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ABSTRACT
Safe and efficient Human-Robot Collaboration (HRC) requires rec-
ognizing human collaborators intention. Hand pose kinematics
early on an ongoing movement can provide information for pre-
dicting future human actions. Accurate state-of-the-art methods
used for human hand pose estimation are either marker-based or
make use of multiple cameras set around the workspace. These
approaches introduce inconvenience to the user, necessitate calibra-
tion and are bounded to the specific set-up and workspace. On the
other hand, using a single RGB-D camera would be less obtrusive
for the user and less cumbersome to install. In this work, we use
OpenPose to extract 2D keypoints from the RGB raw image and we
combine them with the depth information acquired from the RGB-
D camera to obtain 3D hand poses. We evaluate the accuracy and
discrimination ability of our method in ten different static poses.
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1 INTRODUCTION
The ever-growing integration of robots in the fields of home care,
nursing, space exploration and rescuing missions, as well as their
widespread use in every industrial environment has lead to the
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great need of studying the interaction between them and their users.
Human Robot Collaboration (HRC) is the process during which a
person and a robotic system, e.g. a robotic arm, are interacting phys-
ically, socially or both[6, 8, 23] in order to achieve a goal. Human en-
vironments, however, are complex and non-deterministic and, thus,
user’s safety during interaction is not a trivial challenge[10, 13, 21].
On the contrary, HRC involves constant position tracking, intention
estimation and action prediction of the user.

User’s motion intention estimation is a very important variable
for the safe and efficient physical collaboration with a robotic sys-
tem. A Collaborative Robot (Cobot) having the ability to assess
user’s intention [5], e.g. grasp a specific object[1], could take into
consideration potential hazards and motion efficiency when plan-
ning motions. Consequently, it is important to obtain accurate and
repeatable estimation of the user’s hand pose [7].

We propose a novel use of a single RGB-D (Red Green Blue
Depth) Camera to detect human 3D hand pose. The configuration
we propose is totally adjustable to all collaborative robotic arms,
since such set-ups use at least one camera to observe the workspace.
The RGB-D camera can either be mounted on the robot or observe
the workspace standalone. Our proposed method can also be used
on every wheeled or legged mobile robot, since the camera can
be mounted on the robot itself. For this reason we use a RGB-D
camera that incorporates an inertial measurement unit (IMU), that
can be efficiently integrated on a mobile Cobot to provide a wide
spectrum of the needed functionalities.

2 RELATEDWORK
In behavioral neuroscience and psychology studies, a popular and
accurate method to estimate a user’s 3D hand poses is based on
the use of markers on the hand. In [1, 5] the hand poses are being
detected with the use of reflective markers on the hand. However,
marker-based methods[11] require precise adjustment of the mark-
ers on the hands of each individual. Additionally, wearing markers
could be quite obtrusive for users in HRC set-ups.

Many markerless motion capture approaches, that could be em-
ployed to detect 3D hand poses, have been proposed so far[3, 14, 15,
17], providing state-of-the-art accuracy. Despite their independence
of the use of markers, they still require the use of multiple cameras
to extract 3D poses. Likewise, this scenario is not practical and
entirely infeasible in case where the collaboration involves user’s
interaction with a mobile robot.

Markerless 3D hand pose estimation using a single RGB camera
has also been proposed[18, 24]. Nevertheless, these single-camera
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RGB-based approaches suffer from performance degradation in
comparison to the aforementioned state-of-the-art methods. In
addition, the proposed model’s performance in [24] is bounded by
the lack of a large-scale appropriate dataset. Other neural-network
based approaches include mapping from 2D RGB images to 2.5D
hand pose representations to reconstruct the 3D hand poses[12]
and kinematic model fitting with synthetic data enrichment such
that it resembles the distribution of real hand image [16].

3 CONTRIBUTION
We integrate and evaluate the accuracy of a 3D hand pose extraction
method based on OpenPose 2D hand pose estimation method [20].
Our method utilizes the accuracy and robustness of OpenPose
model, while introducing simplicity at the 3D markerless hand pose
estimation. A similar approach has been used for body pose tracking
in [2] and both body and hand pose tracking in [2]. However, to
our knowledge, there has not been any systematic evaluation of
hand position estimation using similar methods. Yet, knowing the
accuracy of such tools is crucial for designing safe and natural HRC
environments that demand precise human motion tracking and
human action prediction. The impact of achieving accurate human
behaviour monitoring through a single, low-cost, commercial, RGB-
D camera would be great given the wide applicability of the method,
the flexibility in the set-ups, and the accessibility of the hardware.

4 METHOD
4.1 Participants, Apparatus and Workspace
In this study, a right-handed male participant was asked to sit on
a height-adjusted seat in front of a table (length= 150cm, width=
70cm, height= 60cm) as shown in Figure 1. On the table an omnigrid
mat with a square size of 2.54cm was placed, in order to assess the
detected fingertip positions in comparison to the ground-truth ones.

Figure 1: Workspace set-up.

In a distance of 50cm from the table we place a 150cm tall tripod
on which we placed an Intel RealSense Depth Camera D435i (reso-
lution: 1920 x 1080 at 30 fps). The pose of the camera with respect
to the table was determined by identifying the pose of an individual

augmented reality (AR) 1 marker. The center of the marker was
placed at x=3 cm y=3 cm with respect to the table reference frame,
which was defined as one of the corners of the omnigrid mat. These
transformations were used in Frame Transpose node2 (Figure 3) to
transform all collected camera points from camera frame to table
reference frame.

The chair’s height had to be adjusted, so that the participant’s
neck and shoulders are also visible. Furthermore, sixteen stickers
were added on the omnigrid mat in order to compare the proposed
system’s measurements with the ground-truth positions, as well as
two cubes of edge size 2.54cm to provide different positions on the
z-axis(height), as shown in Figure 2. Each big square of the grid is
2.54cm and the double squares represent the used cubes.
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Figure 2: The 16 stickers on the omnigrid mat. Double
squares represents cubes.

4.2 Data Collection
We defined ten static poses, for which we asked the participant to
place his right-hand index and thumb on the specified markers on
the omnigrid mat. That includes two poses on the z plane of the mat
(z=0cm) and three poses with thumb, index or both fingertips on
cubes of known dimensions(z=2.54cm). At each pose we recorded
a rosbag file with the raw RGB image, depth point cloud, camera
info and TF tree [9] for a duration of 9.7 seconds, i.e. 30 frames per
second (fps) that corresponds to approximately 290 messages for
each topic.

Poses A-B, C-D, E-F, F-G and F-H were used to evaluate the
accuracy of our method with respect to ground truth positions. In
these poses fingertip positions were fairly distinct from each other,
e.g. aperture of 14cm. To assess the discriminability of the proposed
system, i.e the minimum difference that can be detected between
apertures, poses I1, I2, I3, I4 and I5 were used.

4.3 3D Hand Keypoints detection
Our system utilizes 2D hand poses estimated from OpenPose [3,
4, 20, 22] and depth information in the form of point cloud to
extract 3D hand keypoints3. We used the Robotic Operating System
1http://wiki.ros.org/ar_track_alvar
2https://github.com/Roboskel-Manipulation/manos_vision
3https://github.com/Roboskel-Manipulation/openpose_utils
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(ROS) [19] to build the whole pipeline as depicted in Figure 3. The
OpenPose’s real-time processing performance, that is the number
of processed frames per second, is constrained by the performance
of the GPU available. In this work, we aimed at evaluating our
method’s performance at all collected frames. For this reason we
built a ROS service that reads camera frames on demand from a
rosbag file. In our case, this occurs when 3D keypoint extraction
from a given frame is completed (BagServer and Bag Client in
Figure3). The OpenPose ROS wrapper subscribes on the raw RGB

BagServer

Depth 
Point Cloud

Raw RGB Image OpenPose 
ROS Wrapper

3D Keypoint Extraction

2D Hand
Keypoints

Transposed 
3D Hand Keypoints

Frame Transpose

Camera Info

AR Tracker
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TF

TF

3D Hand Keypoints Next 
Message

Start

Figure 3: ROS Node Graph

image topic to estimate the 2D hand keypoints from a human pose
(Figure 4). Even though the OpenPose system provides information
for keypoints throughout thewhole body, we only focus on the hand
keypoints and especially the right-hand index and thumb tips. The
3D Pose Extraction node uses the information from Hand 2D Poses
topic and combines it with the corresponded messages on the Depth
Point Cloud topic published on demand too. This node publishes
messages on the 3D Hand Poses topic and the Frame Transpose
node transforms them onto the frame of the AR marker placed on
the workspace. To achieve that, it uses the TF tree provided by the
TF Based On AR Marker node. Each time that a message is being
published on the 3D Hand Pose topic node, the BagClient node asks
from the BagServer to read and publish the next message for every
topic in the rosbag file examined.

5 EVALUATION
5.1 Accuracy Assessment
Overall, the mean Euclidean distances are below 2 cm for most
finger positions, except F(G) and F(H) (Table 1). Moreover, the
standard deviation of the mean Euclidean distance is at most 0.29
cm. This shows that the measurements of the fingertip are compact
and consistent. In Table 1 we present the mean value (and the
standard deviation) of the absolute difference between the ground
truth and the measured coordinates for every fingertip position. In
Figures 5 and 6 we show an example of the ground truth points and
the detected fingertip positions at pose A-B (for index and thumb
respectively for x-y, x-z and y-z coordinate frames).

Figure 4: Example of 2D human poses acquired from Open-
Pose ROS wrapper.

Ground Truth (GT)
Positions Mean Measured Difference from GT Mean

Euclidean

(x, y, z) X(cm) Y(cm) Z(cm) Distance
(cm)

A
(34.60, 29.52,0.0) 0.15(0.10) 1.01(0.17) 00.89(0.18) 1.24(0.18)

B
(44.76, 21.90, 0.0) 0.73(0.07) 0.45(0.11) 0.87(0.18) 1.36(0.18)

C
(29.52, 37.14, 0.0) 0.22(0.12) 1.71(0.18) 1.06(0.16) 1.16(0.17)

D
(29.52, 24.40, 0.0) 0.14(0.10) 0.94(0.16) 0.65(0.15) 2.03(0.17)

E
(40.03, 34.00, 0.0) 0.61(0.17) 1.65(0.20) 01.57(0.22) 1.46(0.27)

F(E)
(43.74, 30.50, 2.54) 0.02(0.16) 0.54(0.27) 1.34(0.25) 1.92(0.27)

F(G) 0.41(0.09) 0.02(0.19) 1.53(0.25) 2.91(0.26)
F(H) 0.93(0.15) 0.18(0.23) 1.62(0.27) 2.31(0.26)
G

(47.55, 26.23, 0.0) 0.01(0.07) 1.78(0.12) 02.71(0.25) 1.82(0.29)

H
(51.36, 29.77, 2.54) 0.40(0.17) 0.24(0.27) 2.23(0.30) 1.95(0.29)

Table 1: Absolute difference of mean values of detected fin-
gertip coordinates and their mean Euclidean distance from
ground truth in cmofmeasuredfingertips. The ground truth
stickers position are under the point name. The Standard de-
viation is in parenthesis next to each mean.

By examining each axis separately, we see that the mean values
of x-axis present an absolute difference of less than 0.93 cm (point
F(H)). The highest errors are observed on the y-axis (1.78 cm for
point G) and the z-axis (2.71 cm for point G). These higher mean
differences are related to errors introduced by the depth informa-
tion especially on the z-axis (depth) . Such systematic errors could
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be corrected by calibrating the system. Finally, all measurements
present a low standard deviation that does not exceed 0.3 cm on
any axis, indicating a high repeatability of OpenPose results.

(a) X-Y

(b) X-Z

(c) Y-Z

Figure 5: Index at AB Pose. Green Point is the Ground truth
sticker.

Ground Truth Measured Means
1cm 0.6cm(0.1)
2cm 1.4cm(0.1)
3cm 2.5cm(0.1)
4cm 3.2cm(0.1)
5cm 4.3cm(0.1)

Table 2: Mean values of Measured Apertures. The standard
deviation is in parenthesis.

(a) X-Y

(b) X-Z

(c) Y-Z

Figure 6: Thumb atABPose. Green Point is theGround truth
sticker.

5.2 Discriminability
The proposed system exhibits excellent discrimination capabilities
even in the extreme case of 1cm aperture, where the two fingers are
in touch with each other. Due to OpenPose’s excellent performance
and camera’s accurate depth information, there is no overlapping
between the detected fingertip positions on any plane. This is shown
in the box plot of Figure 7, where we do not observe extreme outliers
in any aperture size. Overall, there is a systematic underestimation
of the apertures ranging on average from 0.4 to 0.8 cm (Table 2).
However, there is no overlap between the box-plots indicating a
robust discrimininability of the aperture between the two fingers.
The average difference between the measured apertures is relatively
constant and very close to the ground truth one (1cm), e.g. the
difference of the measured apertures between 1cm and 2cm is 0.86
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Figure 7: Boxplot for 1cm-5cm fingertips aperture. The me-
dian value is denoted as a red line inside the box and the
mean value with a green triangle. Outliers are denoted with
crosses.

cm, between 2 cm and 3 cm is 1.05 cm, between 3 cm and 4 cm is
0.75 cm and between 4 cm and 5 cm is 1.04 cm.

6 DISCUSSION
In this paper, we evaluated a flexible and accessible method to de-
tect 3D markerless hand poses for a wide spectrum of applications
using a commercial low-cost RGB-D camera. The 3D hand poses
were estimated with the integration of OpenPose, a state-of-the-art
2D hand pose estimator , and depth information acquired from the
camera. We evaluated the system’s accuracy and discriminability
examining 10 different static poses. The estimation of the 3D hand
poses did not exhibit errors greater than 2.71 cm in any axis., while
the standard deviation of the measurements was below 0.3cm, indi-
cating high repeatability of the methods. Finally, we show the very
good discriminability of the proposed system, even for the extreme
case of the two fingertips touching each other.

The deviations from ground truth position can be attributed to
errors introduced in all stages of the pipeline. First of all, there is a
small bias in the measurements from the placement of the user’s fin-
gers in the markers; naturally, the fingers occupy a certain volume
and are related to a neighbourhood of points around ground truth
positions. In addition, Intel RealSense D435i camera4 introduces an
error less than 2% for up to 2 meters and 80 percent field of view.
Thus, we should expect a small error on x and y axes from finger
misplacement and a distributed depth error from the camera on y
and z axes. On the top of that, we should take into consideration
the small error that the OpenPose[20] introduces on x and y axes,

4https://www.intelrealsense.com/depth-camera-d435i/

as well as the transformation error from the camera’s frame to the
frame of the AR marker, due to the marker’s shape distortion.

The systematic errors resulting from camera characteristics and
coordinate transformation can be alleviated by taking into account
the evaluation presented in this work. In the future we intend to
collect data from more participants and extend this work to hand
movements estimation.

To the best of our knowledge, there are no other tools integrated
into ROS, except OpenNi5 that can be used for tracking human
hands using RGB-D sensors. In the future it would be interesting to
compare the performance of OpenNi and to integrate more state-
of-the-art methods in ROS and compare their performance.
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