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A crucial ability for intelligent behaviour is to transfer strate-
gies from one problem to another, studied, for example, in 
the fields of lifelong and transfer learning1–4. Learning and 

especially deep learning systems have been shown to learn a vari-
ety of complex specialized tasks5–10, but extracting the underlying 
structure of the solution for effective transfer is an open research 
question3.

The key for effective transfer—and a main pillar of (human) 
intelligence—is the concept of structure and abstraction11–13. To 
study the learning of such abstract strategies, the concept of algo-
rithms (such as in computer science14) is an ideal example for such 
transferable, abstract and structured solution strategies.

An algorithm is a sequence of instructions, which often repre-
sent solutions to smaller subproblems. This sequence of instruc-
tions solves a given problem when executed, independent of the 
specific instantiation of the problem. For example, consider the task 
of sorting a set of objects. The algorithmic solution, specified as the 
sequence of instructions, is able to sort any number of arbitrary 
classes of objects in any order (for example, toys by colour, waste by 
type or numbers by value) by using the same sequence of instruc-
tions, as long as the features and comparison operators that define 
the order are specified.

Learning such structured, abstract strategies enables the effective 
transfer to new domains and representations as the abstract solu-
tion is independent of both. By contrast, transfer learning usually 
focuses on improving learning speed on a new task by leveraging 
knowledge from previously learned tasks, whereas algorithmic solu-
tions do not need to (re)learn at all, only the data-specific operations 
need to adapt. In other words, the sequence of instructions does not 
need to be adapted, only the instructions, that is, the solutions to 
smaller subproblems. Moreover, such structured abstract strategies 
have built-in generalization capabilities to new task configurations 
and complexities and can be interpreted better than, for example, 
common blackbox models such as deep end-to-end networks.

The problem of learning algorithmic solutions
To study the learning of such abstract and structured strategies, we 
investigate the problem of learning algorithmic solutions, which we 
characterize by three requirements:

•	 R1—generalization and scaling to different and unseen task 
configurations and complexities

•	 R2—independence of the data representation
•	 R3—independence of the task domain

Picking up the sorting algorithm example again, R1 represents 
the generalization and scaling properties, which allow sorting of 
lists of arbitrary length and initial order, whereas R2 and R3 rep-
resent the abstract nature of the solution. This abstraction enables 
the algorithm, for example, to sort a list of binary numbers while 
being trained only on hexadecimal numbers (R2). Furthermore, the 
algorithm trained on numbers is able to sort lists of strings (R3). If 
R1–R3 are fulfilled, the algorithmic solution does not need to be 
retrained or adapted to solve unforeseen task instantiations—only 
the data-specific operations need to be adjusted.

Earlier research on solving algorithmic problems has been 
undertaken, for example, in grammar learning15–17, and is becoming 
a more and more active field in recent years outside of it18–32, with a 
typical focus on identifying algorithmic-generated patterns or solv-
ing algorithmic problems in an end-to-end set-up18–27, and less on 
finding algorithmic solutions28–32 that consider the three discussed 
requirements R1–R3 for generalization, scaling and abstraction.

Although R1 is typically tackled in some (relaxed) form, as it 
represents the overall goal of generalization in machine learning, 
the abstraction abilities R2 and R3 are missing. Furthermore, most 
algorithms require a form of feedback, using computed intermedi-
ate results from one computational step in subsequent steps and a 
variable number of computational steps to solve a problem instance. 
It is therefore necessary to be able to cope with varying numbers 
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of steps and determining when to stop, in contrast to using a fixed 
number of steps21,33, and to be able to re-use intermediate results, 
that is, feeding back the models output as its input. These features 
make the learning problem even more challenging.

The neural harvard computer
The proposed neural Harvard computer (NHC) is a modular 
architecture that is based on memory-augmented neural net-
works15–21,23,24,27–29,33–39 and inspired by modern computer architec-
tures (see Fig. 1 for a sketch of the NHC). Memory-augmented 
networks add external memory to a neural network that allows 
separation of computation and memorization—in classical neural 
networks both are encoded into the synaptic weights.

The external memory can be realized differently, for example, 
as a memory matrix20, tape23 or stack19, and the so-called controller 
network can write and read information through a defined inter-
face that controls the memory access, for example, moving the head 
one step to the right for a tape memory, or pop the top informa-
tion in a stack memory. In the NHC, the external memory is real-
ized as a matrix and interaction with the memory is performed via 
write and read heads, similar to the differentiable neural computer 
(DNC)20. These heads interact with the memory by writing or read-
ing information into or from the memory matrix, where each row 
corresponds to a memory location with a specified word size, that 
is, length of the information vector.

Information split. Learning algorithmic solutions requires the 
decoupling of algorithmic computations from data-dependent 
manipulations and domains. An abstraction level is therefore 
introduced by dividing the information flow into two streams: the 
data stream d and control stream c. The introduction of external 
memories to neural networks helps to separate computation and 

memorization, the information flow split similarly helps to separate 
algorithmic computations and data-specific manipulations.

This information split induces two major features of the NHC: 
(1) the split into data modules that operate on d and algorithmic 
modules that operate on c; and (2) the introduction of two cou-
pled memories. The algorithmic modules operate on c, that is, 
AlgModule(c) ⟶ c, whereas the data modules Input and arithmetic 
logic unit (ALU) are operating on d, that is, DataModule(d, c) ⟶ d, c.  
They create an abstract interface and separation between algorith-
mic computation and data-specific processing. Although the Input 
module receives the external data and provides algorithm-specific 
control signals, the ALU receives data and control information to 
manipulate the data to create new data (hence the name arithmetic 
logic unit) that is fed back to Input to be available in the next com-
putation step. These two modules are data specific and need to be 
adapted for a new data representation or domain.

The algorithmic modules. These modules consist of the Controller, 
Memory and Bus. These modules form the core of the NHC (see 
Fig. 1) and are responsible for encoding and learning the algorith-
mic solution based on c.

The Controller. The controller receives the control signals from the 
Input and the information read from the memory in the previous 
step; depending on the task to learn, it can also receive feedback 
from the Bus and ALU. It learns an internal representation of the 
algorithm state that is sent to the Memory and Bus modules.

The Memory. The memory module uses this representation in addi-
tion to the control signals from the Input to learn a set of interfaces 
for interacting with the memory matrices. These learned interfaces 
control the write and read heads and hence, what information is 
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Fig. 1 | The Nhc architecture. Information flow is divided into data (green) and control (orange) streams. The modules inside the light grey area—the 
controller, the memory and the bus—are learning the algorithmic solution on the control stream, whereas the data modules are either learned beforehand 
or hand-designed. The algorithmic solution operates solely on the control stream to steer the data access and manipulation, whereas the learning signal 
can be provided on any connection in the architecture (data or control) due to the evolution-based training. Inside the memory module the learnable 
interfaces that control the data access to the two memory matrices are shown. Sign and magnitude of vectors are shown as the colour and size of the 
boxes and circles.
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accessed. First, the locations read in the previous step are potentially 
updated (prev), then new information is written via the write heads 
(write) and, finally, the read heads read information (read) that is sent 
back to controller and the Bus. Write and read heads are using hard 
decisions, that is, each head interacts with one memory location.

The abstraction introduced by the information split also creates 
the necessity to store data and control information separately. The 
Memory module therefore uses two memory matrices (Mc:N × C 
and Md:N × D) to store the control and data information, respec-
tively, with N locations, where C and D are control memory and 
data memory word sizes, respectively. The two memories are cou-
pled such that the same locations are accessed at each step, which 
allows algorithmic control information to be stored alongside the 
data information. New information is written via the write heads to 
unused memory locations and locations can be freed by free gates 
to be reused. For reading information from the memory, there are 
several read modes to steer the read heads.

The HALT modes move the read head to the previously read 
location of the associated head. For example, with two read heads, 
each head can use two modes (H1 and H2) to move to the location 
previously read by the corresponding head.

To read data in the order in which it was written, the DNC intro-
duced a temporal linkage mechanism that keeps track of the order 
of written locations. The NHC uses a simplified version of this tem-
poral linkage. This temporal linkage provides two read modes: one 

to move the read head forward to the location that was written next 
(F) and one to move the head backwards to the location that was 
written before (B).

Algorithms often require hierarchical data structures or depen-
dencies. To provide such dependencies, the NHC employs an 
ancestry linkage mechanism. This mechanism keeps track of which 
location was read before for each written location and therefore pro-
vides two read modes: one to move the read head to the parent (P), 
the location that was read before, and one to move the read head to 
the child (C), the location that was written after.

The Bus. The Bus combines the representation learned by the 
Controller with the information read out from the Memory to pro-
duce the control signal that is sent to the ALU, indicating which 
operation to apply on the read data. By using the information read 
from memory, the Bus can incorporate this new information in the 
same computational step.

learning algorithmic solutions
For evaluating the proposed NHC on the three algorithmic require-
ments R1–R3, a diverse set of algorithms was learned and the solu-
tions were tested on their generalization, scaling and abstraction 
abilities.

The 11 learned algorithms solve search, plan, addition, sorting, 
evaluating arithmetic expressions and sequence-retrievals problems.  
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O = [ ], seen = [ ]
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seen.push (idx)
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O.push (o )

O.push (o )

O = [ ]

for i ← 1 to c do
for o in L do

return O

return O
return O

last = o
O.push (o )

else

for i ← 0 to L.length – 1 do

for j ← 0 to L.length – 1 do
if j ∉ seen and idx ∉ seen then

if j ∉ seen and idx ∈ seen then

if compare(L[idx ], L [ j ]) then

Output: BFS traversal (+ backtracking)

sn = unexplored.popLeft ()

for a Є A do
su = apply(sn, a)

sn = g

sn = parent (sn)

unexplored.push (su)
output.push ((sn, a))

output.push ((sn, nop))
return output

// additional for  plan & plan+

// a Є A (sn) (search+ & plan+)

unexplored = [s0], su = Ø, output = [ ]
while su ≠ g do

while sn ≠ s0 do

Input   : List of objects L

Input   : Two numbers a, b 0101

+ 0011
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1001011001

+ 0110011011

1111110100

Output: c copies of L // copy & repeatCopy

// copy & repeatCopy
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Output: Reversed copy of L // reverse

for o in reverse (L) do

for o in L do
if o ≠ last then

sum = 0
carry = 0
for i ← a.length –1 to 0 do

val, carry  = add(a [i ], b [i ], carry )
sum = sum + val

return sum

return r

Input   : Arithmetic expression E
Output: Result r of E
stack = [ ]
for o in E do

if isnumber(o ) then
stack.push (o )

stack.push (r)

else
right = stack.pop ()
left = stack.pop ()
r = compute(left, o, right )

r = stack.pop ()

Input   : List L = [o1, o1, o2, o2, ..., on, on]
Output: O = [o1, o2, ..., on]
O = [ ], last = Ø

Fig. 2 | Overview of the learned algorithms. All considered algorithms to learn are shown with their pseudocode, how their curriculum level complexity is 
defined, how the step complexity scales with the level, and examples from indicated levels. Note that the step complexity indicates the runtime complexity 
and only considers the steps after the input data is shown, neither taking the complexity of the data manipulation into account nor the structure learning 
required while the input data is presented.

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell 755

http://www.nature.com/natmachintell


Articles NATurE MAcHiNE iNTElligENcE

In Fig. 2 all 11 algorithms are sketched with their pseudocode 
and examples (more details can be found in the Supplementary 
Information).

Learning is performed in a curriculum learning set-up40, where 
the complexity of presented samples increases with each curricu-
lum level. During learning, samples up to curriculum level 10 are 
considered, with an additional level 11 that samples from all previ-
ous levels. Generalization and scaling is tested on complexities up to 
level 1,000. The direct transfer is tested by transferring the learned 
solutions to novel problem representations.

Learning procedure overview. The algorithmic modules that 
encode the algorithmic solution are learned via natural evolution 
strategies (NES)41. In each iteration t, a population of P offspring 
(altered parameters θot

I
) is generated, and the parameters are updated 

in the direction of the best-performing offspring. Parameters are 
updated based on their fitness, a measurement that scores how well 
the offspring perform. Such optimizers do not require differentiable 
models, giving more freedom to the model design; for example, 
using non-differentiable hard memory decisions24 and instantiating 
the modules freely and flexibly.

An update at iteration t + 1 of the parameters θ with learn-
ing rate α and search distribution variance σ2s

I
 is performed as 

θtþ1 ¼ θt þ α∇θt
I

 with the sampled NES gradient given as

∇θtEϵNð0;IÞ f ðθt þ σsϵÞ½   1
Pσs

XP

o¼1

f ðθot Þϵi;

where E is the expectation operator and I is the identity matrix. 
Hence parameters are updated based on a performance-weighted 

sum of the offspring. Here the fitness function f(⋅) scores how 
many algorithmic steps were performed correctly; that is, the cor-
rect data was manipulated in the correct way at the correct step. 
These binary signals for each step are averaged over all steps and all 
samples in the minibatch to get a scalar fitness value. This results in 
a coarse feedback signal and harder learning problem in contrast 
to gradient-based training, where the error backpropagation gives 
localized feedback to each parameter.

For all algorithms, generalization and scaling (R1) was tested in 
two ways. First, testing for scaling to more complex configurations 
is integrated into our learning procedure and, second, the solutions 
were tested on complexities far beyond those seen during training.

A curriculum level is considered solved after a defined number 
of subsequent iterations with maximum fitness, that is, with perfect 
solutions where every bit in every step is correct. When a new level 
is unlocked, samples with higher complexity are presented and, 
hence, if the fitness stays at maximum, the acquired solution scaled 
to that new complexity. Learning is only performed in iterations 
that do not have maximum fitness.

In addition to this built-in generalization evaluation, the learned 
solutions were tested on complexities far beyond those seen during 
training, that is, corresponding to curriculum levels 100, 500 and 
1,000, while being trained only up to level 10.

Learning results. The learning results for all 11 algorithms are pre-
sented in Fig. 3, Table 1 and Extended Data Fig. 1, where all results 
are obtained over 15 runs of each configuration, and Fig. 5 illus-
trates the learned algorithmic behaviour for four algorithms.

In Figure 3, we illustrate the curriculum levels at which learning 
was triggered. The top axis shows the last level at which training 
was triggered (the last level with an error), indicating that learning 
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only occurs at the first levels and solutions generalize to subsequent 
levels, that is, to higher complexities, which can be observed for all 
11 algorithms reliably over all runs. In the bottom axes we inves-
tigated how many learning iterations were observed at each level 
and in total. This highlights the fact that most training happens at 
the first levels and that subsequent levels only need a few iterations 
to adapt, if at all. The total number of learning iterations highlights 
the efficient training in terms of samples. This measure provides 
an indicator of the task complexity; for example, 9,016 iterations 
caused network updates for sorting, whereas copying is less chal-
lenging and only required 814 iterations of network updates.

More details on the learning, generalization and scaling evalua-
tion for R1—and comparison methods—are shown in Table 1. The 
last-level entries show the last level to trigger learning alongside the 
last level that was solved successfully, highlighting that all runs for 
all algorithms were able to solve all 11 training levels while trigger-
ing learning only at the earlier levels. Next, Table 1 shows the results 
of testing the solutions on complexities far beyond those seen dur-
ing training. Each run was presented 50 samples from the associ-
ated level (20 samples for sort levels 500 and 1,000 due to runtime 
scaling).

For the majority of algorithms, all runs generalized perfectly to 
complexities up to level 1,000. In the harder tasks such as sorting, 
some runs fail for perfect generalization (still performing well while 
the majority of runs show perfect generalization). Note that, a sam-
ple from level 1,000 in the sort task requires over one million per-
fect computational steps to be considered solved. The performances 
below 100% for some runs can be explained with the mechanisms 
of the previous write head. The model has to learn if the previously 
read location should be updated and with which information, with-
out explicit feedback on these signals. An update mechanism that 
learned to slightly update the previous location thus works fine 

on shorter sequences (such as those seen during training), but the 
small changes accumulate on longer sequences and may result in 
incorrect behaviour. A possible solution would be to add feedback 
to these signals during training if it can be provided.

Overall, the results summarized in Fig. 3 and Table 1 show that 
the solutions learned by the NHC fulfil algorithmic requirement R1 
of generalization.

Comparison. We trained four additional models for comparison. 
First, the DNC20 model as a state-of-the-art memory-augmented 
neural. This model is trained in a supervised setting with back-
propagation, that is, with a much richer and localized learning 
signal. It was able to learn some of the baseline algorithms up to 
level 5, such as addition, copy and reverse, but failed at earlier lev-
els at the remaining tasks, despite being trained for 500,000 itera-
tions. Notably, the DNC struggled with those tasks that required 
the re-use of intermediate results or iterating over the data multiple 
times.

Second, we integrated the DNC into the NHC architecture by 
replacing the algorithmic modules of the NHC (controller, memory, 
bus) with the original DNC. This DNC+is+ha model uses the same 
data modules and is trained like the NHC with NES. It performs 
notably better than the DNC, indicating the help of the proposed 
abstraction mechanisms and evolutionary training. Nevertheless, 
it still is not able to generalize comparably to the NHC and strug-
gles with the same algorithms as the DNC. More details on these 
comparisons and their learning are given in the Supplementary 
Information.

Next we removed the proposed ancestry linkage (NHC–anc) and 
the previous location update (NHC–prev) to evaluate their influence. 
To counter the removed update head, the NHC–prev model uses 
two write heads, enabling it to learn a similar update mechanism.  

Search and plan Addition

ArithmeticSort

Copy, repeatCopy and reverse Duplicated

TransferTrain

Sokoban Changed 
encoding

Sliding puzzle

Robotic manipulation

1001011001

+ 0110011011

1111110100

Binary

6859132475

+ 8754906501

15614038976

Decimal

001 010 011 100

010 001 100 011

Binary

1 4 6 19

4 1 19 6

Decimal

= 593 4 + 9 * 4 –

Decimal arithmetic

= TT F F T

Boolean algebra

101 111 001 010101 111 001 010 101 111 001 010

RepeatCopy

ReverseCopy

101 111 001 010 010 001 111 101

101 111 001 010

Binary

4 1 19 64 1 19 6 4 1 19 6

RepeatCopy

ReverseCopy

4 1 19 6 6 19 1 4

4 1 19 6

Decimal

101 101 111 111 010 010 001 001

101 111 010 001

Binary

4 4 1 1 6 6 8 8

4 1 6 8

Decimal

Train Train

Train Train

Train Transfer

TransferTransfer

Transfer Transfer

Bigger world

∨∧ ∧

Fig. 4 | Overview of the transfers of the learned algorithms. To show the abstract nature of the learned algorithms, each learned algorithm was 
transferred and tested on at least one different data representation or domain. All transfers were successful, that is, the learned algorithm solved all 
samples in the new domain without triggering learning of the algorithmic modules, indicating the fulfilment of R2 and R3.
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Both models perform better than the DNC+is+ha and are able to 
learn the majority of algorithms and even achieve perfect general-
ization in some, strengthening the importance of the evolutionary 
training and highlighting the influence of the proposed mecha-
nisms. The performance of the two ablation models depends on 
the algorithm to learn, that is, whether the algorithm requires the 
hierarchical knowledge provided by the ancestry linkage or the 
updating of previously read locations. Notably, both mechanisms 
are required to learn the search and plan algorithms.

These results suggest that the evolutionary training with the pro-
posed abstraction mechanisms and the new memory module are 
key ingredients for reliably learning algorithmic solutions that gen-
eralize and scale, hence fulfilling R1.

Transfer of the learned algorithmic solutions. Next we evalu-
ated the ability to generalize the learned solutions to new problem 
instantiations, testing the requirements R2 (independence of the 
data representation) and R3 (independence of the task domain). 
The algorithmic solutions were therefore tested on unseen data 
representations and task domains. For these transfers, the learned 
algorithmic modules were used with adapted data modules for the 
new set-ups.

All transfers are illustrated in Fig. 4, showing the training set-up 
and the successful transfers. The transferred solutions solved all 
11 curriculum levels in the new set-up without triggering learning 
once, that is, no single error occurred.

For search and plan, we investigated whether the strategy 
learned in sokoban could be transferred to larger environments, to a  
different data representation, to a sliding puzzle problem and to 
a robot manipulation task. The solutions were learned in 6 × 6 

environments, and could perfectly solve 8 × 8 environments and a 
changed encoding of the environment; for example, the penguin 
represents a wall instead of the agent (see Fig. 4). In the 3 × 3 sliding 
puzzles, the white space represents empty space onto which adja-
cent tiles can be moved. In the robotic set-up, the task is to rear-
range the four stacks of boxes from one configuration into another.

Furthermore, sort and the baseline algorithms (copy, repeat-
Copy, reverse, duplicated) were trained on binary numbers and 
were successfully transferred to decimal numbers.

The arithmetic algorithm was trained on decimal arithmetic 
and was transferred to a boolean algebra. As the atomic operations  
[+, −, *, /] are part of the data input sequence, the solution is inde-
pendent from the number of atomic operations, shown by having 
only two atomic operations AND & OR in the boolean algebra set-up.

Limitations and assumptions. In our transfer experiments, we 
assumed the same number of operations available for the ALU and 
adapted data modules. The number of operations needs to be the 
same as these, together with the control signals from the Input, form 
the abstraction interface between data and algorithmic modules. 
This can be relaxed either by including the domain-specific opera-
tions into the data sequence, as shown with the arithmetic transfer, 
or by extending the interface between Bus and ALU. The learned 
algorithmic solution is represented by the Controller, Memory and 
Bus, which encode the abstract strategies fulfilling R1–R3, build-
ing on the data modules implementing the abstract interface. As the 
data modules are domain and representation dependent, they need 
to be relearned or handcrafted for new set-ups. Typically learning 
these modules is less complex than learning a new algorithm as they 
solve smaller subproblems (and often can be hardcoded), and is a 
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(plan+) task shows that the algorithm first builds the search tree by applying all applicable operations in a state and then shifts reading to the next state 
until the goal is found, it then backtracks the solution. The example from the (addition) task shows that, first, the two numbers to be added are presented 
after eachother and are just stored, the two numbers are then traversed from the low to the high end in parallel, adding the corresponding digits, including 
possible carry bits. The example from the (sort) task shows that, after reading the unsorted list, the algorithm iterates over the list, finding and outputting 
the smallest element in each iteration. Finally, the example from the (arithmetic) task shows that the free gates were activated and the model learned to 
re-use memory locations in order to emulate the behaviour of a stack. The read heads always keep track of the head of the stack and when an arithmetic 
operation should be applied, it pops the two top elements from the stack, which are then combined by the ALU according to the read operation.

NaTuRE MachiNE iNTElligENcE | VOL 2 | DeCeMbeR 2020 | 753–763 | www.nature.com/natmachintell 759

http://www.nature.com/natmachintell


Articles NATurE MAcHiNE iNTElligENcE

benefit of the modular architecture with its abstraction mechanism 
and the evolutionary training.

conclusion
A major challenge for intelligent artificial agents is to learn strate-
gies that scale to higher complexities and that can be transferred to 
new problem instantiations. We presented a modular architecture 
for representing and learning such algorithmic solutions that fulfil 
the three introduced algorithmic requirements: generalization and 
scaling to arbitrary task configurations and complexities (R1), as 
well as independence from both the data representation (R2) and 
the task domain (R3). Algorithmic solutions fulfilling R1–R3 repre-
sent strategies that generalize, scale and can be transferred to novel 
problem instantiations, providing a promising building block for 
intelligent behaviour.

On a diverse set of 11 algorithms with varying complexities, the 
proposed NHC was able to reliably learn such algorithmic solutions. 
These solutions were successfully tested on complexities far beyond 
seen during training, involving up to over one million recurrent 
computational steps without a single bit error, and were transferred 
to novel data representations and task domains. Experimental results 
highlight the importance of the employed abstraction mechanisms, 
supporting the ablation study results of past work42, providing a 
potential building block for intelligent agents to be incorporated in 
other models.

Discussion. The modular structure and the information flow 
of the NHC enable the learning and transfer of algorithmic solu-
tions, and the incorporation of prior knowledge. Using NES for 
learning removes constraints on the modules, allowing for arbi-
trary instantiations and combinations, and the beneficial use of 
non-differentiable memories24. As the complexity and structure 
of the algorithmic modules need to be specified, it is an interest-
ing road for future work to learn these in addition, utilizing recent 
ideas24,38. To speed up computation, parallel models like the neural 
GPU22 may be incorporated into the NHC architecture.

The presented work showed how algorithmic solutions with 
R1–R3 can be represented and learned. Based on this foundation, 
a challenging and interesting research question is how such algo-
rithms can be learned with less feedback. The usage of NES allows 
to provide different kinds of feedback on any connection in the 
architecture, and on different time-scales. This opens the opportu-
nity to discover new and unexpected strategies, novel algorithms, 
and may be achieved by incorporating intrinsic motivation43,44 to 
explore the space of hidden algorithmic solutions in the model.

Methods
In this section a detailed description of the NHC architecture and its modules 
is given, the learning procedure is described, the task-specific data module 
instantiations are discussed and details about the comparison methods are given.

All modules are described with their formal functionality (that is, the 
input signals they receive and the output signals they produce) in the form of 
Module(inputs) ⟶ output. The information flow is split into d and c, respectively. 
The superscript indices i, c, b, a, m mark signals coming from the modules 
Input, Controller, Bus, ALU and Memory, respectively, and indice t indicates 
the computatianal step. Subscript indices i, c, b, a, m also relate to the respective 
module to mark the learned parameters of those. In addition to this high-level 
description, details on how the output signals are generated are given for  
each module.

The algorithmic modules. The algorithmic modules consist of the Controller, 
Memory and Bus modules and form the core of the NHC architecture. These 
modules are learning the algorithmic solution on the control stream and 
are responsible for the data management in the memory and steer the data 
manipulation performed by the ALU module. They share similarities with the 
original DNC20, such as the temporal linkage and usage vectors, but with major 
changes, for example: hard decisions for the heads and read modes, two coupled 
memories, simplified and additional attention mechanisms, and more, described in 
detail in the following sections.

Controller. The controller module receives input from the Input and the signals 
read from Memory from the previous step. Furthermore, feedback signals from the 
Bus and ALU from the previous step can be activated, if desired. It produces one 
output signal going to the Memory and Bus modules, formally given by

Ctrðci!c
t ; cbt�1; c

a
t�1; c

m
t�1Þ�!cct :

Here we use a single layer of size LC to learn cct 2 ð�1; 1ÞLC
I

 at t, given by

cct ¼ tanh ðWcxc þ bcÞ ;

where xc ¼ ½ci!c
t ; cbt�1; c

a
t�1; c

m
t�1

I
. Depending on the task to learn, the feedback 

signals cbt�1
I

 and cat�1
I

 can be activated, and more complex instantiations can be used 
for the controller, such as more layers or recurrent networks.

Memory. The memory module receives signals from the Input and the Controller 
and is responsible for storing and retrieving information from the two memories. It 
therefore produces two output signals: a data and a control signal, given by

Memðdit ; ci!m
t ; cctÞ�!ðdmt ; cmt Þ :

The memory module has two coupled control and data memories, Mc and Md, 
which are matrices of size N × C and N × D. Multiple write and read heads can be 
used, where the number of write and read heads is set task-dependently to hw and 
hr, respectively.

Learnable interfaces. Only the concatenated control signals are used as input for 
all learned layers, that is, xm ¼ ½ci!m

t ; cct 
I

, and the weight matrices W and biases b 
are the parameters that are learned.

The write vectors vit 2 <C

I
 at t are the control signals that are stored in Mc via 

the write heads and are given by vt = Wvxm + bv, with vt split into fvit j 8i : hwg
I

 for 
each write head.

The previous write vectors v̂jt 2 <C

I
 at t are the control signals that are used to 

update Mc and are given by

v̂t ¼ Wv̂xm þ bv̂ ;

with v̂t split into fv̂jt j 8j : hrg
I

 for each read head.
The previous erase vectors êjt 2 ð0; 1ÞC

I
 at t are the control signals used to erase 

values in Mc and are given by êt ¼ σðWêxm þ bêÞ ;
I

where σ(⋅) is the logistic sigmoid 
function and êt is split into fêjt j 8j : hrg

I
 for each read head.

The previous write gate ĝt 2 f0; 1ghr
I

 at t determines if the memory Mc is 
updated with v̂jt and êjt, given by

ĝ t ¼ H ðWĝxm þ bĝ Þ ;

where H(⋅) is the heavyside step function.
The read modes mj

t 2 f0; 1ghrþ4hw

I
 at t are the control signals that 

determine which attention mechanism is used to read from the memory, 
given by mt = Wmxm + bm, with mt split into fonehot ðmj

tÞ j 8j : hrg
I

 and 
onehot ðxÞ ¼ fxk ¼ 1 if xk ¼ maxðxÞ ; xk ¼ 0 else g
I

.
The free gates f wt 2 f0; 1ghw

I
 and f rt 2 f0; 1ghr

I
 at t determine if locations written 

to and read from can be freed after interaction, and are given by

f wt ¼ H ðWf wxm þ bf w Þ and f rt ¼ H ðWf rxm þ bf r Þ :

These are all learned parameters of the memory module that define the 
interfaces to manipulate the memory.

Writing and reading. Given the learned interface described before and the write 
wi

t
I

 and read rjt head locations, information is stored and retrieved from memory  
as follows.

Writing vit to location wi
t
I

 in Mc at t is performed via

Mc
t ¼ Mc

t�1  ðE � wi
t1

>Þ þ wi
tv

i
t
>
;

where ∘(⋅) denotes element-wise multiplication and E is a matrix of ones of the 
same size as Mc.

Writing dit
I

 to location wi
t
I

 in Md at t is performed via

Md
t ¼ Md

t�1  ðE � wi
t1

>Þ þ wi
td

i
t
>
;

where E is a matrix of ones of the same size as Md. Note that the same write location 
wi

t
I

 is used to couple the control and data memories.
Updating the previously read location rjt�1

I
 in Mc is performed via

Mc
t ¼ Mc

t�1  ðE � ĝjtr
j
t�1 ê

j>

t Þ þ ĝjtr
j
t�1v̂

j>

t ;

where E is a matrix of ones of the same size as Mc. If the previous write gate ĝjt ¼ 0
I

 
no update is performed, and with ĝjt ¼ 1

I
 the previously read location rjt�1

I
 is erased 

with êt j
I

 and v̂t j
I

 is written to it.
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Reading from memory is performed via the read locations rjt  used on both 
memories to obtain the data and control output of the memory module via

dm;j
t ¼ Md

t
>
rjt and cm;j

t ¼ Mc
t
>rjt ;

and are concatenated for the final memory module output dmt ¼ ½dm;1
t ; ¼ ; dm;hr

t 
I

 
and cmt ¼ ½cm;1

t ; ¼ ; cm;hr
t 

I
.

We next demonstrate how to obtain the head locations is described in detail.

Head locations. The write and read heads locations (wi
t 2 f0; 1gN
I

 and 
rjt 2 f0; 1gN
I

, respectively) are hard decisions, that is, onehot-encoded vectors, 
where exactly one location is written to or read from, respectively. A simplified 
dynamic memory allocation scheme from the DNC is used to determine wi

t
I

 (that 
is, the memory locations for writing to). It is based on a free list memory allocation 
scheme, where a linked list is used to maintain the available memory locations. 
Here, a usage vector ut ∈ {0, 1}N indicates which memory locations are currently 
used (with u0 = 0), which are updated in each step with wi

t
I

 and rjt locations via

ut ¼ ut�1 þ ð1� f w;it Þwi
t and ut ¼ ut�1ð1� f r;jt r

j
tÞ ;

with the free gates f w;it
I

 and f r;jt
I

 determining if the write location is marked as used 
and whether the read location can be freed, respectively. Due to this dynamic 
allocation scheme, the model is independent from the size of the memory, that is, 
it can be trained and later used with different sized memories. To obtain the write 
location wi

t
I

, the memory locations are ordered by ut, and wi
t
I

 is set to the first entry 
in this list, that is, the first unused location is used to write to.

Read head locations rjt are determined by the active read mode given by 
mj

t 2 f0; 1ghrþ4hw

I
, that is, only one mode can be active. There are three main 

attentions implemented for reading from memory: HALT, temporal linkage and 
ancestry linkage. The total number of available read modes is hr + 4hw as HALT 
is dependent on the number of read heads and both linkages can be used in two 
directions for each write head.

The HALT attentions are used to read the previously read locations again. 
When multiple read heads are used, each head can read its own last location or the 
locations from the other read heads; for example, with three read heads, each head 
has three HALT attentions (H1, H2 and H3).

The temporal linkage attention is used to read locations in the order they 
were written, either in forwards or backwards direction. This mechanism enables 
the architecture to retrieve sequences—or parts of sequences—in the order they 
were presented or in the reversed order. Here we use a simplified version of the 
mechanism from the DNC. As our architecture uses hard decisions for the heads 
locations, the linkages can be stored more efficiently in N-dimensional vectors, in 
contrast to N × N matrices in the DNC. Each temporal linkage vector LT,i stores the 
order of write locations for one write head, updated at t via

LT;it ¼ LT;it�1  ð1� wi
t�1Þ þ ~wi

tw
i
t�1 ;

where ~wi
t ¼ argmaxðwi

tÞ
I

. The temporal linkage mechanism can be used in two 
directions. Either move the read head in the order of which the locations were 
written, or in reversed order, resulting in two read modes: backwards (B) and 
forwards (F), per write head for each read head, given by

B : rjt ¼ I ðLT;it ; ~rjt�1Þ and
F : rjt ¼ onehot ðLT;it  rjt�1Þ ;

where rit�1
I

 is the previously read location, ~rjt�1 ¼ argmaxðrit�1Þ
I

 and I(x, y) = {xk = 1 
if xk = y, xk = 0 else}. When a location is freed through the free gates, the location is 
removed from the linkage such that it remains a linked list.

The ancestry linkage also uses N-dimensional vectors to store relations between 
memory locations. Although the temporal linkage stores information about the 
order of which locations were written to, the ancestry linkage stores information 
about which memory locations were read before a location was written, thus 
capturing a form of usage or hierarchical relation instead of temporal relation. Each 
ancestry linkage vector LA,i,j stores which location rjt�1

I
 was read before location wi

t
I

 
was written, and is updated at t via

LA;i;jt ¼ LA;i;jt�1  ð1� wi
tÞ þ ~rjt�1w

i
t ;

where rjt�1
I

 is the previously read location and ~rjt�1 ¼ argmaxðcjt�1Þ
I

. The ancestry 
linkage mechanism can also be used in two directions: to either move the read head 
to parent (P) location or the child (C) location. This results in two modes per write 
head for each read head, given by

P : rjt ¼ onehot ðLA;i;jt  rjt�1Þ and
C : rjt ¼ onehot ð I ðLA;i;jt ; ~rjt�1Þ  htÞ ;

where ht is a N-dimensional vector storing for each location the t when it was 
written. A location can be read multiple times, thus it can have multiple children. 
But as we need a single location to read, the C mode returns the location that 
was written to the latest when rjt�1

I
 was read, that is, the newest child. This is 

implemented with the history vector ht. When a location is freed through the  
free gates, the location is removed from the linkage and its children are attached  
to its parent.

Bus. The Bus module is responsible to generate the control signal that indicates 
how the ALU module should manipulate the data stream, that is, which action or 
operation to perform. It therefore receives the control signal from the Controller 
and the Input as well as the output from the memory signal, given by

Busðci!b
t ; cct ; c

m
t Þ�!cbt :

Here we use a single layer of size LB to learn cbt 2 f0; 1gLB
I

 at t, given by

cbt ¼ onehot ðWbxb þ bbÞ ;

with xb ¼ ½ci!b
t ; cct ; c

m
t 

I
.

Learning procedure. Learning the algorithmic modules—and hence the 
algorithmic solution—is performed using NES41, which is a blackbox optimizer 
that does not require differentiable models, giving more freedom to the model 
design; for example, the hard attention mechanisms are not differentiable and the 
data modules can be instantiated arbitrarily. Recent research showed that NES and 
related approaches such as Random Search45 or NEAT46 are powerful alternatives 
to gradient-based optimization in reinforcement learning. They are easier to 
implement and scale, perform better with sparse rewards and credit assignment 
over long time-scales, have fewer hyperparameters47 and were used to train 
memory-augmented networks24,38,39.

Natural evolution strategies updates a search distribution of the parameters 
to be learned by following the natural gradient towards regions of higher 
fitness using a P of offspring o (altered parameters) for exploration. The 
performance of o is measured with one scalar value summarized over all 
samples N in the minibatch and over all computational steps Tmax

I
 of each 

sample, with sparse binary signals for each step, albeit framing a challenging 
learning problem given the sequence. Let θ be the parameters to be 
learned (the weight matrices and biases in the three algorithmic modules 
θ ¼ ½Wc; bc;Wv ; bv ;W~v ; b~v ;W~e; b~e;W~g ; b~g ;Wm; bm;Wfw ; bf w ;Wf r ; bf r ;Wb; bb
I

); 
using an isotropic multivariate Gaussian search distribution with fixed variance σs

2, 
the stochastic natural gradient at t is given by

∇θtEϵNð0;IÞ uðθt þ σsϵÞ½   1
Pσs

XP

o¼1

uðθot Þϵi ;

where u(⋅) is the rank-transformed fitness f(⋅)41. With α, the parameters are updated 
at t by

θtþ1 ¼ θt þ
α

Pσs

XP

o¼1

uðθot Þϵi :

For all experiments the fitness function is defined for S samples as 
f ðθot Þ ¼ 1=S

PS
s f sðθot Þ

I
 with

f sðθot Þ ¼
1

Tmax

XTe

k¼1

δðdmk � �d
m
k Þ þ δðcbk � �cbkÞmðcbkÞ

to evaluate the offspring parameters θot
I

 on one sample, s. Here, δ(x) = {1 if x = 0, 
0 else} gives sparse binary reward if the two signals are equal or not, where dmk

I
 is 

the data output from the memory, cbk
I
 the control output from the Bus, and �dmk

I
 and 

�cbk
I
 the true values, respectively. Reward is thus given for choosing the correct data 

and operation for the ALU in each step. Note that there is no feedback on memory 
access, only on the output, that is, where, when and how to write and read has to 
be learned without explicit feedback. The stepwise signals are summed up until 
the first mistake occurs (Te) or until the maximum length of the sample Tmax

I
, and 

is normalized with 1=Tmax

I
, that is, f ðθot Þ

I
 measures the fraction of subsequently 

correct algorithmic steps. To encourage strong operation choices, the operation 
reward is multiplied with the margin penalty

mðcbkÞ ¼ clip
~c1=~c2 � 1
mmax

; 0 ; 1

� �
;

where ~c1;~c2
I

 are first and second largest values of cbk
I
, that is, the chosen operation 

and the runner up, and mmax
I

 is a chosen percentage indicating how much bigger 
the chosen action should be. Note that this penalty is only considered if the 
operation is already correct.

For robustness and learning efficiency, weight decay for regularization48 and 
automatic restarts of runs stuck in local optima are used41. This restarting can 
be seen as another level of evolution, where some lineages die out. Another way 
of dealing with early converged or stuck lineages is to add intrinsic motivation 
signals such as novelty, which help to get attracted by another local optima, as 
in NSRA-ES49. In the experiments however, we found that within our setting, 
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restarting—or having an additional survival of the fittest on the lineages—was 
more effective in terms of training time.

The algorithmic solutions are learned in a curriculum learning set-up40, with 
sampling from old lessons to prevent unlearning and to foster generalization. 
Furthermore, we created bad memories, a learning from mistakes strategy similar 
to the idea of AdaBoost50, which samples previously failed samples to encourage 
focusing on the hard cases. This can also be seen as a form of experience replay6,51, 
but only using the initial input data to the model, not the full generated sequences. 
Bad memories were initially developed for training the data-dependent modules to 
ensure their robustness and 100% accuracy, which is crucial to learn algorithmic 
solutions. If the individual modules do not have 100% accuracy, no stable 
algorithmic solution can be learned even if the algorithmic modules are doing the 
correct computations. For example, if one module has an accuracy of 99%, the 1% 
error prevents learning an algorithmic solution that always works. This problem is 
even reinforced as the proposed model is an output–input architecture that works 
over multiple computation steps using its own output as the new input, meaning 
the overall accuracy drops to 36.6% for 100 computation steps. Using the bad 
memories strategy, and thus focusing on the mistakes, therefore considerably helps 
with achieving robust results when learning the modules, enabling the learning of 
algorithmic solutions.

Experimental set-up. In all experiments, the hyperparameters were set to: 
batch size S = 32, P = 20, α = 0.01, search distribution exploration σ = 0.1, weight 
decay λ = 0.9995, action margin mmax ¼ 0:1

I
, max iterations = 20.000, restart 

iterations = 2.000. In each batch, 33% of the samples were drawn from previous 
levels and another 33% were drawn from the bad memories buffer, which stores 
the last 200 mistakes. A curriculum level is considered solved when 750 subsequent 
iteration are perfectly solved, that is, no single mistake in any sample, any step, any 
bit, that is 24.000 perfectly solved samples. In levels were training was triggered, 
the required subsequent perfect iterations are doubled, that is, 48.000 perfectly 
solved samples. Whenever an iteration achieves maximum fitness, no learning is 
triggered, that is, no parameter update is performed.

The modules instantiations. The preceding sections described the design and 
functionality of the algorithmic modules in general. Here, the used instantiations 
and parameters for the experiments are presented, as well as the data modules and 
their task-dependent instantiations.

Algorithmic modules. In all experiments, LC = 6 and C = 4. All tasks use hw = 1 
and hr = 1 for the four search and plan, and the four copy tasks, whereas hr = 2 for 
addition and sort, and hr = 3 for the arithmetic task; D and LB are set by the task, as 
each task has a different data representation (D) and a different amount of available 
operations for the ALU (LB). In all tasks the ALU to Controller feedback (cat�1

I
) was 

activated, except for the four copy tasks as the ALU has no functionality there. The 
free gates were activated for the four copy tasks and the arithmetic task. In total, 
depending on the algorithm to learn, this results in 300–650 trainable parameters 
in the algorithmic modules.

Input. The first data-dependent module is the Input module. That is the 
interface to receive data and provide control signals. It receives the data input 
from the outside dint

I
 as well as the data output from the ALU from the previous 

computational step doutt�1
I

, formally given as

Inðdint ; doutt�1Þ�!ðdit ; ci!c
t ; ci!m

t ; ci!b
t Þ :

The main functionality is to generate task related control signals, data 
preprocessing if applicable and determining to stop. The control signals 
ci!c
t ; ci!m

t ; ci!b
t

I
 may be unique to provide different signals to the Controller, 

Memory and Bus, but can also share the same information. The data dit
I

 is 
forwarded to the memory module with or without preprocessing, depending on 
the task.

ALU. The ALU module is responsible for data manipulation. It receives the 
read data from the memory and the operation to apply on these from the Bus to 
produce the next data output alongside control signals via

ALUðdmt ; cbt Þ�!ðdoutt ; cat Þ :

This module implements elemental operations for each task such that the 
algorithmic solution can be learned by applying the correct operation on the 
correct data in the correct step.

Both data modules can be instantiated arbitrarily due to the NES approach for 
learning the algorithmic solution. They can also be trained from data beforehand 
or be hardcoded if possible. In the experiments, we tested both variations and 
details for each algorithm are given in the Supplementary Information.

Data availability
Data is generated online during training and the generating methods are provided 
in the source code.

code availability
The source code of the NHC is available via Code Ocean at https://doi.
org/10.24433/CO.6921369.v1 (ref. 52).
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Extended Data Fig. 1 | learning curves comparison. Shown are the mean and the standard error of the fitness during learning over 15 runs. Note the 
log-scale of the x-axis. Solved X in the legend indicates the median solved level. The full NHC is the only model that successfully learns all algorithms 
reliably. More details on these evaluations are given in Table 1.
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