on]
O = [], last = Ø

Fig. 2 | Overview of the learned algorithms. All considered algorithms to learn are shown with their pseudocode, how their curriculum level complexity is
defined, how the step complexity scales with the level, and examples from indicated levels. Note that the step complexity indicates the runtime complexity
and only considers the steps after the input data is shown, neither taking the complexity of the data manipulation into account nor the structure learning
required while the input data is presented.

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell 755

http://www.nature.com/natmachintell

Articles NATurE MAcHiNE iNTElligENcE

In Fig. 2 all 11 algorithms are sketched with their pseudocode
and examples (more details can be found in the Supplementary
Information).

Learning is performed in a curriculum learning set-up40, where
the complexity of presented samples increases with each curricu-
lum level. During learning, samples up to curriculum level 10 are
considered, with an additional level 11 that samples from all previ-
ous levels. Generalization and scaling is tested on complexities up to
level 1,000. The direct transfer is tested by transferring the learned
solutions to novel problem representations.

Learning procedure overview. The algorithmic modules that
encode the algorithmic solution are learned via natural evolution
strategies (NES)41. In each iteration t, a population of P offspring
(altered parameters θot

I
) is generated, and the parameters are updated

in the direction of the best-performing offspring. Parameters are
updated based on their fitness, a measurement that scores how well
the offspring perform. Such optimizers do not require differentiable
models, giving more freedom to the model design; for example,
using non-differentiable hard memory decisions24 and instantiating
the modules freely and flexibly.

An update at iteration t + 1 of the parameters θ with learn-
ing rate α and search distribution variance σ2s

I
 is performed as

θtþ1 ¼ θt þ α∇θt
I

 with the sampled NES gradient given as

∇θtEϵNð0;IÞ f ðθt þ σsϵÞ½ 1
Pσs

XP

o¼1

f ðθot Þϵi;

where E is the expectation operator and I is the identity matrix.
Hence parameters are updated based on a performance-weighted

sum of the offspring. Here the fitness function f(⋅) scores how
many algorithmic steps were performed correctly; that is, the cor-
rect data was manipulated in the correct way at the correct step.
These binary signals for each step are averaged over all steps and all
samples in the minibatch to get a scalar fitness value. This results in
a coarse feedback signal and harder learning problem in contrast
to gradient-based training, where the error backpropagation gives
localized feedback to each parameter.

For all algorithms, generalization and scaling (R1) was tested in
two ways. First, testing for scaling to more complex configurations
is integrated into our learning procedure and, second, the solutions
were tested on complexities far beyond those seen during training.

A curriculum level is considered solved after a defined number
of subsequent iterations with maximum fitness, that is, with perfect
solutions where every bit in every step is correct. When a new level
is unlocked, samples with higher complexity are presented and,
hence, if the fitness stays at maximum, the acquired solution scaled
to that new complexity. Learning is only performed in iterations
that do not have maximum fitness.

In addition to this built-in generalization evaluation, the learned
solutions were tested on complexities far beyond those seen during
training, that is, corresponding to curriculum levels 100, 500 and
1,000, while being trained only up to level 10.

Learning results. The learning results for all 11 algorithms are pre-
sented in Fig. 3, Table 1 and Extended Data Fig. 1, where all results
are obtained over 15 runs of each configuration, and Fig. 5 illus-
trates the learned algorithmic behaviour for four algorithms.

In Figure 3, we illustrate the curriculum levels at which learning
was triggered. The top axis shows the last level at which training
was triggered (the last level with an error), indicating that learning

11
Search Plan Search+ Plan+ Addition Sort Arithmetic Copy RepeatCopy Reverse Duplicated

10

La
st

 le
ar

ni
ng

 le
ve

l 9
8
7
6
5
4
3
2
1

11
10
9
8
7
6
5

Le
ar

ni
ng

 le
ve

ls

4
3
2
1

0
1,7

00

Iterations
total: 3,132

(–565, +1,722)

Iterations
total: 3,615

(–519, +1,410)

Iterations
total: 4,723

(–679, +1,761)

Iterations
total: 5,480

(–509, +1,305)

Iterations
total: 2,211

(–369, +369)

Iterations
total: 9,016

(–1,509, +2,793)

Iterations
total: 1,234

(–717, +668)

Iterations
total: 814

(–319, +291)

Iterations
total: 876

(–118, +635)

Iterations
total: 781

(–192, +678)

Iterations
total: 1,179

(–278, +558)

3,4
00

3,0
00

6,0
00 0

2,6
00

5,2
00

2,7
00

5,4
00 0 0 0 0 0

1,4
00

2,8
00

4,1
00

8,2
00

1,9
00

3,8
00

1,5
00

3,0
00 80

0
1,6

0000 0 0
1,8

00
3,6

00
1,5

00
3,0

00

0

0

0

0

0

0

6

13

33

100

100 100

100

20

0

0

13

0

0

0

0

0 0

0

0

0

0

6

33

66

100

100

100

100

100

100

66

40

0

13

6

0

0

0 0

0

0

6

6

0

13

26

73

100

100 100

100

93

66

46

33

26

26

20

6

0 0

0

6

6

6

20

33

73

100

100 100

100

53

13

6

0

0

0

0

0

0

0

0

0

6

6

6

20

26

40

73

100

100 100 100

100

86

40

33

40

13

6

6

0

0

86

60

13

6

0

0

0

0

0

0

Fig. 3 | learning overview of all 11 learned algorithms. Top: the last curriculum level that triggered learning (that is, where the last mistake occurred) is
shown as the median (black horizontal line), the interquartile range (box) and outliers (plus symbol). The shaded area shows the probability density of
the data. All algorithms are learned within the first few levels and the solution generalizes to higher levels. bottom: the number of training iterations per
curriculum level is shown. The coloured numbers indicate the percentage of runs that triggered learning at each level. Learning occurs in the first levels,
mostly within the first two, and subsequent levels only need a small amount of iterations to adapt, if at all. The total iterations show median and distances
to the interquartile range of the total number of learning iterations. Results are obtained over 15 runs for each algorithm.

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell756

http://www.nature.com/natmachintell

ArticlesNATurE MAcHiNE iNTElligENcE

Ta
bl

e
1 |

 E
va

lu
at

io
n

an
d

co
m

pa
ris

on Se
ar

ch
Pl

an
Se

ar
ch

+
Pl

an
+

a
dd

iti
on

So
rt

a
rit

hm
et

ic
co

py
Re

pe
at

co
py

Re
ve

rs
e

D
up

lic
at

ed

N
H

C
Tr

ai
n

Ite
ra

tio
ns

31
32

þ
17
22

�
56

5
I

36
15

þ
14
10

�
51
9

I
4
72

3þ
17
6
1

�
6
79

I
54

8
0
þ
13
0
5

�
50

9
I

22
11

þ
36

9
�
36

9
I

9
0
16

þ
27

9
3

�
15
0
9

I
12
34

þ
6
6
8

�
71
7

I
8
14

þ
29

1
�
31
9

I
8
76

þ
6
35

�
11
8

I
78

1þ
6
78

�
19
2

I
11
79

þ
55

8
�
27

8
I

La
st

 le
ve

l
2þ

1
�
0

I
11

þ
0

�
0

I
2þ

1
�
0

I
11

þ
0

�
0

I
4
þ
1

�
0

I
11

þ
0

�
0

I
5þ

0
�
1

I
11

þ
0

�
0

I
3þ

1
�
0
:5

I
11

þ
0

�
0

I
4
þ
4

�
1

I
11

þ
0

�
0

I
3þ

1:
5

�
0

I
11

þ
0

�
0

I
3þ

0
�
1

I
11

þ
0

�
0

I
3þ

1:
5

�
0
:5

I
11

þ
0

�
0

I
3þ

0
�
1

I
11

þ
0

�
0

I
4
þ
2

�
1

I
11

þ
0

�
0

I
Le

ve
l 1

0
10

0%
 10

0%
10

0%
 10

0%
10

0%
 10

0%
10

0%
 10

0%
10

0%
 10

0%
10

0%
 10

0%
10

0%
 10

0%
10

0%
 10

0%
10

0%
 10

0%
10

0%
 10

0%
10

0%
 10

0%

Te
st

Le
ve

l 1
00

10
0%

 10
0%

10
0%

 10
0%

10
0%

 10
0%

10
0%

 10
0%

80
%

 8
0%

73
.3

%
 8

6.
1%

10
0%

 10
0%

93
.3

%
 9

3.
3%

80
%

 8
0%

10
0%

 10
0%

10
0%

 10
0%

Le
ve

l 5
00

10
0%

 10
0%

10
0%

 10
0%

10
0%

 10
0%

10
0%

 10
0%

80
%

 8
0%

73
.3

%
 8

7.7
%

10
0%

 10
0%

93
.3

%
 9

3.
3%

80
%

 8
0%

10
0%

 10
0%

10
0%

 10
0%

Le
ve

l 1
,0

00
10

0%
 10

0%
10

0%
 10

0%
10

0%
 10

0%
10

0%
 10

0%
80

%
 8

0%
73

.3
%

 8
6.

1%
10

0%
 10

0%
93

.3
%

 9
3.

3%
80

%
 8

0%
10

0%
 10

0%
10

0%
 10

0%

N
H

C–
an

c
Tr

ai
n

Ite
ra

tio
ns

4
31
9
þ
4
4
8

�
8
8
8

I
–

–
–

15
8
6
þ
14
10

�
4
8
8

I
56

77
þ
8
9
2

�
13
11

I
24

6
7þ

4
9
4

�
10
4
1

I
10
51

þ
8
4
1

�
15
9

I
34

9
6
þ
6
4
8

�
6
9
7

I
8
4
8
þ
71
7

�
55

8
I

24
6
5þ

6
0
7

�
13
2

I
La

st
 le

ve
l

1þ
0

�
0

I
 0

þ
0

�
0

I
–

–
–

3þ
1

�
1

I
 11

þ
0

�
0

I
2þ

0
�
1

I
 1þ

0
�
1

I
3þ

1:
5

�
1

I
 11

þ
0

�
0

I
2þ

0
�
0

I
 11

þ
0

�
0

I
2þ

0
�
0

I
 1þ

0
�
1

I
3þ

1
�
1

I
 11

þ
0

�
0

I
2þ

0
�
0

I
 1þ

0
�
0

I
Le

ve
l 1

0
0%

 0
%

–
–

–
10

0%
 10

0%
0%

 0
%

86
.7

%
 8

6.
7%

86
.7

%
 8

6.
7%

0%
 1.

9%
10

0%
 10

0%
0%

 2
.8

6%

Te
st

Le
ve

l 1
00

–
–

–
–

93
.9

%
 9

3.
3%

–
80

%
 8

6.
3%

86
.7

%
 8

6.
7%

0%
 0

%
93

.3
%

 9
3.

3%
0%

 0
%

Le
ve

l 5
00

–
–

–
–

93
.9

%
 9

3.
3%

–
80

%
 8

2.
3%

86
.7

%
 8

6.
7%

–
93

.3
%

 9
3.

3%
–

Le
ve

l 1
,0

00
–

–
–

–
93

.9
%

 9
3.

3%
–

80
%

 8
0.

1%
86

.7
%

 8
6.

7%
–

93
.3

%
 9

3.
3%

–

N
H

C–
pr

ev
Tr

ai
n

Ite
ra

tio
ns

39
13

þ
9
37

�
74

9
I

–
–

–
27

22
þ
76

5
�
8
6
8

I
37

8
4
þ
10
0
2

�
56

4
I

23
9
1þ

14
32

�
8
24

I
36

2þ
16
3

�
12
3

I
11
18

þ
26

7
�
6
0
0

I
32

2þ
76

2
�
11
8

I
23

9
8
þ
23

5
�
27

5
I

La
st

 le
ve

l
1þ

0
�
0

I
 0

þ
0

�
0

I
–

–
–

3þ
0

�
1

I
 11

þ
0

�
0

I
1þ

0
�
0

I
 0

þ
0

�
0

I
6
þ
0

�
0
:5

I
 11

þ
0

�
0

I
2þ

1:
5

�
0

I
 11

þ
0

�
0

I
3þ

0
�
1

I
 11

þ
0

�
0

I
3þ

0
:5

�
1

I
 11

þ
0

�
0

I
2þ

0
�
0
:5

I
 1þ

0
�
0
:5

I
Le

ve
l 1

0
0%

 0
%

–
–

–
10

0%
 10

0%
0%

 0
%

93
.3

%
 9

3.
3%

10
0%

 10
0%

10
0%

 10
0%

86
.7

%
 8

6.
7%

0%
 0

.7
%

Te
st

Le
ve

l 1
00

–
–

–
–

10
0%

 10
0%

–
93

.3
%

 9
3.

3%
10

0%
 10

0%
93

.3
%

 9
3.

3%
86

.7
%

 8
6.

7%
0%

 0
%

Le
ve

l 5
00

–
–

–
–

10
0%

 10
0%

–
86

.7
%

 9
3.

2%
10

0%
 10

0%
93

.3
%

 9
3.

3%
86

.7
%

 8
6.

7%
–

Le
ve

l 1
00

0
–

–
–

–
10

0%
 10

0%
–

86
.7

%
 9

3.
2%

10
0%

 10
0%

93
.3

%
 9

3.
3%

86
.7

%
 8

6.
7%

–

D
N

C
+

is
+

ha
Tr

ai
n

Ite
ra

tio
ns

31
59

þ
9
37

�
74

9
I

–
–

–
4
31
5þ

15
8
4

�
36

5
I

55
39

þ
26

53
�
9
0
5

I
4
36

0
þ
18
4
2

�
8
4
5

I
4
35

5þ
9
4
5

�
11
21

I
4
16
3þ

4
75

�
9
9
9

I
21
26

þ
76

6
�
12
3

I
37

56
þ
20

25
�
10
4
6

I
La

st
 le

ve
l

1þ
0

�
0

I
 0

þ
0

�
0

I
–

–
–

10
þ
0

�
0

I
 11

þ
0

�
0

I
1þ

0
�
0

I
 0

þ
0

�
0

I
2þ

1
�
0

I
 1þ

0
�
1

I
10

þ
0

�
1

I
 11

þ
0

�
0

I
10

þ
0

�
0

I
 11

þ
0

�
0

I
10

þ
0

�
1

I
 11

þ
0

�
0

I
2þ

1
�
0

I
 1þ

0
�
1

I
Le

ve
l 1

0
0%

 0
%

–
–

–
20

%
 6

5.
2%

0%
 0

%
0%

 0
%

10
0%

 10
0%

20
%

 9
2%

10
0%

 10
0%

0%
 5

.7
%

Te
st

Le
ve

l 1
00

–
–

–
–

0%
 0

%
–

–
0%

 0
%

13
.3

%
 13

.3
%

0%
 0

%
0%

 0
%

Le
ve

l 5
00

–
–

–
–

–
–

–
–

13
.3

%
 13

.3
%

–
–

Le
ve

l 1
,0

00
–

–
–

–
–

–
–

–
13

.3
%

 13
.3

%
–

–

D
N

C
20

Tr
ai

n
Ite

ra
tio

ns
50

0,
00

0
–

–
–

50
0,

00
0

50
0,

00
0

50
0,

00
0

50
0,

00
0

50
0,

00
0

50
0,

00
0

50
0,

00
0

La
st

 le
ve

l
1þ

0
�
0

I
 0

þ
0

�
0

I
–

–
–

6
þ
0

�
0

I
 5

þ
0

�
0

I
2þ

0
�
0

I
 1þ

0
�
0

I
2þ

0
�
0

I
 1þ

0
�
0

I
6
þ
0

�
0

I
 5

þ
0

�
0

I
2þ

0
�
0

I
 1þ

0
�
0

I
6
þ
0

�
0

I
 5

þ
0

�
0

I
5þ

0
�
0

I
 4

þ
0

�
0

I
Le

ve
l 1

0
0%

 0
%

–
–

–
0%

 0
%

0%
 0

%
0%

 0
%

0%
 0

%
0%

 0
%

13
.3

%
 13

.3
%

0%
 0

%

Te
st

Le
ve

l 1
00

–
–

–
–

–
–

–
–

–
0%

 0
%

–

Le
ve

l 5
00

–
–

–
–

–
–

–
–

–
–

–

Le
ve

l 1
,0

00
–

–
–

–
–

–
–

–
–

–
–

Re
su

lts
 o

ve
r 1

5
ru

ns
 fo

r e
ac

h
al

go
rit

hm
 a

nd
 m

od
el

 a
re

 s
ho

w
n.

 T
rip

le
ts

 s
uc

h
as

 5
þ
3

�
2

I
 s

ho
w

 m
ed

ia
n

an
d

di
st

an
ce

s
to

 th
e

in
te

rq
ua

rt
ile

 ra
ng

e.
 It

er
at

io
ns

 re
fe

rs
 to

 th
e

nu
m

be
r o

f l
ea

rn
in

g
ite

ra
tio

ns
. T

he
 tw

o
la

st
-le

ve
l t

rip
le

ts
 s

ho
w

 th
e

la
st

 le
ar

ni
ng

 le
ve

l (
le

ft)
 a

nd
 th

e
la

st
 s

ol
ve

d
le

ve
l

(r
ig

ht
).

Th
e

tw
o

pe
rc

en
ta

ge
s

in
 le

ve
l X

 in
di

ca
te

 th
e

am
ou

nt
 o

f p
er

fe
ct

 ru
ns

 (l
ef

t)
, t

ha
t i

s,
 ru

ns
 th

at
 s

ol
ve

d
al

l p
re

se
nt

ed
 s

am
pl

es
, a

nd
 th

e
am

ou
nt

 o
f s

ol
ve

d
sa

m
pl

es
 o

ve
r a

ll
ru

ns
 (r

ig
ht

).
A

ll
N

H
C

 v
ar

ia
nt

s
an

d
th

e
D

N
C

+
is

+
ha

 m
od

el
 u

se
 in

fo
rm

at
io

n
sp

lit
 a

nd
 d

at
a

m
od

ul
es

, a
nd

 a
re

tr

ai
ne

d
w

ith
 N

eS
. T

he
 o

rig
in

al
 D

N
C

 is
 tr

ai
ne

d
in

 a
 s

up
er

vi
se

d
se

tt
in

g
w

ith
 b

ac
kp

ro
pa

ga
tio

n.

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell 757

http://www.nature.com/natmachintell

Articles NATurE MAcHiNE iNTElligENcE

only occurs at the first levels and solutions generalize to subsequent
levels, that is, to higher complexities, which can be observed for all
11 algorithms reliably over all runs. In the bottom axes we inves-
tigated how many learning iterations were observed at each level
and in total. This highlights the fact that most training happens at
the first levels and that subsequent levels only need a few iterations
to adapt, if at all. The total number of learning iterations highlights
the efficient training in terms of samples. This measure provides
an indicator of the task complexity; for example, 9,016 iterations
caused network updates for sorting, whereas copying is less chal-
lenging and only required 814 iterations of network updates.

More details on the learning, generalization and scaling evalua-
tion for R1—and comparison methods—are shown in Table 1. The
last-level entries show the last level to trigger learning alongside the
last level that was solved successfully, highlighting that all runs for
all algorithms were able to solve all 11 training levels while trigger-
ing learning only at the earlier levels. Next, Table 1 shows the results
of testing the solutions on complexities far beyond those seen dur-
ing training. Each run was presented 50 samples from the associ-
ated level (20 samples for sort levels 500 and 1,000 due to runtime
scaling).

For the majority of algorithms, all runs generalized perfectly to
complexities up to level 1,000. In the harder tasks such as sorting,
some runs fail for perfect generalization (still performing well while
the majority of runs show perfect generalization). Note that, a sam-
ple from level 1,000 in the sort task requires over one million per-
fect computational steps to be considered solved. The performances
below 100% for some runs can be explained with the mechanisms
of the previous write head. The model has to learn if the previously
read location should be updated and with which information, with-
out explicit feedback on these signals. An update mechanism that
learned to slightly update the previous location thus works fine

on shorter sequences (such as those seen during training), but the
small changes accumulate on longer sequences and may result in
incorrect behaviour. A possible solution would be to add feedback
to these signals during training if it can be provided.

Overall, the results summarized in Fig. 3 and Table 1 show that
the solutions learned by the NHC fulfil algorithmic requirement R1
of generalization.

Comparison. We trained four additional models for comparison.
First, the DNC20 model as a state-of-the-art memory-augmented
neural. This model is trained in a supervised setting with back-
propagation, that is, with a much richer and localized learning
signal. It was able to learn some of the baseline algorithms up to
level 5, such as addition, copy and reverse, but failed at earlier lev-
els at the remaining tasks, despite being trained for 500,000 itera-
tions. Notably, the DNC struggled with those tasks that required
the re-use of intermediate results or iterating over the data multiple
times.

Second, we integrated the DNC into the NHC architecture by
replacing the algorithmic modules of the NHC (controller, memory,
bus) with the original DNC. This DNC+is+ha model uses the same
data modules and is trained like the NHC with NES. It performs
notably better than the DNC, indicating the help of the proposed
abstraction mechanisms and evolutionary training. Nevertheless,
it still is not able to generalize comparably to the NHC and strug-
gles with the same algorithms as the DNC. More details on these
comparisons and their learning are given in the Supplementary
Information.

Next we removed the proposed ancestry linkage (NHC–anc) and
the previous location update (NHC–prev) to evaluate their influence.
To counter the removed update head, the NHC–prev model uses
two write heads, enabling it to learn a similar update mechanism.

Search and plan Addition

ArithmeticSort

Copy, repeatCopy and reverse Duplicated

TransferTrain

Sokoban Changed
encoding

Sliding puzzle

Robotic manipulation

1001011001

+ 0110011011

1111110100

Binary

6859132475

+ 8754906501

15614038976

Decimal

001 010 011 100

010 001 100 011

Binary

1 4 6 19

4 1 19 6

Decimal

= 593 4 + 9 * 4 –

Decimal arithmetic

= TT F F T

Boolean algebra

101 111 001 010101 111 001 010 101 111 001 010

RepeatCopy

ReverseCopy

101 111 001 010 010 001 111 101

101 111 001 010

Binary

4 1 19 64 1 19 6 4 1 19 6

RepeatCopy

ReverseCopy

4 1 19 6 6 19 1 4

4 1 19 6

Decimal

101 101 111 111 010 010 001 001

101 111 010 001

Binary

4 4 1 1 6 6 8 8

4 1 6 8

Decimal

Train Train

Train Train

Train Transfer

TransferTransfer

Transfer Transfer

Bigger world

∨∧ ∧

Fig. 4 | Overview of the transfers of the learned algorithms. To show the abstract nature of the learned algorithms, each learned algorithm was
transferred and tested on at least one different data representation or domain. All transfers were successful, that is, the learned algorithm solved all
samples in the new domain without triggering learning of the algorithmic modules, indicating the fulfilment of R2 and R3.

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell758

http://www.nature.com/natmachintell

ArticlesNATurE MAcHiNE iNTElligENcE

Both models perform better than the DNC+is+ha and are able to
learn the majority of algorithms and even achieve perfect general-
ization in some, strengthening the importance of the evolutionary
training and highlighting the influence of the proposed mecha-
nisms. The performance of the two ablation models depends on
the algorithm to learn, that is, whether the algorithm requires the
hierarchical knowledge provided by the ancestry linkage or the
updating of previously read locations. Notably, both mechanisms
are required to learn the search and plan algorithms.

These results suggest that the evolutionary training with the pro-
posed abstraction mechanisms and the new memory module are
key ingredients for reliably learning algorithmic solutions that gen-
eralize and scale, hence fulfilling R1.

Transfer of the learned algorithmic solutions. Next we evalu-
ated the ability to generalize the learned solutions to new problem
instantiations, testing the requirements R2 (independence of the
data representation) and R3 (independence of the task domain).
The algorithmic solutions were therefore tested on unseen data
representations and task domains. For these transfers, the learned
algorithmic modules were used with adapted data modules for the
new set-ups.

All transfers are illustrated in Fig. 4, showing the training set-up
and the successful transfers. The transferred solutions solved all
11 curriculum levels in the new set-up without triggering learning
once, that is, no single error occurred.

For search and plan, we investigated whether the strategy
learned in sokoban could be transferred to larger environments, to a
different data representation, to a sliding puzzle problem and to
a robot manipulation task. The solutions were learned in 6 × 6

environments, and could perfectly solve 8 × 8 environments and a
changed encoding of the environment; for example, the penguin
represents a wall instead of the agent (see Fig. 4). In the 3 × 3 sliding
puzzles, the white space represents empty space onto which adja-
cent tiles can be moved. In the robotic set-up, the task is to rear-
range the four stacks of boxes from one configuration into another.

Furthermore, sort and the baseline algorithms (copy, repeat-
Copy, reverse, duplicated) were trained on binary numbers and
were successfully transferred to decimal numbers.

The arithmetic algorithm was trained on decimal arithmetic
and was transferred to a boolean algebra. As the atomic operations
[+, −, *, /] are part of the data input sequence, the solution is inde-
pendent from the number of atomic operations, shown by having
only two atomic operations AND & OR in the boolean algebra set-up.

Limitations and assumptions. In our transfer experiments, we
assumed the same number of operations available for the ALU and
adapted data modules. The number of operations needs to be the
same as these, together with the control signals from the Input, form
the abstraction interface between data and algorithmic modules.
This can be relaxed either by including the domain-specific opera-
tions into the data sequence, as shown with the arithmetic transfer,
or by extending the interface between Bus and ALU. The learned
algorithmic solution is represented by the Controller, Memory and
Bus, which encode the abstract strategies fulfilling R1–R3, build-
ing on the data modules implementing the abstract interface. As the
data modules are domain and representation dependent, they need
to be relearned or handcrafted for new set-ups. Typically learning
these modules is less complex than learning a new algorithm as they
solve smaller subproblems (and often can be hardcoded), and is a

M
em

or
y

lo
ca

tio
ns

H
B
F
P
CR

ea
d

m
od

es

Steps

O
pe

ra
tio

ns

U
R
D
L
N

Write head Read head Chosen op

s0 g

H2
B
F
P
C

M
em

or
y

lo
ca

tio
ns

R
ea

d
m

od
es

Steps

O
pe

ra
tio

ns A
C
N

Write head Read heads Chosen op

Plan+

H1

01010
+ 01011

10101

Addition

H2
B
F
P
C

M
em

or
y

lo
ca

tio
ns

R
ea

d
m

od
es

Steps

O
pe

ra
tio

ns C
S

Write head Read heads Chosen op

H1

Sort

H3
B
F
P
C

M
em

or
y

lo
ca

tio
ns

R
ea

d
m

od
es

Steps

O
pe

ra
tio

ns

C
R

Write head Read heads Chosen op

H2
H1

= 27–+*4–946+76

Arithmetic

1 4 6

6 1 4

O

Level 5 Level 4 Level 2 Level 5

Fig. 5 | learned algorithmic behaviour of the Nhc. The learned behaviour is illustrated for four algorithms that solve the examples shown at the top. The
written and read memory locations, the used read mode for each read head and the operation signal sent to the ALU are shown. The example from the
(plan+) task shows that the algorithm first builds the search tree by applying all applicable operations in a state and then shifts reading to the next state
until the goal is found, it then backtracks the solution. The example from the (addition) task shows that, first, the two numbers to be added are presented
after eachother and are just stored, the two numbers are then traversed from the low to the high end in parallel, adding the corresponding digits, including
possible carry bits. The example from the (sort) task shows that, after reading the unsorted list, the algorithm iterates over the list, finding and outputting
the smallest element in each iteration. Finally, the example from the (arithmetic) task shows that the free gates were activated and the model learned to
re-use memory locations in order to emulate the behaviour of a stack. The read heads always keep track of the head of the stack and when an arithmetic
operation should be applied, it pops the two top elements from the stack, which are then combined by the ALU according to the read operation.

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell 759

http://www.nature.com/natmachintell

Articles NATurE MAcHiNE iNTElligENcE

benefit of the modular architecture with its abstraction mechanism
and the evolutionary training.

conclusion
A major challenge for intelligent artificial agents is to learn strate-
gies that scale to higher complexities and that can be transferred to
new problem instantiations. We presented a modular architecture
for representing and learning such algorithmic solutions that fulfil
the three introduced algorithmic requirements: generalization and
scaling to arbitrary task configurations and complexities (R1), as
well as independence from both the data representation (R2) and
the task domain (R3). Algorithmic solutions fulfilling R1–R3 repre-
sent strategies that generalize, scale and can be transferred to novel
problem instantiations, providing a promising building block for
intelligent behaviour.

On a diverse set of 11 algorithms with varying complexities, the
proposed NHC was able to reliably learn such algorithmic solutions.
These solutions were successfully tested on complexities far beyond
seen during training, involving up to over one million recurrent
computational steps without a single bit error, and were transferred
to novel data representations and task domains. Experimental results
highlight the importance of the employed abstraction mechanisms,
supporting the ablation study results of past work42, providing a
potential building block for intelligent agents to be incorporated in
other models.

Discussion. The modular structure and the information flow
of the NHC enable the learning and transfer of algorithmic solu-
tions, and the incorporation of prior knowledge. Using NES for
learning removes constraints on the modules, allowing for arbi-
trary instantiations and combinations, and the beneficial use of
non-differentiable memories24. As the complexity and structure
of the algorithmic modules need to be specified, it is an interest-
ing road for future work to learn these in addition, utilizing recent
ideas24,38. To speed up computation, parallel models like the neural
GPU22 may be incorporated into the NHC architecture.

The presented work showed how algorithmic solutions with
R1–R3 can be represented and learned. Based on this foundation,
a challenging and interesting research question is how such algo-
rithms can be learned with less feedback. The usage of NES allows
to provide different kinds of feedback on any connection in the
architecture, and on different time-scales. This opens the opportu-
nity to discover new and unexpected strategies, novel algorithms,
and may be achieved by incorporating intrinsic motivation43,44 to
explore the space of hidden algorithmic solutions in the model.

Methods
In this section a detailed description of the NHC architecture and its modules
is given, the learning procedure is described, the task-specific data module
instantiations are discussed and details about the comparison methods are given.

All modules are described with their formal functionality (that is, the
input signals they receive and the output signals they produce) in the form of
Module(inputs) ⟶ output. The information flow is split into d and c, respectively.
The superscript indices i, c, b, a, m mark signals coming from the modules
Input, Controller, Bus, ALU and Memory, respectively, and indice t indicates
the computatianal step. Subscript indices i, c, b, a, m also relate to the respective
module to mark the learned parameters of those. In addition to this high-level
description, details on how the output signals are generated are given for
each module.

The algorithmic modules. The algorithmic modules consist of the Controller,
Memory and Bus modules and form the core of the NHC architecture. These
modules are learning the algorithmic solution on the control stream and
are responsible for the data management in the memory and steer the data
manipulation performed by the ALU module. They share similarities with the
original DNC20, such as the temporal linkage and usage vectors, but with major
changes, for example: hard decisions for the heads and read modes, two coupled
memories, simplified and additional attention mechanisms, and more, described in
detail in the following sections.

Controller. The controller module receives input from the Input and the signals
read from Memory from the previous step. Furthermore, feedback signals from the
Bus and ALU from the previous step can be activated, if desired. It produces one
output signal going to the Memory and Bus modules, formally given by

Ctrðci!c
t ; cbt�1; c

a
t�1; c

m
t�1Þ�!cct :

Here we use a single layer of size LC to learn cct 2 ð�1; 1ÞLC
I

 at t, given by

cct ¼ tanh ðWcxc þ bcÞ ;

where xc ¼ ½ci!c
t ; cbt�1; c

a
t�1; c

m
t�1

I
. Depending on the task to learn, the feedback

signals cbt�1
I

 and cat�1
I

 can be activated, and more complex instantiations can be used
for the controller, such as more layers or recurrent networks.

Memory. The memory module receives signals from the Input and the Controller
and is responsible for storing and retrieving information from the two memories. It
therefore produces two output signals: a data and a control signal, given by

Memðdit ; ci!m
t ; cctÞ�!ðdmt ; cmt Þ :

The memory module has two coupled control and data memories, Mc and Md,
which are matrices of size N × C and N × D. Multiple write and read heads can be
used, where the number of write and read heads is set task-dependently to hw and
hr, respectively.

Learnable interfaces. Only the concatenated control signals are used as input for
all learned layers, that is, xm ¼ ½ci!m

t ; cct
I

, and the weight matrices W and biases b
are the parameters that are learned.

The write vectors vit 2 <C

I
 at t are the control signals that are stored in Mc via

the write heads and are given by vt = Wvxm + bv, with vt split into fvit j 8i : hwg
I

 for
each write head.

The previous write vectors v̂jt 2 <C

I
 at t are the control signals that are used to

update Mc and are given by

v̂t ¼ Wv̂xm þ bv̂ ;

with v̂t split into fv̂jt j 8j : hrg
I

 for each read head.
The previous erase vectors êjt 2 ð0; 1ÞC

I
 at t are the control signals used to erase

values in Mc and are given by êt ¼ σðWêxm þ bêÞ ;
I

where σ(⋅) is the logistic sigmoid
function and êt is split into fêjt j 8j : hrg

I
 for each read head.

The previous write gate ĝt 2 f0; 1ghr
I

 at t determines if the memory Mc is
updated with v̂jt and êjt, given by

ĝ t ¼ H ðWĝxm þ bĝ Þ ;

where H(⋅) is the heavyside step function.
The read modes mj

t 2 f0; 1ghrþ4hw

I
 at t are the control signals that

determine which attention mechanism is used to read from the memory,
given by mt = Wmxm + bm, with mt split into fonehot ðmj

tÞ j 8j : hrg
I

 and
onehot ðxÞ ¼ fxk ¼ 1 if xk ¼ maxðxÞ ; xk ¼ 0 else g
I

.
The free gates f wt 2 f0; 1ghw

I
 and f rt 2 f0; 1ghr

I
 at t determine if locations written

to and read from can be freed after interaction, and are given by

f wt ¼ H ðWf wxm þ bf w Þ and f rt ¼ H ðWf rxm þ bf r Þ :

These are all learned parameters of the memory module that define the
interfaces to manipulate the memory.

Writing and reading. Given the learned interface described before and the write
wi

t
I

 and read rjt head locations, information is stored and retrieved from memory
as follows.

Writing vit to location wi
t
I

 in Mc at t is performed via

Mc
t ¼ Mc

t�1 ðE � wi
t1

>Þ þ wi
tv

i
t
>
;

where ∘(⋅) denotes element-wise multiplication and E is a matrix of ones of the
same size as Mc.

Writing dit
I

 to location wi
t
I

 in Md at t is performed via

Md
t ¼ Md

t�1 ðE � wi
t1

>Þ þ wi
td

i
t
>
;

where E is a matrix of ones of the same size as Md. Note that the same write location
wi

t
I

 is used to couple the control and data memories.
Updating the previously read location rjt�1

I
 in Mc is performed via

Mc
t ¼ Mc

t�1 ðE � ĝjtr
j
t�1 ê

j>

t Þ þ ĝjtr
j
t�1v̂

j>

t ;

where E is a matrix of ones of the same size as Mc. If the previous write gate ĝjt ¼ 0
I

no update is performed, and with ĝjt ¼ 1

I
 the previously read location rjt�1

I
 is erased

with êt j
I

 and v̂t j
I

 is written to it.

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell760

http://www.nature.com/natmachintell

ArticlesNATurE MAcHiNE iNTElligENcE

Reading from memory is performed via the read locations rjt used on both
memories to obtain the data and control output of the memory module via

dm;j
t ¼ Md

t
>
rjt and cm;j

t ¼ Mc
t
>rjt ;

and are concatenated for the final memory module output dmt ¼ ½dm;1
t ; ¼ ; dm;hr

t
I

and cmt ¼ ½cm;1

t ; ¼ ; cm;hr
t

I
.

We next demonstrate how to obtain the head locations is described in detail.

Head locations. The write and read heads locations (wi
t 2 f0; 1gN
I

 and
rjt 2 f0; 1gN
I

, respectively) are hard decisions, that is, onehot-encoded vectors,
where exactly one location is written to or read from, respectively. A simplified
dynamic memory allocation scheme from the DNC is used to determine wi

t
I

 (that
is, the memory locations for writing to). It is based on a free list memory allocation
scheme, where a linked list is used to maintain the available memory locations.
Here, a usage vector ut ∈ {0, 1}N indicates which memory locations are currently
used (with u0 = 0), which are updated in each step with wi

t
I

 and rjt locations via

ut ¼ ut�1 þ ð1� f w;it Þwi
t and ut ¼ ut�1ð1� f r;jt r

j
tÞ ;

with the free gates f w;it
I

 and f r;jt
I

 determining if the write location is marked as used
and whether the read location can be freed, respectively. Due to this dynamic
allocation scheme, the model is independent from the size of the memory, that is,
it can be trained and later used with different sized memories. To obtain the write
location wi

t
I

, the memory locations are ordered by ut, and wi
t
I

 is set to the first entry
in this list, that is, the first unused location is used to write to.

Read head locations rjt are determined by the active read mode given by
mj

t 2 f0; 1ghrþ4hw

I
, that is, only one mode can be active. There are three main

attentions implemented for reading from memory: HALT, temporal linkage and
ancestry linkage. The total number of available read modes is hr + 4hw as HALT
is dependent on the number of read heads and both linkages can be used in two
directions for each write head.

The HALT attentions are used to read the previously read locations again.
When multiple read heads are used, each head can read its own last location or the
locations from the other read heads; for example, with three read heads, each head
has three HALT attentions (H1, H2 and H3).

The temporal linkage attention is used to read locations in the order they
were written, either in forwards or backwards direction. This mechanism enables
the architecture to retrieve sequences—or parts of sequences—in the order they
were presented or in the reversed order. Here we use a simplified version of the
mechanism from the DNC. As our architecture uses hard decisions for the heads
locations, the linkages can be stored more efficiently in N-dimensional vectors, in
contrast to N × N matrices in the DNC. Each temporal linkage vector LT,i stores the
order of write locations for one write head, updated at t via

LT;it ¼ LT;it�1 ð1� wi
t�1Þ þ ~wi

tw
i
t�1 ;

where ~wi
t ¼ argmaxðwi

tÞ
I

. The temporal linkage mechanism can be used in two
directions. Either move the read head in the order of which the locations were
written, or in reversed order, resulting in two read modes: backwards (B) and
forwards (F), per write head for each read head, given by

B : rjt ¼ I ðLT;it ; ~rjt�1Þ and
F : rjt ¼ onehot ðLT;it rjt�1Þ ;

where rit�1
I

 is the previously read location, ~rjt�1 ¼ argmaxðrit�1Þ
I

 and I(x, y) = {xk = 1
if xk = y, xk = 0 else}. When a location is freed through the free gates, the location is
removed from the linkage such that it remains a linked list.

The ancestry linkage also uses N-dimensional vectors to store relations between
memory locations. Although the temporal linkage stores information about the
order of which locations were written to, the ancestry linkage stores information
about which memory locations were read before a location was written, thus
capturing a form of usage or hierarchical relation instead of temporal relation. Each
ancestry linkage vector LA,i,j stores which location rjt�1

I
 was read before location wi

t
I

was written, and is updated at t via

LA;i;jt ¼ LA;i;jt�1 ð1� wi
tÞ þ ~rjt�1w

i
t ;

where rjt�1
I

 is the previously read location and ~rjt�1 ¼ argmaxðcjt�1Þ
I

. The ancestry
linkage mechanism can also be used in two directions: to either move the read head
to parent (P) location or the child (C) location. This results in two modes per write
head for each read head, given by

P : rjt ¼ onehot ðLA;i;jt rjt�1Þ and
C : rjt ¼ onehot ð I ðLA;i;jt ; ~rjt�1Þ htÞ ;

where ht is a N-dimensional vector storing for each location the t when it was
written. A location can be read multiple times, thus it can have multiple children.
But as we need a single location to read, the C mode returns the location that
was written to the latest when rjt�1

I
 was read, that is, the newest child. This is

implemented with the history vector ht. When a location is freed through the
free gates, the location is removed from the linkage and its children are attached
to its parent.

Bus. The Bus module is responsible to generate the control signal that indicates
how the ALU module should manipulate the data stream, that is, which action or
operation to perform. It therefore receives the control signal from the Controller
and the Input as well as the output from the memory signal, given by

Busðci!b
t ; cct ; c

m
t Þ�!cbt :

Here we use a single layer of size LB to learn cbt 2 f0; 1gLB
I

 at t, given by

cbt ¼ onehot ðWbxb þ bbÞ ;

with xb ¼ ½ci!b
t ; cct ; c

m
t

I
.

Learning procedure. Learning the algorithmic modules—and hence the
algorithmic solution—is performed using NES41, which is a blackbox optimizer
that does not require differentiable models, giving more freedom to the model
design; for example, the hard attention mechanisms are not differentiable and the
data modules can be instantiated arbitrarily. Recent research showed that NES and
related approaches such as Random Search45 or NEAT46 are powerful alternatives
to gradient-based optimization in reinforcement learning. They are easier to
implement and scale, perform better with sparse rewards and credit assignment
over long time-scales, have fewer hyperparameters47 and were used to train
memory-augmented networks24,38,39.

Natural evolution strategies updates a search distribution of the parameters
to be learned by following the natural gradient towards regions of higher
fitness using a P of offspring o (altered parameters) for exploration. The
performance of o is measured with one scalar value summarized over all
samples N in the minibatch and over all computational steps Tmax

I
 of each

sample, with sparse binary signals for each step, albeit framing a challenging
learning problem given the sequence. Let θ be the parameters to be
learned (the weight matrices and biases in the three algorithmic modules
θ ¼ ½Wc; bc;Wv ; bv ;W~v ; b~v ;W~e; b~e;W~g ; b~g ;Wm; bm;Wfw ; bf w ;Wf r ; bf r ;Wb; bb
I

);
using an isotropic multivariate Gaussian search distribution with fixed variance σs

2,
the stochastic natural gradient at t is given by

∇θtEϵNð0;IÞ uðθt þ σsϵÞ½ 1
Pσs

XP

o¼1

uðθot Þϵi ;

where u(⋅) is the rank-transformed fitness f(⋅)41. With α, the parameters are updated
at t by

θtþ1 ¼ θt þ
α

Pσs

XP

o¼1

uðθot Þϵi :

For all experiments the fitness function is defined for S samples as
f ðθot Þ ¼ 1=S

PS
s f sðθot Þ

I
 with

f sðθot Þ ¼
1

Tmax

XTe

k¼1

δðdmk � �d
m
k Þ þ δðcbk � �cbkÞmðcbkÞ

to evaluate the offspring parameters θot
I

 on one sample, s. Here, δ(x) = {1 if x = 0,
0 else} gives sparse binary reward if the two signals are equal or not, where dmk

I
 is

the data output from the memory, cbk
I
 the control output from the Bus, and �dmk

I
 and

�cbk
I
 the true values, respectively. Reward is thus given for choosing the correct data

and operation for the ALU in each step. Note that there is no feedback on memory
access, only on the output, that is, where, when and how to write and read has to
be learned without explicit feedback. The stepwise signals are summed up until
the first mistake occurs (Te) or until the maximum length of the sample Tmax

I
, and

is normalized with 1=Tmax

I
, that is, f ðθot Þ

I
 measures the fraction of subsequently

correct algorithmic steps. To encourage strong operation choices, the operation
reward is multiplied with the margin penalty

mðcbkÞ ¼ clip
~c1=~c2 � 1
mmax

; 0 ; 1

� �
;

where ~c1;~c2
I

 are first and second largest values of cbk
I
, that is, the chosen operation

and the runner up, and mmax
I

 is a chosen percentage indicating how much bigger
the chosen action should be. Note that this penalty is only considered if the
operation is already correct.

For robustness and learning efficiency, weight decay for regularization48 and
automatic restarts of runs stuck in local optima are used41. This restarting can
be seen as another level of evolution, where some lineages die out. Another way
of dealing with early converged or stuck lineages is to add intrinsic motivation
signals such as novelty, which help to get attracted by another local optima, as
in NSRA-ES49. In the experiments however, we found that within our setting,

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell 761

http://www.nature.com/natmachintell

Articles NATurE MAcHiNE iNTElligENcE

restarting—or having an additional survival of the fittest on the lineages—was
more effective in terms of training time.

The algorithmic solutions are learned in a curriculum learning set-up40, with
sampling from old lessons to prevent unlearning and to foster generalization.
Furthermore, we created bad memories, a learning from mistakes strategy similar
to the idea of AdaBoost50, which samples previously failed samples to encourage
focusing on the hard cases. This can also be seen as a form of experience replay6,51,
but only using the initial input data to the model, not the full generated sequences.
Bad memories were initially developed for training the data-dependent modules to
ensure their robustness and 100% accuracy, which is crucial to learn algorithmic
solutions. If the individual modules do not have 100% accuracy, no stable
algorithmic solution can be learned even if the algorithmic modules are doing the
correct computations. For example, if one module has an accuracy of 99%, the 1%
error prevents learning an algorithmic solution that always works. This problem is
even reinforced as the proposed model is an output–input architecture that works
over multiple computation steps using its own output as the new input, meaning
the overall accuracy drops to 36.6% for 100 computation steps. Using the bad
memories strategy, and thus focusing on the mistakes, therefore considerably helps
with achieving robust results when learning the modules, enabling the learning of
algorithmic solutions.

Experimental set-up. In all experiments, the hyperparameters were set to:
batch size S = 32, P = 20, α = 0.01, search distribution exploration σ = 0.1, weight
decay λ = 0.9995, action margin mmax ¼ 0:1

I
, max iterations = 20.000, restart

iterations = 2.000. In each batch, 33% of the samples were drawn from previous
levels and another 33% were drawn from the bad memories buffer, which stores
the last 200 mistakes. A curriculum level is considered solved when 750 subsequent
iteration are perfectly solved, that is, no single mistake in any sample, any step, any
bit, that is 24.000 perfectly solved samples. In levels were training was triggered,
the required subsequent perfect iterations are doubled, that is, 48.000 perfectly
solved samples. Whenever an iteration achieves maximum fitness, no learning is
triggered, that is, no parameter update is performed.

The modules instantiations. The preceding sections described the design and
functionality of the algorithmic modules in general. Here, the used instantiations
and parameters for the experiments are presented, as well as the data modules and
their task-dependent instantiations.

Algorithmic modules. In all experiments, LC = 6 and C = 4. All tasks use hw = 1
and hr = 1 for the four search and plan, and the four copy tasks, whereas hr = 2 for
addition and sort, and hr = 3 for the arithmetic task; D and LB are set by the task, as
each task has a different data representation (D) and a different amount of available
operations for the ALU (LB). In all tasks the ALU to Controller feedback (cat�1

I
) was

activated, except for the four copy tasks as the ALU has no functionality there. The
free gates were activated for the four copy tasks and the arithmetic task. In total,
depending on the algorithm to learn, this results in 300–650 trainable parameters
in the algorithmic modules.

Input. The first data-dependent module is the Input module. That is the
interface to receive data and provide control signals. It receives the data input
from the outside dint

I
 as well as the data output from the ALU from the previous

computational step doutt�1
I

, formally given as

Inðdint ; doutt�1Þ�!ðdit ; ci!c
t ; ci!m

t ; ci!b
t Þ :

The main functionality is to generate task related control signals, data
preprocessing if applicable and determining to stop. The control signals
ci!c
t ; ci!m

t ; ci!b
t

I
 may be unique to provide different signals to the Controller,

Memory and Bus, but can also share the same information. The data dit
I

 is
forwarded to the memory module with or without preprocessing, depending on
the task.

ALU. The ALU module is responsible for data manipulation. It receives the
read data from the memory and the operation to apply on these from the Bus to
produce the next data output alongside control signals via

ALUðdmt ; cbt Þ�!ðdoutt ; cat Þ :

This module implements elemental operations for each task such that the
algorithmic solution can be learned by applying the correct operation on the
correct data in the correct step.

Both data modules can be instantiated arbitrarily due to the NES approach for
learning the algorithmic solution. They can also be trained from data beforehand
or be hardcoded if possible. In the experiments, we tested both variations and
details for each algorithm are given in the Supplementary Information.

Data availability
Data is generated online during training and the generating methods are provided
in the source code.

code availability
The source code of the NHC is available via Code Ocean at https://doi.
org/10.24433/CO.6921369.v1 (ref. 52).

Received: 15 June 2020; Accepted: 10 October 2020;
Published online: 16 November 2020

References
 1. Taylor, M. E. & Stone, P. Transfer learning for reinforcement learning

domains: a survey. J. Mach. Learn. Res. 10, 1633–1685 (2009).
 2. Silver, D. L., Yang, Q. & Li, L. Lifelong machine learning systems: beyond

learning algorithms. In 2013 AAAI Spring Symposium: Lifelong Machine
Learning Vol. 13, 49–55 (AAAI, 2013).

 3. Weiss, K., Khoshgoftaar, T. M. & Wang, D. A survey of transfer learning.
J. Big Data 3, 9 (2016).

 4. Parisi, G. I., Kemker, R., Part, J. L., Kanan, C. & Wermter, S. Continual
lifelong learning with neural networks: a review. Neural Networks 113,
54–71 (2019).

 5. Schmidhuber, J. Deep learning in neural networks: an overview. Neural
Networks 61, 85–117 (2015).

 6. Mnih, V. et al. Human-level control through deep reinforcement learning.
Nature 518, 529–533 (2015).

 7. Silver, D. et al. Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484–489 (2016).

 8. Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L. & Muller, P.-A. Deep
learning for time series classification: a review. Data Min. Knowl. Discov. 33,
917–963 (2019).

 9. Botvinick, M. et al. Reinforcement learning, fast and slow. Trends Cogn. Sci.
23, 408–422 (2019).

 10. Liu, L. et al. Deep learning for generic object detection: a survey. Int. J.
Compu. Vis. 128, 261–318 (2020).

 11. Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How
to grow a mind: statistics, structure, and abstraction. Science 331,
1279–1285 (2011).

 12. Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J. Building
machines that learn and think like people. Behav. Brain Sci. 40, e253 (2017).

 13. Konidaris, G. On the necessity of abstraction. Curr. Opin. Behav. Sci. 29,
1–7 (2019).

 14. Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to
Algorithms (MIT Press, 2009).

 15. Das, S., Giles, C. L. & Sun, G.-Z. Learning context-free grammars: capabilities
and limitations of a recurrent neural network with an external stack memory.
In Proc. 14th Anuual Conference of the Cognitive Science Society 791–795 (The
Cognitive Science Society, 1992).

 16. Mozer, M. C. & Das, S. A connectionist symbol manipulator that discovers
the structure of context-free languages. In Advances in Neural Information
Processing Systems 863–870 (1993).

 17. Zeng, Z., Goodman, R. M. & Smyth, P. Discrete recurrent neural networks
for grammatical inference. IEEE Trans. Neural Netw. Learn. Syst. 5,
320–330 (1994).

 18. Graves, A., Wayne, G. & Danihelka, I. Neural turing machines. Preprint at
https://arxiv.org/abs/1410.5401 (2014).

 19. Joulin, A. & Mikolov, T. Inferring algorithmic patterns with stack-augmented
recurrent nets. In Advances in Neural Information Processing Systems
190–198 (2015).

 20. Graves, A. et al. Hybrid computing using a neural network with dynamic
external memory. Nature 538, 471–476 (2016).

 21. Neelakantan, A., Le, Q. V. & Sutskever, I. Neural programmer: inducing latent
programs with gradient descent. In International Conference on Learning
Representations (2016).

 22. Kaiser, Ł. & Sutskever, I. Neural GPUs learn algorithms. International
Conference on Learning Representations (2016).

 23. Zaremba, W., Mikolov, T., Joulin, A. & Fergus, R. Learning simple
algorithms from examples. In International Conference on Machine Learning,
421–429 (2016).

 24. Greve, R. B., Jacobsen, E. J. & Risi, S. Evolving neural turing machines for
reward-based learning. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016, 117–124 (ACM, 2016).

 25. Trask, A. et al. Neural arithmetic logic units. In Advances in Neural
Information Processing Systems 8035–8044 (2018).

 26. Madsen, A. & Johansen, A. R. Neural arithmetic units. In International
Conference on Learning Representations (2020).

 27. Le, H., Tran, T. & Venkatesh, S. Neural stored-program memory. In
International Conference on Learning Representations (2020).

 28. Reed, S. & De Freitas, N. Neural programmer-interpreters. International
Conference on Learning Representations (2016).

 29. Kurach, K., Andrychowicz, M. & Sutskever, I. Neural random-access
machines. International Conference on Learning Representations (2016).

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell762

https://doi.org/10.24433/CO.6921369.v1
https://doi.org/10.24433/CO.6921369.v1
https://arxiv.org/abs/1410.5401
http://www.nature.com/natmachintell

ArticlesNATurE MAcHiNE iNTElligENcE

 30. Cai, J., Shin, R. & Song, D. Making neural programming architectures
generalize via recursion. International Conference on Learning Representations
(2017).

 31. Dong, H. et al. Neural logic machines. In International Conference on
Learning Representations (2019).

 32. Velickovic, P., Ying, R., Padovano, M., Hadsell, R. & Blundell, C. Neural
execution of graph algorithms. In International Conference on Learning
Representations (2020).

 33. Sukhbaatar, S., Weston, J., Fergus, R. et al. End-to-end memory networks. In
Advances in Neural Information Processing Systems, 2440–2448 (2015).

 34. Weston, J., Chopra, S. & Bordes, A. Memory networks. In International
Conference on Learning Representations (2015).

 35. Grefenstette, E., Hermann, K. M., Suleyman, M. & Blunsom, P. Learning to
transduce with unbounded memory. In Advances in Neural Information
Processing Systems 1828–1836 (2015).

 36. Kumar, A. et al. Ask me anything: dynamic memory networks for natural
language processing. In International Conference on Machine Learning
1378–1387 (2016).

 37. Wayne, G. et al. Unsupervised predictive memory in a goal-directed agent.
Preprint at https://arxiv.org/abs/1803.10760 (2018).

 38. Merrild, J., Rasmussen, M. A. & Risi, S. HyperNTM: evolving scalable
neural turing machines through HyperNEAT. In International
Conference on the Applications of Evolutionary Computation 750–766
(Springer, 2018).

 39. Khadka, S., Chung, J. J. & Tumer, K. Neuroevolution of a modular
memory-augmented neural network for deep memory problems. Evol.
Comput. 27, 639–664 (2019).

 40. Bengio, Y., Louradour, J., Collobert, R. & Weston, J. Curriculum learning. In
International Conference on Machine Learning 41–48 (ACM, 2009).

 41. Wierstra, D. et al. Natural evolution strategies. J. Mach. Learn. Res. 15,
949–980 (2014).

 42. Tanneberg, D., Rueckert, E. & Peters, J. Learning algorithmic solutions to
symbolic planning tasks with a neural computer architecture. Preprint at
https://arxiv.org/abs/1911.00926 (2019).

 43. Oudeyer, P.-Y. & Kaplan, F. What is intrinsic motivation? A typology of
computational approaches. Front. Neurorobotics 1, 6 (2009).

 44. Baldassarre, G. & Mirolli, M. Intrinsically motivated learning systems: an
overview. In Intrinsically Motivated Learning in Natural and Artificial Systems
1–14 (Springer, 2013).

 45. Mania, H., Guy, A. & Recht, B. Simple random search of static linear policies
is competitive for reinforcement learning. In Advances in Neural Information
Processing Systems 1803–1812 (2018).

 46. Stanley, K. O. & Miikkulainen, R. Evolving neural networks through
augmenting topologies. Evol. Comput. 10, 99–127 (2002).

 47. Salimans, T., Ho, J., Chen, X., Sidor, S. & Sutskever, I. Evolution strategies as
a scalable alternative to reinforcement learning. Preprint at https://arxiv.org/
abs/1703.03864 (2017).

 48. Krogh, A. & Hertz, J. A. A simple weight decay can improve generalization.
In Advances in Neural Information Processing Systems 950–957 (1992).

 49. Conti, E. et al. Improving exploration in evolution strategies for deep
reinforcement learning via a population of novelty-seeking agents. In
Advances in Neural Information Processing Systems 5027–5038 (2018).

 50. Freund, Y. & Schapire, R. E. A decision-theoretic generalization of online
learning and an application to boosting. Journal Comput. Syst. Sci. 55,
119–139 (1997).

 51. Lin, L.-J. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Mach. Learn. 8, 293–321 (1992).

 52. Tanneberg, D. The Neural Harvard Computer (Code Ocean, accessed 25
September 2020); https://doi.org/10.24433/CO.6921369.v1.

acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement nos. 713010 (GOAL-Robots) and 640554
(SKILLS4ROBOTS), and from the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under no. 430054590. This research was supported by NVIDIA.
We want to thank K. O’Regan for inspiring discussions on defining algorithmic solutions.

author contributions
D.T. conceived the project, designed and implemented the model, conducted the
experiments and analysis, created the graphics. D.T., E.R. and J.P. wrote the manuscript.

competing interests
The authors declare no competing interests.

additional information
Extended data is available for this paper at https://doi.org/10.1038/s42256-020-00255-1.

Supplementary information is available for this paper at https://doi.org/10.1038/
s42256-020-00255-1.

Correspondence and requests for materials should be addressed to D.T.

Peer review information Nature Machine Intelligence thanks Greg Wayne and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell 763

https://arxiv.org/abs/1803.10760
https://arxiv.org/abs/1911.00926
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864
https://doi.org/10.24433/CO.6921369.v1
https://doi.org/10.1038/s42256-020-00255-1
https://doi.org/10.1038/s42256-020-00255-1
https://doi.org/10.1038/s42256-020-00255-1
http://www.nature.com/reprints
http://www.nature.com/natmachintell

Articles NATurE MAcHiNE iNTElligENcEArticles NATurE MAcHiNE iNTElligENcE

Extended Data Fig. 1 | learning curves comparison. Shown are the mean and the standard error of the fitness during learning over 15 runs. Note the
log-scale of the x-axis. Solved X in the legend indicates the median solved level. The full NHC is the only model that successfully learns all algorithms
reliably. More details on these evaluations are given in Table 1.

NaTuRE MachiNE iNTElligENcE | www.nature.com/natmachintell

http://www.nature.com/natmachintell

	Evolutionary training and abstraction yields algorithmic generalization of neural computers
	The problem of learning algorithmic solutions
	The neural Harvard computer
	Information split.
	The algorithmic modules.
	The Controller.
	The Memory.
	The Bus.

	Learning algorithmic solutions
	Learning procedure overview.
	Learning results.
	Comparison.
	Transfer of the learned algorithmic solutions.
	Limitations and assumptions.

	Conclusion
	Discussion.

	Methods
	The algorithmic modules
	Controller
	Memory

	Learnable interfaces
	Writing and reading
	Head locations
	Bus

	Learning procedure
	Experimental set-up
	The modules instantiations
	Algorithmic modules
	Input
	ALU

	Acknowledgements
	Fig. 1 The NHC architecture.
	Fig. 2 Overview of the learned algorithms.
	Fig. 3 Learning overview of all 11 learned algorithms.
	Fig. 4 Overview of the transfers of the learned algorithms.
	Fig. 5 Learned algorithmic behaviour of the NHC.
	Extended Data Fig. 1 Learning curves comparison.
	Table 1 Evaluation and comparison.

