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Abstract

Modern humanoid robots are impressive complex machines with many degrees-of-freedom

and sensors. Some of these robots are equipped with compliant joints that smoothly

react to external forces. This feature allows for a natural interaction between humans

and the robot, and one hopes that they also facilitate learning of motor skills through

compensating disturbances. Classical engineering approaches that try to exactly model

the compliant joints, the environment, or the possible movements are likely to fail.

Inspired by recent findings in biological motor control, I have investigated alternative

approaches based on probabilistic inference for representing and learning complex motor

skills in continuous action spaces. In particular, I have shown how movement plans can

be generated in the probabilistic inference framework, how complex movements can be

composed of simpler elementary movement primitives, how such movement representations

can be learned using reinforcement learning, and which salient features of biological motor

control can be reproduced in this manner.

More generally, these studies are first steps towards an autonomous learning system

that encapsulates machine learning disciplines like “transfer learning”, “reinforcement

learning”, “structure learning”, and “imitation learning” in the context of robotics through

the framework of probabilistic inference. Such a probabilistic inference approach has

the potential to close the gap between learning abilities of current robots and biological

learning systems in the near future.

Keywords. Motor skill learning, probabilistic inference, biological features of motor

control, reinforcement learning, policy search, movement primitives
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Kurzfassung

Moderne humanoide Roboter sind eindrucksvoll komplexe Maschinen die über eine

Vielzahl von Freiheitsgraden und Sensoren verfügen. Einige dieser Roboter verfügen

über nachgiebige Gelenke, die durch Einwurkung externe Kräfte flexibel werden. Diese

Eigenschaft ermöglicht eine natürlichere Interaktion zwischen Mensch und Machine

und man erhofft sich, dass das Lernen von Bewegungen durch eine automatische

Kompensation von Störungen erleichtert wird. Klassische maschinelle Lernmethoden, die

versuchen ein möglichst genaues Model der Gelenke, der Umgebung und der möglichen

Bewegungsabläufe zu erstellen scheinen hier an ihre Grenzen zu stoßen.

Inspiriert durch neue Erkenntnisse biologischer Bewegungsforschung bin ich in

dieser Arbeit alternative Wege gegangen und habe probabilistische Inferenzmethoden

zum Beschreiben und zum Lernen komplexer Bewegungen in hochdimensionalen

kontinuierlichen Räumen untersucht. Im Speziellen habe ich gezeigt wie Bewegungspläne

durch probabilistische Inferenz generiert werden können, wie sich komplexe

Bewegungsabläufe aus einfacheren elementaren Bewegungen bilden lassen, wie

solche Repräsentationen mit “Reinforcement learning” gelernt werden könnnen und

welche charakteristischen Eigenschaften biologischer Bewegungskontrolle in diesem

Zusammenhang modelliert werden können.

Allgemeiner betrachtet sind diese Arbeiten erste Schritte in Richtung eines

autonomen Lernsystems das maschinelle Lerndisziplinien wie “transfer learning”,

“reinforcement learning”, “structure learning” und “imitation learning” in der Robotik

durch probabilistische Inferenz miteinander in Verbindung setzen kann. Solche inferenz

Methoden haben das Potential die Kluft zwischen den aktuellen Fähigkeiten moderner

Roboter und biologischer Lernsysteme in naher Zukunft zu schließen.
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Chapter 1

Introduction

Contents

1.1 An introduction to probabilistic inference for planning . . . . . 1

1.2 Motor skill learning with movement primitives . . . . . . . . . 3

1.3 Salient features of biological motor skill learning . . . . . . . . 4

1.4 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . 5

Motor skill learning in autonomous robots with many degrees-of-freedoms and compli-

ant actuators is challenging. Classical movement planning approaches typically fail in such

systems due to the high-dimensional control signals and the stochasticity of the executed

motor commands. Despite these challenges, autonomous robots have to cope with com-

plex problems like changing environments, learning from sparse teacher signals, complex,

but often structured task settings, and noisy demonstrations or observations. For these

challenges in robotics specialized learning theories have been developed, such as transfer

learning, reinforcement learning, structure learning, and imitation learning. Probabilistic

inference is a promising approach to implement motor skill learning in high-dimensional

autonomous systems that links these learning theories. As a first step torward an inte-

grative learning system, I have applied this new perspective on probabilistic information

processing to implement several biologically inspired motor skill learning approaches.

1.1 An introduction to probabilistic inference for planning

Probabilistic inference provides a mathematical theory for anticipatory behavior. To illus-

trate the key idea behind the approach, we consider a simple movement planning example.

1



2 Chapter 1. Introduction

Figure 1.1: Conceptual idea of probabilistic inference for planning. Assume we know our
current state X (“where we are”) and our future desired state Z (“where we want to be”).
We can now determine the probabilities of intermediate actions A.

Assume we know our current state X (“where we are”) and our future desired state Z

(“where we want to be”). We can now calculate the probabilities of intermediate actions

A, which are necessary to reach the desired state Z from the current state X by “ob-

serving” of (or conditioning on) X and Z. Thus, the desired future Z is seen as “mental

observation”.

The capital letters X, A,Z denote random variables (RVs). Lower case letters denote

values, where e.g., x = dom(X) represents a particular value x in the domain X. Its

probability is denoted by p(X = x), where typically p(x) is used as shorthand.

Using these definitions we can give a mathematical description of the simple planning

example. In general this two part process involves modelling the interaction between

random variables and inference. For the modelling, we define a joint distribution over

all involved RVs, p(x, a, z) = p(x)p(a|x)p(z|a). These dependencies can be visualized in

the graphical model in Figure 1.1. RVs are represented by nodes, where shaded circles

denote knowns and white circles unknowns. The links between these nodes encode the

dependencies between RVs, i.e., the conditional distributions.

All questions of interest are answered by performing inference in this graphical model,

e.g., the probability of a particular action a is p(a|x, z) = 1/N p(x) p(a|x) p(z|a). The

normalization constant N =
∑

ã∈A p(x)p(ã|x)p(z|ã) denotes the marginal distribution over

all actions. Note that for this result only the rule for conditional probabilities p(X|Y ) =

p(X, Y )/P (Y ) needed to be applied.

This simple example can be easily extended to more complex multi-step planning

problems in high-dimensional non-linear systems. For instance, the action a is replaced

by a sequence of states 〈x1,x2, ...,xT 〉 of length T . Such a sequence of states and the

corresponding control commands in non-linear dynamical systems are inferred in Chapter 2

and in Chapter 3.

The advantage of probabilistic inference for planning is that there are no distinctions
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between sensor and motor, perception and action. We can include a multitude of random

variables, some of which might represent features of the state, some might represent goals

or constraints in the future. These additional random variables can also be used to model

prior knowledge, which facilitates the learning of motor skills and can be exploited in

transfer learning, i.e., the acquisition of new skills based on previously learned priors (see

Chapter 3).

For solving the inference problem many sophisticated inference techniques can be

used, e.g., message passing, variational inference methods or Markov Chain Monte Carlo

(MCMC) sampling approaches. In Chapter 2 and Chapter 3, message passing with Gaus-

sians is used as inference method. In a recent study on movement planning through

networks of spiking neurons probabilistic inference is implemented using a MCMC sam-

pling approach. This study is currently in progress of writing and not presented in this

thesis.

1.2 Motor skill learning with movement primitives

A common strategy to control high-dimensional complex robots is to decompose com-

plex movements into simpler elementary movement primitives (MPs). These MPs are

parametrized functions that encode movement trajectories or control signals. The key

principle of MPs is that complex time-varying trajectories can be generated using a tra-

jectory generator based on few parameters (see Section 3.2.1 for a discussion). In this

thesis, two new types of MPs are proposed that comply with salient features of biological

motor control. In Chapter 3, the probabilistic inference for planning framework is used to

formulate movement primitives. This movement representation models salient features of

human motor control such as motor variability and learning efficiency. In Chapter 4, a bio-

logically inspired movement primitive model is proposed that is based on muscle synergies,

i.e., the coherent activations of groups of muscles. This movement primitive framework is

used for learning multiple related tasks exploiting learned shared task knowledge.

During a learning phase the parameters of such MPs are adapted to achieve a par-

ticular goal (or even multiple goals). In this thesis, I have focused on the reinforcement

learning paradigm (in contrast to imitation learning or kinesthetic teaching), where a typ-

ically sparse teacher signal is used to improve the current parametrization of a movement

primitive. These parameters can be interpreted as policy — a strategy to solve a task.

For learning or optimizing the policy parameters a variety of policy search algorithms

exist in the motor control literature (see Section 3.2.2 or Section 4.2.4 for a discussion).
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In this thesis, a stochastic search method is used for policy search and the main focus of

the presented motor skill learning approaches is on modelling salient features of biological

motor control.

1.3 Salient features of biological motor skill learning

A good understanding of salient features of biological motor control can facilitate the

development of new and powerful motor skill learning approaches in robotics. In this

thesis, the following features are modeled in particular:

• Biological organisms developed specialized morphologies throughout evo-

lution. In morphological computation one follows a similar goal, where different

robot designs are evaluated to improve the learning speed, the flexibility, or the

robustness of the hardware. This time-consuming process could be advanced by

comparing simulated robots with different morphologies. However, the learned con-

trol strategy and the morphology interact and cannot be investigated in isolation. In

Chapter 2, I have demonstrated how different morphologies of simulated robots can

be compared by always applying the optimal control strategy, which is generated

using probabilistic inference for planning.

• Complex movements are composed of simpler elementary movements.

The musculoskeletal apparatus of a biological motor system is a high-dimensional

redundant stochastic system and has many more degrees-of-freedom than needed to

perform a specific action. A classical hypothesis is that such redundancy is resolved

by a combination of only a small number of functional units, namely movement

primitives. In Chapter 3, a novel movement primitive representation based on prob-

abilistic inference in learned graphical models is presented.

• If humans perform the same task several times, the resulting movement

trajectories vary considerably. Probabilistic inference is an excellent computa-

tional theory of this effect named motor variability. If the task constraints (which

could for example be the requirement to reach a target) are not violated, suppressing

the inherent noise in the stochastic system will lead to inefficiencies. This effect is

modeled in Chapter 3.

• Transfer of knowledge to new situations facilitates motor skill learning. A

salient feature of human motor skill learning is the ability to exploit similarities across
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related tasks. In Chapter 4, I have shown that these similarities can be represented

by learned basis functions or muscle synergies. Multiple movement tasks can be

solved by applying individual combinations of the shared basis functions.

In a recent study on an implementation of probabilistic planning through networks

of spiking neurons two additional interesting features of biological motor control were

modeled. They are only briefly discussed here as an outlook on ongoing work that is

not essential for this thesis. First, such neural networks can encode multiple movement

trajectories that compete, and the agent (in this study a simulated rodent) can switch

between multiple strategies. This strategy switching behavior is also observed when a

real rodent has learned that multiple paths (with equal length) in a maze lead to the

same reward [Pfeiffer and Foster, 2013]. Second, these trajectories can be modulated

through reinforcement learning, where in particular a linear ramping reward signal is used

for learning to navigate in mazes with obstacles. Similar ramping dopamine signals were

recently observed in rodents [Howe et al., 2013], which cannot be explained by traditional

temporal difference reinforcement learning methods. However, the proposed spiking neural

network model that implements probabilistic planning provides a functional role for the

suprising finding of ramping dopamine signals in rodents.

1.4 Organization of the thesis

The framework of probabilistic inference for planning is first used in Chapter 2 to in-

vestigate the power of morphological computation. In this thesis, multi-step movement

planning problems are studied with simulated humanoid robots with different morpholo-

gies.

In Chapter 3, this approach is extended, where the graphical model for probabilistic

planning is learned from data and not assumed to be known. This reproduces these salient

features of biological motor control: its modular organization in movement primitives, its

characteristics of stochastic optimality under perturbations, and its learning efficiency.

Another salient feature of human motor skill learning is the ability to exploit similarities

across related tasks. Such similarities can be interpreted as structural knowledge, which

facilitates the learning of related tasks. A modelling approach of this feature using shared

parametrized basis functions (muscle synergies) is discussed in Chapter 4.
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A key idea behind morphological computation is that many difficulties of a control

problem can be absorbed by the morphology of a robot. The performance of the controlled

system naturally depends on the control architecture and on the morphology of the robot.

Due to this strong coupling, most impressive applications in morphological computation

typically apply minimalistic control architectures. Ideally, adapting the morphology of the

plant and optimizing the control law interact such that finally, optimal physical properties

of the system and optimal control laws emerge. As a first step towards this vision we

apply optimal control methods for investigating the power of morphological computation.

We use a probabilistic optimal control method to acquire control laws given the current

morphology. We show that by changing the morphology of our robot, control problems

can be simplified, resulting in optimal controllers with reduced complexity and higher

performance. This concept is evaluated on a compliant 4-link model of a humanoid robot

7
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during balance control in the presence of external pushes.

2.1 Introduction

The control of compliant robots is inherently difficult due to their nonlinear stochastic

dynamics. Morphological computation poses the vision that parts of the complexity of a

control or learning task can be outsourced to the morphology of the robot [Pfeifer and

Bongard, 2006, Pfeifer et al., 2007]. This computational power of the morphology has been

illustrated in many impressive biologically inspired robotic applications. For example,

Tedrake et al. [2005] showed that the complexity of learning to walk is drastically reduced

by exploiting the dynamics of a passive biped walker. Iida and Pfeifer [2006] demonstrated

that the stability of a simple four-legged robot exhibits a surprisingly robust behavior using

a mixture of active and passive joints. For swimming [Ziegler et al., 2006] or flying [Wood,

2007] investigations of robot morphologies yield rich behavioral diversity using only a

single actuator exploiting the dynamics of the environment.

These approaches typically used minimalistic control architectures, like open loop ac-

tuation with sinusoidal drives [Iida and Pfeifer, 2006, Ziegler et al., 2006, Wood, 2007]

or a simple linear combination of state dependent features [Tedrake et al., 2005]. The

morphology is assumed to absorb much of the computation needed for controlling the

robot, and, therefore, less emphasis is placed on the controller. More sophisticated con-

trol architectures were omitted as these are typically more difficult to fine-tune for a new

morphology. Thus, finding a good control law defines an individual optimization problem

for each morphology, which renders the joint optimization of the morphology and the con-

troller challenging. However, an autonomous system has to encompass for both aspects

— the morphology and the control architecture — for efficient learning of complex motor

skills.

One remarkable exception to the typically used minimalistic control architectures is

the theoretical study of the morphological contribution for compliant bodies in Hauser

et al. [2011]. The authors have demonstrated that by outsourcing the computation to

the physical body, the difficult problem of learning to control a complex body, could be

reduced to a simple and perspicuous linear learning task. This concept was tested in

simulations for simple but generic nonlinear models of physical bodies that are based on

mass-spring systems. The linear learning task less likely get stuck in local minima of an

error function. However, learning the optimal morphology and the optimal control law

remains an open problem for many motor control tasks using real robots.
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As a first step towards fulfilling this vision, we propose to directly use optimal control

methods for eliminating the dependency between the morphology of the robot and the

control architecture. We show that for balancing control tasks with simple humanoid robot

models this dependency can be truly eliminated and the effect of different morphologies

can quantified. Thus, for evaluating the computational power of the morphology, we will

always use the optimal control law connected to this morphology. For more complex tasks

or robot models the optimal control law needs to be learned, which is not discussed in this

manuscript.

For determining our optimal control law for a given morphology, we can use one of

the many tools provided by Stochastic Optimal Control (SOC) methods such as Bertsekas

and Shreve [1978], von Stryk and Bulirsch [1992], Bertsekas et al. [1995], Todorov and Li

[2005], Kappen [2007], Toussaint [2009]. These methods have been shown to be powerful

approaches for movement planning in high-dimensional robotic systems. We will use

Approximate Inference Control (AICO) [Toussaint, 2009], as it is a state of the art planning

method for stochastic optimal control tasks. AICO is based on probabilistic inference for

motor control. The beauty of this approach is that there is no distinction between sensor

and motor, perception and action. We can include a multitude of variables, some of

which might represent some features of the state, some of which might represent goals,

constraints or motivations in the future and some of which might represent future actions

or motor signals.

As all other stochastic optimal control methods, AICO minimizes a cost function,

which is in our case given by the quadratic distance to a target state and the used energy

of the movement. In order to apply the AICO method to torque constraint dynamical

models we will briefly explain how to extend the algorithm to systems with control limits

in Section 2.2.

Quantifying how much computation is done by the morphology of the robot and how

much is done by the controller is often a difficult problem. Despite of the advancements

for theoretical models of morphological computation [Hauser et al., 2011], where the com-

putational power of the plant can be assessed in a principled manner, this remains an

open problem for many motor control tasks using real robots. Yet, by the use of optimal

control laws the computation done by the morphology can be quantified by investigating

the complexity of the controller. Thus, if the controller needs to do a lot of computation

less computation is provided by the morphology in order to fulfill a task.

AICO also provides us with a time-varying linear feedback controller as policy to
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generate movement trajectories. We will use the variance of the control gains as complexity

measure of the controller. If the control gains are almost constant in time, the control

law is close to linear and does not perform much computation. However, if the control

gains are highly varying, the controller needs to do a lot of computation and therefore,

less computation is provided by the morphology.

As different complexity measures are possible we additionally use the final costs and

the total jerk of a movement trajectory for a comparison. We illustrate the power of

morphological computation combined with optimal control on a dynamical model of a hu-

manoid robot (70kg, 2m). The robot is modelled by a 4-link pendulum, which has to keep

balance in the presence of external pushes. We will show in Section 2.3 that by changing

the morphology of a robot like the joint friction, the link lengths or the spring constants,

the resulting optimal controllers have reduced complexity. As we will demonstrate there

are optimal values for the physical properties for a given control task, which can only

be found by the use of optimal control laws. With naive control architectures, different,

sub-optimal morphologies would be chosen.

2.1.1 Related work

We propose to use optimal control methods to eliminate the dependency between the

control architecture and the morphology of the robot. These stochastic optimal control

(SOC) methods such as Todorov and Li [2005], Kappen [2007], Toussaint [2009] have

been shown to be powerful methods for controlling high-dimensional robotic systems.

For example the incremental Linear Quadratic Gaussian (iLQG) [Todorov and Li, 2005]

algorithm is one of the most commonly used SOC methods. It uses Taylor expansions of

the system dynamics and cost function to convert the nonlinear control problem in a Linear

dynamics, Quadratic costs and Gaussian noise system (LQG). The algorithm is iterative

- the Taylor expansions are recalculated at the newly estimated optimal trajectory for the

LQG system.

A SOC problem can be reformulated as inference problem in a graphical model [Tou-

ssaint, 2009, H.J. et al., 2012], which has the nice property that there is no distinction

between sensor and motor, perception and action. The unknown quantities, i.e., the states

and actions can be efficiently inferred using for example the Approximate Inference Control

(AICO) algorithm [Toussaint, 2009]. The graphical model is given by a simple dynamic

Bayesian network with states xt, actions ut and task variables zt (representing the costs)

as nodes, see Figure 2.1. In this graphical model observations are denoted by shaded nodes
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in contrast to the unknown random variables, which are indicated by circles. If beliefs in

the graphical model are approximated as Gaussian the resulting algorithm is very similar

to iLQG. Gaussian message passing iteratively re-approximates local costs and transitions

as LQG around the current mode of the belief within a time slice. A difference to iLQG is

that AICO uses forward messages instead of a forward roll-out to determine the point of a

local LQG approximation. Thus, AICO allows to iterate belief re-approximation within a

time slice until convergence. This may lead to faster overall convergence [Toussaint, 2009].

Figure 2.1: This figure illustrates the graphical model for probabilistic planning, where
we consider finite horizon tasks with T time steps. The state variable xt denotes for
example the joint angles and joint velocities of a robot. Controls are labelled by ut. The
beauty of probabilistic inference for motor control is that we can include a multitude of
variables, some of which might represent some features of the state, some of which might
represent goals, constraints or motivations in the future and some of which might represent
future actions or motor signals. These constraints are expressed in the model by the task
variables zt.

The dynamic Bayesian network shown in Figure 2.1 is fully specified by the conditional

distributions encoded by the cost function and by the state transition model. Like most

SOC methods [Todorov and Li, 2005, Kappen, 2007, Toussaint, 2009] we assume that the

cost function and the state transition model are known. However, for model learning many

types of function approximators can be applied [Vijayakumar et al., 2005, Nguyen-Tuong

et al., 2008a,b]. For learning the cost function inverse reinforcement learning methods

such as Abbeel and Ng [2004], Boularias et al. [2011] could be used. Since we demonstrate

in this paper how morphological computation and optimal control can benefit from each

other in general, an extension to the more complex learning problems remains for future

research.

The original formulation of the AICO method [Toussaint, 2009] does not consider

torque limits, which are important for many robotic experiments as well for the dynamic
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balancing experiments we consider in this paper. Therefore we extended the algorithm,

which is discussed in the next section.

2.2 Probabilistic inference for motor planning

We use the probabilistic planning method Approximate Inference Control (AICO) [Tous-

saint, 2009] as optimal control method. Most applications of AICO are in the kinematic

planning domain. Here, we want to apply AICO to fully dynamic, torque controlled robot

simulations. Therefore we had to extend the AICO framework with control or torque

limits, which is explained in the next subsections.

2.2.1 Approximate inference control

We will briefly clarify the notation for our discussion. Let xt denote the state and ut the

control vector at time step t. A trajectory τ is defined as sequence of state control pairs,

τ = 〈x1:T ,u1:T−1〉, where T is the length of the trajectory. Each trajectory has associated

costs

L(τ) :=
T∑

t=1

ct(xt,ut), (2.1)

where ct(xt,ut) represents the cost function for a single time step, which is in our case

given by the quadratic distance to a target state and the used energy of the movement.

Solely the cost function c1:T (·) and the initial state x1 are known to the optimal control

algorithm. The unknown trajectory τ is the result of the inference process.

AICO uses message passing in graphical models to infer the trajectory τ . In order

to transform the minimization of L(τ) into an inference problem, for each time step an

individual binary random variable zt is introduced. This random variable indicates a

reward event. Its probability is given by

P (zt = 1|xt,ut, t) ∝ exp(−ct(xt,ut)).

AICO now assumes that a reward event zt = 1 is observed at every time step,

see Figure 2.1. Given that evidence, AICO calculates the posterior distribution

P (x1:T ,u1:T |z1:T = 1) over trajectories.

We will use the simplest version of AICO, where an extended Kalman smoothing

approach is used to estimate the posterior P (x1:T ,u1:T |z1:T = 1). The extended Kalman

smoothing approach uses Taylor expansions to linearize the system and subsequently uses
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Gaussian messages for belief propagation in a graphical model. Gaussian message passing

iteratively re-approximates local costs and transitions as a Linear dynamics, Quadratic

costs and Gaussian noise system (LQG) around the current mode of the belief within a

time slice. Concise derivations of the messages for AICO are given in the Appendix, as

they are used to further extend the algorithm to implement control constraints.

AICO provides us with a linear feedback controller for each time slice of the form

ut = Otxt + ot,

where Ot is the inferred feedback control gain matrix and ot denotes the linear feedback

controller term. For our evaluations we also use a complexity measure which is proportional

to the variance of this feedback control law:

Var(O1:T−1,o1:T−1) =
Dx∑
i=1

Du∑
j=1

var(Oi,j,1:T−1) +
Du∑
j=1

var(oj,1:T−1), (2.2)

where the dimension of the states is denoted by Dx and the dimension of the controls is

denoted by Du.

AICO is only a local optimization method and we have to provide an initial solution

which is used for the first linearization. We will simply use the first state as initialization

x2:T = x1.

If we use AICO with a constant cost and dynamic model for each time step, the

algorithm reduces to calculating a Linear Quadratic Regulator (LQR), which is often used

in optimal control. A LQR is the optimal linear feedback controller for a given linear

system. In contrast, AICO uses a time-varying linear feedback controller, which may be

different for each time step. In our experiments we will compare both approaches on a

dynamic nonlinear balancing task. Thus we evaluate the benefit of using AICO (time-

varying linear feedback control) and a LQR (constant linear feedback control).

2.2.2 Cost function for constrained systems

In order to apply the AICO algorithm to torque controlled robots, we have to extend the

framework to incorporate control limits as the available motor torque is typically limited.

This extension is done by adding a control dependent punishment term cu
t (ut) to the cost
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function in Equation 2.1. Thus for a trajectory τ we specify the costs

L(τ) :=
T∑

t=1

ct(xt,ut) + cu
t (ut).

We use this additional term to punish controls ut that exceed a given bound uBt at time

t:

cu
t (ut) = (ut − uBt)

THBt(ut − uBt).

As a consequence, the resulting Gaussian distributions which are used to represent the

costs ct change. This distributions have typically zero mean in the control space due to

the typically used quadratic control costs. In the case of control limits the mean of the

distribution is non-zero. Consequently, also the message passing update equations used for

the AICO algorithm changes. The exact message passing equations of AICO with control

limits are presented in the Appendix.

2.3 Experiments

We investigate morphological computation combined with optimal control on dynamic

nonlinear balancing tasks [Atkeson and Stephens, 2007], where a robot gets pushed with

a specific force and has to move such that it maintains balance. The optimal strategy is a

nonlinear control law which returns the robot to the upright position. For our evaluations

different initial postures and multiple forces are used as sketched in Figure 2.2. We study

the morphological computation by changing different physical properties of a 4-link model

of a humanoid robot. In particular we investigate the computation done by different

friction coefficients and the link lengths. Inspired by the work of Hauser et al. [2011] we

will also incorporate springs to our model for analyzing different spring constants.

2.3.1 Setting

We use a 4-link robot as a simplistic model of a humanoid (70kg, 2m) [Atkeson and

Stephens, 2007]. The 8-dimensional state xt is composed of the ankle, the knee, the hip

and the arm positions and their velocities. Table B.1 in Appendix B.2 shows the initial

velocities (resulting from the force F which always acts at the shoulder of the robot) and

the valid joint angle range for the task. Additionally to the joint limits, the controls are

limited to the intervals [±70,±500,±500,±250]Ns (ankle, knee, hip and arm). For more

details we refer to Atkeson and Stephens [2007].
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Figure 2.2: This figure illustrates different initial postures of a 4-link pendulum modelling
a humanoid robot (70kg, 2m). The robot gets pushed with specific forces, i.e., F1 and F2

and has to move such that it maintains balance. At the end of the movement the robot
should stabilize at the upright position.

We use a quadratic cost function given by

ct(xt,ut) = (xt − x∗)T R̂t(xt − x∗) + uT
t Ĥtut,

where the final state is denoted by x∗ = 0. The precision matrix R̂t determines how costly

it is not to reach x∗. The diagonal elements of R̂1:T are set to 2 · 103 for joint angles and

to 0.2 for joint velocities. Controls are punished by Ĥ1:T−1 = 0.05I.

The movement trajectories are simulated with a time-step of 0.5ms. For the AICO

algorithm we use a planning time step of ∆t = 5ms and a horizon of T = 500, which results

in a movement duration of 2.5s. We use a torque dependent noise model — the controls

are multiplied by Gaussian noise ε with mean 1 and a standard deviation of 0.25, i.e., we

use 25% torque dependent noise. The noise affects the system dynamics ẋ = f(xt,ut + ε)

while simulating a trajectory, where ε ∼ N (ε|0, 0.252 · abs(ut)). The experiments are

performed for multiple forces sampled from F ∼ U [−15,+15]Ns, as shown in Figure 2.2.

2.3.2 Complexity measures

We evaluate the average values of the final costs L(τ) in Equation 2.1, the variance of

the time-varying controller gains returned by the AICO approach in Equation 2.2 and the

total jerk J(τ) = ∆t
∑T

t=0 u̇T
t u̇t of the trajectory (proportional to the squared derivative

of the torque). Different complexity measures would be possible. However, the chosen

ones are plausible since the complexity of controlling the robot is reflected by how well

the costs L(τ) are optimized. As the jerk of a movement tracks the derivative of the

torques, this also seems to be a reliable complexity measure. Finally the variance of the

time-varying controller gains quantifies the complexity of the control law in comparison
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to linear controllers (no variance).

2.3.3 Friction induces morphological computation

In this experiment we evaluate the influence of the friction coefficient γ on the quality of

the optimal controller for the 4-link model. The friction coefficient directly modulates the

acceleration of the joints, i.e., φ̈γ = −γφ̇.

Figure 2.3 (a) shows the resulting final costs for different friction coefficients. In or-

der to illustrate the need for sophisticated control architectures, we compare the optimal

control method AICO to a LQR controller and a simple constant linear feedback con-

troller. While AICO calculates the optimal control law for the nonlinear system, the LQR

controller linearizes the system at the upright position and subsequently calculates the

closed form solution of the optimal controller for the resulting LQG system. The constant

linear feedback controller does not adapt to the morphology of the robot. As we can see

from Figure 2.3 (a), we cannot determine the optimal morphology with the simple linear

controller, while we can recognize a clear minimum for the AICO and the LQR controller.

AICO could find the most simple control law according to the jerk criteria in Fig-

ure 2.3 (b) and was also able to find control laws with considerably decreased costs. In

Figure 2.3 (c), we illustrated the variance of the time-varying controller gains. The com-

plexity of the resulting controllers is reduced by changing the friction coefficient. The

minimum lies in the same range as the minimum of the cost function. Thus, in this case a

simpler controller resulted in better performance because the morphology (the friction) of

the robot has simplified the control task. Still, we needed a more complex optimal control

algorithm to discover this simpler control law if we compare to the LQR.

In Figure 2.4 we depict the joint and torque trajectories for the hip and the arm joint,

where we applied the friction coefficients γ = 0, γ = 12 and γ = 30. With γ = 0 the

trajectories overshoot as shown in Figure 2.4 (a), whereas in Figure 2.4 (c) more energy

is needed for stabilizing the robot with γ = 30. The trajectories for the optimal friction

coefficient γ = 12 (according to the jerk complexity measure) are shown in Figure 2.4 (b).

2.3.4 The influence of the link lengths

To show the effects of morphological computation on a more complex variation of mor-

phologies, we consider in this experiment the variation of the shank, the thigh, the trunk,

and the arm length l = [l1, l2, l3, l4]. Initially the link lengths are l0 = [0.5, 0.5, 1, 1]m and

the weights of these links are specified by m0 = [17.5, 17.5, 27.5, 7.5]kg.
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Figure 2.3: This figure shows the influence of the friction coefficient on controlling the
4-link model using the optimal control methods AICO and LQR. Illustrated are the mean
and the standard error over 50 trajectories. As complexity measures of the morphology
we used the final costs (a), the total jerk (b) and the controller variance (c). For the final
costs we additionally compare to a simple linear feedback controller denoted by LC. For
(c) we compare to a LQR controller with time varying costs in contrast to the standard
LQR method which uses constant costs for all time steps.
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(b) γ = 12
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(c) γ = 30

Figure 2.4: The plots show the mean trajectories of the hip (φ3) and the arm (φ4) joints
over 100 runs for the first 0.5s, where we used the AICO approach for the friction coeffi-
cients γ = 0, γ = 12 and γ = 30.

We consider variations of l of up to 50% from their initial configuration. Different

link lengths of the 4-link robot result in different initial velocities [Atkeson and Stephens,

2007], which influences the complexity of the motor control problem. For this reason, we

consider constant inertias for a fair comparison. Thus, for each link-length l the masses

of the links are given by m = m0l02/l2. To match the physical properties of humans we

assume equal lengths for the shank and the thigh link l1 = l2.

In addition to the link lengths of the thigh, the trunk and the arm we still optimize the

friction coefficient, resulting into 4 parameters (l2, l3, l4, and γ) of our morphology. A naive

search for optimal parameters like in previous experiment is in the multi-dimensional case

intractable. Therefore we apply the nonlinear stochastic optimizer Hansen et al. [2003] as
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a local search method.

The stochastic optimizer locally explores the parameter space (l2, l3 and l4) until

convergence. For example, the resulting final cost values for different link lengths are

illustrated in Figure 2.5 when using AICO as optimal control law. For this experiment

we used a friction coefficient of γ = 12, where we averaged over multiple initial states

and multiple forces. The optimizer converged to link lengths of l2 = 0.39, l3 = 1.18 and

l4 = 0.5 for the thigh, the torso and the arm.

For multiple friction coefficients an evaluation of the presented complexity measures is

shown in Figure 2.6. According to the final costs in Figure 2.6 (a) the best controller was

found with a friction coefficient of γ = 9. For the jerk criteria in Figure 2.6 (b) and the

variance as complexity measure shown in Figure 2.6 (c), the minimum of the complexity

measures lies in the same range.

The morphologies found by the optimizer for the AICO and the LQR controller are

sketched in Figure 2.7 for the friction coefficients γ = 0, γ = 9 and γ = 30. The initial

configuration of the robot is shown in Figure 2.7 (a) and in Figure 2.7 (e). Interestingly

with increasing values of the friction coefficients the link lengths change to compensate for

the larger motor controls. This change is shown in Figure 2.7 (b-d) for the AICO controller

and in Figure 2.7 (f-h) for the LQR controller. AICO could again find significantly different

morphologies as the LQR controller. As is illustrated in the captions of Figure 2.7, the

morphologies found by AICO could produce lower costs as the morphologies found by

LQR.
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Figure 2.5: This figure illustrates the explored link lengths for the thigh, the torso and
the arm (l2, l3 and l4) using AICO with the friction coefficient γ = 12. For this illustration
we discretized the parameter space to visualize the final cost values, which are denoted
by the color of the dots. Darker dots correspond to lower cost values as specified by the
colorbar on the right. The optimal values of the link lengths are denoted by the large
crosses (l2 = 0.39, l3 = 1.18 and l4 = 0.5).
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Figure 2.6: This figure shows the results for optimizing the link lengths and the friction
coefficient of the 4-link model. Like before we used the final costs (a), the total jerk (b)
and the variance of the time-varying feedback controller (c) as complexity measure.
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Figure 2.7: This figure shows the learned link lengths for multiple friction coefficients
γ = 0, γ = 9 and γ = 30 for the AICO (b-d) and the LQR (f-h) controller. The link
lengths are optimized with a stochastic optimizer and could vary up to 50% from the
initial configuration shown in (a) and (e). With increasing friction coefficients the link
lengths change to compensate for the larger control costs. The final costs L(τ) for these
morphologies are given in the captions.
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2.3.5 Robot model with linear springs

Inspired by the theoretical analysis of Hauser et al. [2011], we also evaluate the computa-

tional power of linear springs in our model. The springs are mounted on the 4-link model

as illustrated in Figure 2.8. These springs support the control of the 4-link robot as they

push the robot back into its upright position. Thus, the torques applied to the joints are

given by the sum of the controls provided by the feedback controller and the spring forces

u∗t = ut + diag(k)∆ls. The vector ∆ls denotes the displacements of the four springs and

k is a vector containing the 4 spring constants. Note that due to the calculation of the

displacements, the springs act nonlinearly on the joint torques.

The adjustable parameters of the morphology include the friction coefficient and the

four spring constants k = [k1, k2, k3, k4] for the ankle, the knee, the hip, and the arm joint.

Initially the spring constants are set to k0 = [1, 103, 103, 1]. For the optimization a lower

bound of 0.1k0 and an upper bound of 100k0 are used.

As in the previous experiment, for different friction coefficients γ, we optimize the

spring constants using the stochastic search method Hansen et al. [2003]. The results for

the final costs, the total jerk and the variance of the feedback controller as complexity

measures are shown in Figure 2.9. The benefit of the supporting springs is best illustrated

by the final costs (AICO: 109.5 and LQR: 122.2) in Figure 2.9 (a), which are drastically

reduced compared to the final costs using the 4-link model without springs (AICO: 146.9

and LQR: 246.9) shown in Figure 2.3 (a).

The optimal spring constants strongly depend on the used friction coefficient. This

effect of the friction coefficient is illustrated in Figure 2.10, where we compare the learned

spring constants using AICO and LQR as control method. With an increasing friction

also the spring constants increase to compensate for larger control costs.

Figure 2.8: This figure illustrates the 4-link robot model endowed with linear springs which
are mounted at the midpoints of the joints. These springs support the control of the 4-link
robot as they push the robot back into its upright position. Due to the calculation of the
spring length displacements, the springs act nonlinearly on the joint torques.
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Figure 2.9: This figure shows the results for optimizing the spring constants and the
friction coefficient of the 4-link model. We used the final costs (a), the total jerk (b) and
the variance of the time-varying feedback controller (c) as complexity measure.
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Figure 2.10: This figure shows the optimal spring constants for different friction coefficients
using AICO and LQR.

2.3.6 Concluding summary

We have shown that by using optimal control methods an optimal morphology could

be found for the 4-link robot model. This approach was evaluated on three tasks with

increasing complexity, i.e., optimizing only the friction coefficient, optimizing the friction

coefficient and the link lengths, and finally, optimizing the friction coefficient and the four
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spring constants. We can now also ask how beneficial it was to optimize for example

the link lengths compared to optimizing the spring constants. This comparison is best

reflected by the achieved final costs in Figure 2.3 (a), Figure 2.6 (a), and Figure 2.9 (a),

where the most complex task also performs best.

2.4 Conclusion

In this paper we have shown that optimal control and morphological computation are

two complementary approaches which can benefit from each other. The search for an

optimal morphology is simplified if we can calculate an optimal controller for a given

morphology. This calculation can be done by new approaches from probabilistic inference

for motor control, i.e., the approximate inference control algorithm [Toussaint, 2009]. By

the use of optimal control methods, we have shown that for dynamic nonlinear balancing

tasks, an appropriate setting of the friction, the link lengths or the spring constants of the

incorporated springs of the compliant robot can simplify the control problem.

We have demonstrated that there are optimal values for the physical properties for a

given control task, which can only be found by the use of optimal control laws. With naive

control architectures such as the evaluated constant linear feedback controller which does

not adapt to the morphology, different, sub-optimal morphologies would be chosen.

In our studies we assumed that we can always compute an optimal controller given the

current morphology. If this requirement is fulfilled then the morphological computation

can be quantified using the proposed method. However, for computing optimal control

laws, using e.g., AICO, we need to know the costs at each time-step, as well as the dynamics

model. For more complex tasks these costs and the model are usually unknown. However,

as argued in the related work Section 2.1.1, for model learning many types of function

approximators can be applied [Vijayakumar et al., 2005, Nguyen-Tuong et al., 2008a,b].

For learning the cost function inverse reinforcement learning methods such as Abbeel and

Ng [2004], Boularias et al. [2011] could be used.

In the future, we plan to investigate more complex and more nonlinear tasks. In this

case the benefit of AICO in comparison to LQR controllers should be even more prominent.

In the end we are planning to simultaneously evolve walking controllers based on AICO

and the morphology of bipedal robots like a model of a planar walker.



2.5. Acknowledgment 23

2.5 Acknowledgment

This chapter is based on the paper Rückert and Neumann [2012] written by Elmar Rückert

(ER) and Gerhard Neumann (GN). Together, the two authors developed the basic ideas,

the experimental design, and did the writting. The algorithms and experiments were

implemented by ER.





Chapter 3

Learned graphical models for

probabilistic planning

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Related work and background . . . . . . . . . . . . . . . . . . . . 29

3.3 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Biological movement generation combines three interesting aspects: its modular orga-

nization in movement primitives, its characteristics of stochastic optimality under pertur-

bations, and its efficiency in terms of learning. A common approach to motor skill learning

is to endow the primitives with dynamical systems. Here, the parameters of the primitive

indirectly define the shape of a reference trajectory. We propose an alternative movement

primitive representation based on probabilistic inference in learned graphical models with

new and interesting properties that complies with salient features of biological movement

control.

Instead of endowing the primitives with dynamical systems, we propose to endow move-

ment primitives with an intrinsic probabilistic planning system, integrating the power of

stochastic optimal control methods within a movement primitive. The parametrization of

the primitive is a graphical model that represents the dynamics and intrinsic cost func-

tion such that inference in this graphical model yields the control policy. We parametrize

25
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the intrinsic cost function using task-relevant features, such as the importance of passing

through certain via-points. The system dynamics as well as intrinsic cost function pa-

rameters are learned in a reinforcement learning setting. We evaluate our approach on a

complex 4-link balancing task. Our experiments show that our movement representation

facilitates learning significantly and leads to better generalization to new task settings

without re-learning.

3.1 Introduction

Efficient motor skill learning in redundant stochastic systems is of fundamental interest

for both, understanding biological motor systems as well as applications in robotics.

Let us first discuss three aspects of human and animal movement generation the com-

bination of which is the motivation for our approach: (1) its modular organization in terms

of movement primitives, (2) its variability and behavior under perturbations, and (3) the

efficiency in learning such movement strategies.

First, concerning the movement primitives (MPs) in biological motor systems, the

musculoskeletal apparatus is a high-dimensional redundant stochastic system and has

many more degrees-of-freedom than needed to perform a specific action [Bernstein, 1967].

A classical hypothesis is that such redundancy is resolved by a combination of only a

small number of functional units, namely movement primitives [d’Avella et al., 2003, Bizzi

et al., 2008, d’Avella and Pai, 2010]. In other terms, MPs can be understood as compact

parametrizations of elementary movements which allows for an efficient abstraction of the

high-dimensional continuous action spaces. This abstraction has been shown to facilitate

learning of complex movement skills [Schaal et al., 2003, Neumann et al., 2009, d’Avella

et al., 2003].

A second important aspect about biological movement are the characteristics of motor

variability under perturbations or stochasticity. If humans perform the same task several

times, the resulting movement trajectories vary considerably. Stochastic optimal control

(SOC), besides its high relevance in engineering problems, has proven itself as an excellent

computational theory of this effect [Todorov and Jordan, 2002, Trommershauser et al.,

2005]. An implication of SOC, the minimum intervention principle, states that we should

only intervene in the system if it is necessary to fulfill the given task. If the task constraints

are not violated it is inefficient to suppress the inherent noise in the stochastic system. The

fact that biological movements account for such principles suggests that SOC principles

are involved on the lowest level of movement generation.
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These biological perspectives suggest that the third aspect, efficient motor skill learn-

ing, is facilitated by this combination of MPs with low level SOC principles. While exist-

ing MP methods have demonstated efficient learning of complex movement skills [d’Avella

et al., 2003, Schaal et al., 2003, Neumann et al., 2009] they lack an integration of SOC prin-

ciples within MPs. Instead, in current approaches the parameters of the MP compactly

determine the shape of the desired trajectory either directly or indirectly. This trajectory is

then followed by feedback control laws. An example for an indirect trajectory parametriza-

tion are the widely used Dynamical Movement Primitives (DMPs) [Schaal et al., 2003],

which use parametrized dynamical systems to determine a movement trajectory. The

idea of DMPs to endowing MPs with an intrinsic dynamical system has several benefits:

They provide a linear policy parametrization which can be used for imitation learning and

policy search [Kober and Peters, 2011]. The complexity of the trajectory can be scaled

by the number of parameters [Schaal et al., 2003] and one can adapt meta-parameters

of the movement such as the movement speed or the goal state of the movement [Kober

et al., 2010, Pastor et al., 2009]. Further, the dynamical system of a DMP is to some

degree also reactive to perturbations by adapting the time progression of the canonical

system depending on joint errors and thereby de- or accelerating the movement execution

as needed [Ijspeert and Schaal, 2003, Schaal et al., 2003]. However, the trajectory shape

itself is fixed and non-reactive to the environment.

In our approach we aim to go beyond MPs that parametrize a fixed reference trajec-

tory and instead truly integrate SOC principles within the MP. The general idea is to

endow MPs with an intrinsic probabilistic planning system instead of an intrinsic dynam-

ical system. Such a Planning Movement Primitive (PMP) can react to the environment

by optimizing the trajectory for the specific current situation. The intrinsic probabilis-

tic planning system is described as a graphical model that represents the SOC problem

[Toussaint, 2009, Kappen et al., 2009]. Training such a MP therefore amounts to learning

a graphical model such that inference in the learned graphical model will generate an

appropriate policy. This has several implications. First, this approach implies a different

level of generalization compared to a dynamical system that generates a fixed (tempo-

rally flexible) reference trajectory. For instance, if the end effector target changes between

training and testing phase, an intrinsic planning system will generalize to a new target

without retraining. A system that directly encodes a trajectory would either have to be

retrained or use heuristics to be adapted [Pastor et al., 2009]. Second, this approach truly

integrates SOC principles within the MP. The resulting policy follows the minimum inter-
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vention principle and is compliant compared to a feedback controller that aims to follow

a reference trajectory.

As with DMPs, a PMP is trained in a standard reinforcement learning (RL) setting.

Instead of parametrizing the shape of the trajectory directly, a PMP has parameters that

determine the intrinsic cost function of the intrinsic SOC system. While the reward func-

tion (typically) gives a single scalar reward for a whole movement, the learned intrinsic

cost function is in the standard SOC form and defines task and control costs for every

time-step of the movement. In other terms, training a PMP means to learn from a sparse

reward signal an intrinsic cost function such that the SOC system will, with high probabil-

ity, generate rewarded movements. Parallel to this learning of an intrinsic cost function, a

PMP also exploits the data to learn an approximate model of the system dynamics. This

approximate dynamics model is used by the intrinsic SOC system. Therefore, PMP learn-

ing combines model-based and model-free RL: it learns a model of the system dynamics

while at the same time training PMP parameters based on the reward signal. It does

not learn an approximate model of the reward function itself. We can exploit supervised

learning methods such as Vijayakumar et al. [2005], Nguyen-Tuong et al. [2008a,b] for

learning the system dynamics and at the same time use policy search methods to adapt

the PMP parameters that determine the intrinsic cost function. This two-fold learning

strategy has the promising property of fully exploiting the data by also estimating the

system dynamics instead of only adapting policy parameters.

As mentioned above, our approach is to represent the intrinsic SOC system as a graph-

ical model, building on the recent work on Approximate Inference Control (AICO), [Tou-

ssaint, 2009]. AICO generates the movement by performing inference in the graphical

model that is defined by the system dynamics and the intrinsic cost function. Since we

learn both from experience, all conditional probability distributions of this graphical model

are learned in the RL setting. The output of the planner is a linear feedback controller

for each time slice.

Our experiments show that by the use of task relevant features, we can significantly

facilitate learning and generalization of complex movement skills. Moreover, due to the

intrinsic SOC planner, our movement primitive representation implements the principles of

optimal control, which allows to learn solutions of high quality which are not representable

with traditional trajectory-based methods.

In the following section we review in more detail related previous work and the back-

ground on which our methods build. Section 3.3 then introduces the proposed Planning
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Movement Primitives. In Section 3.4 we evaluate the system on a one-dimensional via-

point task and a complex dynamic humanoid balancing task and compare to DMPs. We

conclude with a discussion in Section 3.5.

3.2 Related work and background

We review here the related work based on parametrized movement policies, policy search

methods and stochastic optimal control.

3.2.1 Parametrized movement policies

Movement primitives (MPs) are a parametric description of elementary movements

[d’Avella et al., 2003, Schaal et al., 2003, Neumann et al., 2009]. We will denote the

parameter vector of a MP by θ and the possibly stochastic policy of the primitive as

π(u|x, t;θ), where u is the applied action and x denotes the state. The key idea of the

term ’primitive’ is that several of these elementary movements can be combined not

only sequentially but also simultaneously in time. However, in this paper, we want

to concentrate on the parametrization of a single MP. Thus we only learn a single

elementary movement. Using several MPs simultaneously is part of future work for our

approach as well as for existing approaches such as Schaal et al. [2003], Neumann et al.

[2009].

Many types of MPs can be found in the literature. The currently most widely used

movement representation for robot control are the Dynamic Movement Primitives (DMPs)

[Schaal et al., 2003]. DMPs evaluate parametrized dynamical systems to generate trajec-

tories. The dynamical system is constructed such that the system is stable. In order to do

so, a linear dynamical system is used which is modulated by a learnable non-linear func-

tion f . A great advantage of the DMP approach is that the function f depends linearly

on the parameters θ of the MP: f(s) = Φ(s)T θ, where s is the time or phase variable.

As a result, imitation learning for DMPs is straightforward, as this can simply be done

by performing a linear regression [Schaal et al., 2003]. Furthermore, it also allows the use

of many well-established reinforcement learning methods such as policy gradient methods

[Peters and Schaal, 2008] or Policy Improvements by Path Integrals PI2 [Theodorou et al.,

2010]. The complexity of the trajectory can be scaled by the number of features used for

modelling f . We can also adapt meta-parameters of the movement such as the movement

speed or the goal state of the movement [Kober et al., 2010, Pastor et al., 2009]. How-
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ever, as the features Φ(s) are fixed, the ability of the approach to extract task-relevant

features is limited. Yet, the change of the desired trajectory due to the change of the meta-

parameters is based on heuristics and does not consider task-relevant constraints. While

the dynamical system of a DMP is to some degree reactive to the environment—namely

by adapting the time progression of the canonical system depending on joint errors and

thereby de- or accelerating the movement execution as needed [Ijspeert and Schaal, 2003,

Schaal et al., 2003]—the trajectory shape itself is fixed and non-reactive to the environ-

ment. As the DMPs are the most common movement representation, we will use it as

a baseline in our experiments. A more detailed discussion of the DMP approach can be

found in the appendix.

Another type of movement representation was introduced in Neumann et al. [2009]

by the movement template framework. Movement templates are temporally extended,

parametrized actions, such as sigmoidal torque, velocity or joint position profiles, which can

be sequenced in time. This approach uses a more complex parametrization as the DMPs.

For example, it also incorporates the duration of different phases, like an acceleration

or deceleration phase. The division of a movement into single phases allows the use of

reinforcement learning methods to learn how to sequence these primitives. However, as the

approach still directly specifies the shape of the trajectory, defining complex movements

for high dimensional systems is still complicated, which has restricted the use of movement

templates to rather simple applications.

An interesting movement representation arizing from analysis of biological data are

muscle synergies [d’Avella et al., 2003, Bizzi et al., 2008]. They have been used to provide

a compact representation of electromyographic muscle activation patterns. The key idea

of this approach is that muscle activation patterns are linear sums of simpler, elemental

patterns, called muscle synergies. Each muscle synergy can be shifted in time and scaled

with a linear factor to construct the whole activation pattern. While the synergy approach

has promising properties such as the linear superposition and the ability to share synergies

between tasks, except for some smaller applications [Chhabra and Jacobs, 2006], these MPs

have only been used for data analysis, and not for robot control.

All the so far presented MPs are inherently local approaches. The specified trajectory

and hence the resulting policy are only valid for a local (typically small) neighborhood

of our initial state. If we are in a new situation, it is likely that we need to re-estimate

the parameters of the MP. The generation of the reference trajectory for these approaches

is often an offline process and does not incorporate knowledge of the system dynamics,
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proprioceptive or other sensory feedback. Because the reference trajectory itself is usually

created without any knowledge of the system model, the desired trajectory might not be

applicable, and thus, the real trajectory of the robot might differ considerably from the

specified trajectory.

There are only few movement representations which can also be used globally, i.e., for

many different initial states of the systems. One such methods is the Stable Estimator of

Dynamical Systems [Khansari-Zadeh and Billard, 2011] approach. However, this method

has so far only been applied to imitation learning, using the approach for learning or

improving new movement skills is not straight forward. We will therefore restrict our

discussion to local movement representations.

Our Planning Movement Primitive approach is, similar as the DMPs, a local approach.

In a different situation, different abstract goals and features might be necessary to achieve

a given task. However, as we extract task-relevant features and use them as parameters,

the same parameters can be used in different situations as long as the task relevant features

do not change. As we will show, the valid region where the local movement primitives

can still be applied is much larger for the given control tasks in comparison to trajectory

based methods.

3.2.2 Policy search for movement primitives

Let x denote the state and u the control vector. A trajectory τ is defined as sequence

of state control pairs, τ = 〈x1:T ,u1:T−1〉, where T is the length of the trajectory. Each

trajectory has associated costs C(τ) (denoted as extrinsic cost), which can be an arbitrary

function of the trajectory. It can, but need not be composed of the sum of intermediate

costs during the trajectory. For example, it could be based on the minimum distance to a

given point throughout the trajectory. We want to find a movement primitive’s parameter

vector θ∗ = argminθJ(θ) which minimizes the expected costs J(θ) = E [C(τ)|θ]. We

assume that we can evaluate the expected costs J(θ) for a given parameter vector θ by

performing roll-outs on the real system.

In order to find θ∗ we can apply policy search methods. Here a huge variety of possible

methods exists. Policy search methods can be coarsely divided into step-based exploration

and episode-based exploration approaches. Step-based exploration approaches such as

Theodorou et al. [2010], Peters and Schaal [2008], Kober and Peters [2011] apply an

exploration noise to the action of the agent at each time-step of the episode. Subsequently,

the policy is updated such that the (noisy) trajectories with higher reward are more likely
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to be repeated. In order to do this update, step-based exploration techniques strictly rely

on a policy which is linear in its parameters. This requirement is fulfilled for the Dynamic

Movement Primitives (DMPs) [Schaal et al., 2003]. Currently, the most common policy

search methods are step-based approaches, including the REINFORCE [Williams, 1992],

the episodic Natural Actor Critic [Peters and Schaal, 2008], the PoWER [Kober and

Peters, 2011] or the PI2 [Theodorou et al., 2010] algorithm. This also explains partially

the popularity of the DMP approach for motor skill learning because DMPs are, from

those introduced above, the only representation which can be used for these step-based

exploration methods (apart from very simple ones like linear controllers).

However, recent research has also intensified on episode-based exploration techniques

that make no assumptions on a specific form of a policy [Sehnke et al., 2010, Wierstra

et al., 2008, Hansen et al., 2003]. These methods directly perturb the policy parameters

θ and then estimate the performance of the perturbed θ parameters by performing roll-

outs on the real system. During the episode no additional exploration is applied (i.e., a

deterministic policy is used). The policy parameters are then updated in the estimated

direction of increasing performance. Thus, these exploring methods do not depend on a

specific form of parametrization of the policy. In addition, they allow the use of second

order stochastic search methods that estimate correlations between policy parameters

[Hansen et al., 2003, Heidrich-Meisner and Igel, 2009a, Wierstra et al., 2008]. This ability

to apply correlated exploration in parameter-space is often beneficial in comparison to the

uncorrelated exploration techniques applied by all step-based exploration methods, as we

will demonstrate in the experimental section.

3.2.3 Stochastic optimal control and probabilistic inference for planning

Stochastic optimal control (SOC) methods such as Todorov and Li [2005], Kappen [2007],

Toussaint [2009] have been shown to be powerful methods for movement planning in

high-dimensional robotic systems. The incremental Linear Quadratic Gaussian (iLQG)

[Todorov and Li, 2005] algorithm is one of the most commonly used SOC algorithms. It

uses Taylor expansions of the system dynamics and cost function to convert the non-linear

control problem in a Linear dynamics, Quadratic costs and Gaussian noise system (LQG).

The algorithm is iterative - the Taylor expansions are recalculated at the newly estimated

optimal trajectory for the LQG system.

In Toussaint [2009], the SOC problem has been reformulated as inference problem in a

graphical model, resulting in the Approximate Inference Control (AICO) algorithm. The
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graphical model is given by a simple dynamic Bayesian network with states xt, actions

ut and task variables g[i] (representing the costs) as nodes, see Figure 3.1. The dynamic

Bayesian network is fully specified by conditional distributions encoded by the cost func-

tion and by the state transition model. If beliefs in the graphical model are approximated

as Gaussian the resulting algorithm is very similar to iLQG. Gaussian message passing

iteratively re-approximates local costs and transitions as LQG around the current mode

of the belief within a time slice. A difference to iLQG is that AICO uses forward messages

instead of a forward roll-out to determine the point of local LQG approximation and can

iterate belief re-approximation with in a time slice until convergence, which may lead to

faster overall convergence. For a more detailed discussion of the AICO algorithm with

Gaussian message passing see Section 3.3.5.

Local planners have the advantage that they can be applied to high-dimensional dy-

namical systems, but the disadvantage of requiring a suitable initialization. Global plan-

ning [Kuffner and LaValle, 2000] on the other hand does not require an initial solution,

however, they have much higher computational demands. Our motivation for using only

a local planner as component of a Planning Movement Primitive is related to the learning

of an intrinsic cost function.

Existing planning approaches for robotics typically use hand-crafted intrinsic cost func-

tions and the dynamic model is either analytically given or learned from data [Mitrovic

et al., 2010]. Planning Movement Primitives (PMPs) use reinforcement learning (RL)

to train an intrinsic cost function for planning instead of trying to learn a model of the

extrinsic reward directly. The reason is that a local planner often fails to directly solve

realistically complex tasks by optimizing directly the extrinsic cost functions. From this

perspective, PMPs learn to translate complex tasks to a simpler intrinsic cost function that

can efficiently be optimized by a local planner. This learning is done by trial-and-error in

the RL setting: the PMP essentially learns from experience which intrinsic cost function

the local planner can cope with and uses it to generate good trajectories. Thereby, the

reinforcement learning of the intrinsic cost function can compensate the limitedness of the

local planner.

3.3 Materials and methods

In this section we introduce the proposed Planning Movement Primitives (PMPs), in

particular the parametrization of the intrinsic cost function. The overall system will

combine three components: (1) a regression method for learning the system dynamics,
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(2) a policy search method for finding the PMP parameters, and (3) a SOC planner for

generating movements with the learned model and PMP parameters.

3.3.1 Problem definition

We consider an unknown dynamical system of the form

xt+1 = fDyn(ut,xt) + εt, (3.1)

with state variable xt, controls ut and Gaussian noise εt ∼ N (0, σ). The agent has

to realize a control policy π : xt 7→ ut, which in our case will be a linear feedback

controller for each time slice. The problem is to find a policy that minimizes the expected

costs of a finite-horizon episodic task. That is, we assume there exists a cost function

C(τ), where τ = (x1:T ,u1:T−1) is a roll-out of the agent controlling the system. We do

not assume that the cost function C(τ) is analytically known or can be written as sum

over individual costs for each time-step, i.e., C(τ) =
∑

t ht(xt,ut). This would imply an

enormous credit assignment problem with separate costs at each time-step. Thus more

generally, we only get a single scalar reward C(τ) for the whole trajectory. The problem

is to find argminπ〈C(τ)〉π.

The system dynamics fDyn as well as the cost function C(τ) are analytically unknown.

Concerning the system dynamics we can estimate an approximate model of the systems

dynamics from a set of roll-outs—as standard in model-based reinforcement learning (RL).

However, concerning costs, we only receive the single scalar cost C(τ) after a roll-out

indicating the quality or success of a movement. Note that C(τ) is a function of the

whole trajectory, not only of the final state. Learning C from data would be an enormous

task, more complex than learning an immediate reward function xt 7→ rt as in standard

model-based RL where rt denotes the reward at time t.

Generally, approaches to learn C(τ) directly in a form useful for applying SOC methods

seems an overly complex task and violates the maxim “never try to solve a problem

more complex than the original”. Therefore, our approach will not try to learn C(τ)

from data but to employ reinforcement learning to learn some intrinsic cost function

that can efficiently be optimized by SOC methods and generates control policies that, by

empiricism, minimizes C(τ).
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3.3.2 Parametrization of PMP’s intrinsic cost function

In PMPs the parameters θ encode task-relevant abstract goals or features of the movement,

which specify an intrinsic cost function

L(τ ;θ) :=
T∑

t=0

l(xt,ut, t;θ) + cp(xt,ut), (3.2)

where l denotes the intermediate intrinsic cost function for every time-step and cp(xt,ut)

is used to represent basic known task constraints, such as torque or joint limits. We will

assume that such basic task constraints are part of our prior knowledge, thus cp is given

and not included in our parametrization. For the description of PMPs we will neglect the

constraints cp for simplicity. We will use a via-point representation for the intermediate

intrinsic cost function l(xt,ut, t;θ). Therefore, parameter learning corresponds to extract-

ing goals which are required to achieve a given task, such as passing through a via-point at

a given time. As pointed out in the previous section, L(τ ;θ) is not meant to approximate

C(τ). It provides a feasible cost function that empirically generates policies that minimize

C(τ).

...

...

Sub

goal

intrinsic cost function

Figure 3.1: Planning Movement Primitives are endowed with an intrinsic planning system,
which performs inference in a learned graphical model. States are denoted by xt, controls
by ut, and the time horizon is fixed to T time-steps. In this example the graphical model
is used to infer the movement by conditioning on two abstract goals g[1] and g[2], which
are specified in the learned intrinsic cost function L(τ ;θ).

There are many ways to parametrize the intermediate intrinsic cost function l. In

this paper we choose a simple via-point approach. However, in an ongoing study we

additionally implemented a desired energy state of a pendulum on a cart, which simplifies

the learning problem. The movement is decomposed in N shorter phases with duration

d[i], i = 1, .., N . In each phase the cost function is assumed to be quadratic in the state



36 Chapter 3. Learned graphical models for probabilistic planning

and control vectors. In the ith phase (t < d[1] for i = 1 and
∑i−1

j=1 d[i] < t ≤
∑i

j=1 d[i] for

i > 1) we assume the intrinsic cost has the form:

l(xt,ut, t;θ) = (xt − g[i])TR[i](xt − g[i]) + uT
t H[i]ut. (3.3)

It is parametrized by the via-point g[i] in state space; by the precision vector r[i] which

determines R[i] = diag(exp r[i]) and therefore how steep the potential is along each state

dimension; and by the parameters h[i] which determine H[i] = diag(exph[i]) and therefore

the control costs along each control dimension. We represent the importance factors r[i]

and h[i] both in log space as we are only interested in the relationship of these factors.

At the end of each phase (at the via-point), we multiply the quadratic state costs by the

factor 1/∆t where ∆t is the time step used for planning. This ensures that at the end of

the phase the via-point is reached, while during the phase the movement is less constraint.

With this representation, the parameters θ of our PMPs are given by

θ = [d[1],g[1], r[1],h[1] ... d[N ],g[N ], r[N ],h[N ]]. (3.4)

Cost functions of this type are commonly used—and hand-crafted—in control problems.

They allow to specify a via-point, but also to determine whether only certain dimensions

of the state need to be controlled to the via-point, and how this trades off with control

cost. Instead of hand-designing such cost functions, our method will use a policy search

method to learn these parameters of the intrinsic cost function. As for the DMPs we will

assume that the desired final state at time index T is known, and thus g[N ] is fixed and not

included in the parameters. Furthermore, since we consider finite-horizon episodic tasks

the duration of the last phase is also fixed: d[N ] = T −
∑N−1

i=1 d[i]. Still, the algorithm can

choose the importance factors r[N ] and h[N ] of the final phase.

3.3.3 Dynamic model learning

Planning Movement Primitives are endowed with an intrinsic planning system. For plan-

ning we need to learn a model of the system dynamics fDyn in Equation 3.1. The planning

algorithm cannot interact with the real environment, it solely has to rely on the learned

model. Only after the planning algorithm is finished, the resulting policy is executed on

the real system and new data points 〈[xt,ut], ẋt〉 are collected for learning the model.

Many types of function approximators can be applied in this context [Vijayakumar

et al., 2005, Nguyen-Tuong et al., 2008a,b]. We use the lazy learning technique Locally
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Weighted Regression (LWR) [Atkeson et al., 1997] as it is a very simple and effective

approach. LWR is a memory-based, non-parametric approach, which fits a local linear

model to the locally-weighted set of data points. For our experiments, the size of the

data set was limited to 105 points implemented as a first-in-first-out queue buffer, because

the computational demands of LWR drastically increase with the size of the data set. In

particular we used a Gaussian kernel as distance function with the bandwidth parameters

hφ = 0.25 for joint angles, hφ̇ = 0.5 for velocities and hu = 0 for controls∗. For more

details we refer to Chapter 4 in Atkeson et al. [1997].

3.3.4 Policy search for PMP’s intrinsic cost function

Model learning takes place simultaneously to learning the parameters θ of the move-

ment primitive (MP). In general this could lead to some instability. However, while the

distribution P (xt) depends on the policy and the data for model learning is certainly

non-stationary, the conditional distribution P (xt+1|ut,xt) is stationary. A local learning

scheme as LWR behaves rather robust under such type of non-stationarity of the input

distribution only. On the other hand, from the perspective of θ optimization, the resulting

policies may change and lead to different payoffs C(τ) even for the same parameters θ due

to the adaption of the learned system dynamics.

Since the resulting control policies of our PMPs depend non-linearly on the parameters

θ, step-based exploration techniques cannot be used in our setup. Hence, we will use the

second order stochastic search method CMA (Covariance Matrix Adaptation, Hansen et al.

2003) which makes no assumptions on the parametrization of the movement primitive.

We employ the second order stochastic search method CMA to optimize the param-

eters θ w.r.t. C(τ). The parameter space is approximated using a multivariate Gaussian

distribution. Roughly, CMA is an iterative procedure that, from the current Gaussian

distribution, generates a number of samples, evaluates the samples, computes second or-

der statistics of those samples that reduced C(τ) and uses these to update the Gaussian

search distribution. In each iteration, all parameter samples θ use the same learned dy-

namic model to evaluate C(τ). Further, CMA includes an implicit forgetting in its update

of the Gaussian distribution and therefore behaves robust under the non-stationarity in-

troduced by adaptation of the system dynamics model.

We will compare our PMP approach to both, DMPs learned with CMA policy search

and DMPs learned with the state of the art step-based method PI2 [Theodorou et al., 2010].
∗The bandwidth parameter for controls is set to zero as the matrizes A and B in the linearized model,

i.e., ẋ = A(x)x + B(x)u are independent on the controls u.
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However, we focus in this work on the characteristics of the movement representation and

place less emphasis on a specific policy search method.

Note that even if the learned model is only a rough approximation of the true dynamics,

the policy search for parameters of the intrinsic cost function can compensate for an

imprecise dynamics model: The policy search approach finds parameters θ of the intrinsic

cost function such that—even with a mediocre model—the resulting controller will lead

to low extrinsic costs in the real system.

3.3.5 Probabilistic planning algorithm

We use the probabilistic planning method Approximate Inference Control (AICO) [Tous-

saint, 2009] as intrinsic planning algorithm. It offers the interpretation that a movement

primitive can be represented as graphical model and the movement itself is generated by

inference in this graphical model.

The graphical model is fully determined by the learned system dynamics and the

learned intrinsic cost function, see Figure 3.1. In order to transform the minimization of

L(τ ; θ) into an inference problem, for each time-step an individual binary random variable

zt is introduced. This random variable indicates a reward event. Its probability is given

by

P (zt = 1|xt,ut, t) ∝ exp(−l(xt,ut, t;θ)),

where l(xt,ut, t;θ) denotes the cost function for time-step t defined in Equation 3.3. AICO

now assumes that a reward event zt = 1 is observed at every time-step. Given that evi-

dence, AICO calculates the posterior distribution P (x1:T ,u1:T−1|z1:T = 1) over trajecto-

ries.

We will use the simplest version of AICO [Toussaint, 2009], where an extended Kalman

smoothing approach is used to estimate the posterior distribution P (x1:T ,u1:T−1|z1:T =

1). The extended Kalman smoothing approach uses Taylor expansions to linearize the

system and subsequently uses Gaussian messages for belief propagation in a graphical

model. Gaussian message passing iteratively re-approximates local costs and transitions

as a Linear dynamics, Quadratic costs and Gaussian noise system (LQG) around the

current mode of the belief within a time slice. For more details we refer to [Toussaint,

2009].

AICO is only a local optimization method and we have to provide an initial solution

which is used for the first linearization. We will use the direct path (or the straight line)

to the via-points g[i] in Equation 3.3 as initial solution. Before learning the via-points g[i]
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with i = 1..N − 1 are set to the initial state x1. The final via-point is fixed and set to the

desired final state g[N ] = xT .

AICO provides us with a linear feedback controller for each time slice of the form

ut = Otxt + ot, (3.5)

where Ot is the inferred feedback control gain matrix and ot denotes the linear feedback

controller term. This feedback control law is used as policy of the movement primitive

and is evaluated on a simulated or a real robot.

The original formulation of the AICO method [Toussaint, 2009] does not consider

torque limits, which are important for many robotic experiments as well for the dynamic

balancing experiments we consider in this paper. Therefore we extended the algorithm.

This extension yields not only a modified form of the immediate cost function but also

results in different update equations for the messages and finally different equations of

the optimal feedback controller. A complete derivation of the extension including the

resulting messages and the corresponding feedback controller is given in Rückert and

Neumann [2012]. Also the algorithm is listed in that work.

On overview of the interactions between policy search of the PMP’s intrinsic cost

function and the planning process using AICO is sketched in Figure 3.2. The learning

framework is organized the following: Given the parameters θ from the policy search

method CMA, AICO is initialized with an initial solution which is the direct path to the

via-points. AICO is then used to optimize the parametrized intrinsic cost function L(τ ; θ)

to estimate a linear feedback controller for each time-step, see Equation 3.5. The feedback

controller is subsequently executed on the simulated or the real robot and the extrinsic cost

C(τ) is evaluated. Based on this evidence CMA will update its distribution over the policy

search space and computes a new parameter vector. Simultaneously we collect samples of

the system dynamics 〈[xt,ut], ẋt〉 while executing the movement primitive. These samples

are used to improve our learned dynamics model, which is used for planning.

3.4 Results

We start our evaluation of the proposed Planning Movement Primitive (PMP) approach

on a one-dimensional via-point task to illustrate basic characteristics. In order to demon-

strate our approach on a more challenging dynamic robot task we choose a complex 4-link

humanoid balancing task. At the end of this section we discuss an important issue: the
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Figure 3.2: We decompose motor skill learning into two different learning problems. At
the highest level we learn parameters θ of an intrinsic cost function L(τ ;θ) using policy
search (model-free RL). Given parameters θ the probabilistic planner at the lower level
uses the intrinsic cost function L(τ ;θ) and the learned dynamics model to estimate a
linear feedback controller for each time-step (model-based RL). The feedback controller is
subsequently executed on the simulated or the real robot and the extrinsic cost C(τ) is
evaluated. Based on this evidence the policy search method computes a new parameter
vector. Simultaneously we collect samples of the system dynamics 〈[xt,ut], ẋt〉 while exe-
cuting the movement primitive. These samples are used to improve our learned dynamics
model which is used for planning.

computational time of PMPs for simulated and real world tasks.

In our experiments, we focus on investigating the optimality of the solution, the ro-

bustness to noise for learning, and the generalizability to different initial or final states.

For the 4-link task we additionally demonstrate how model learning influences the learning

performance.

For a comparison we take the commonly used DMPs as a baseline where we use the

newest version of the DMPs [Pastor et al., 2009] as discussed in detail in Appendix C.1. As

described above we use 2nd order stochastic search to learn the PMP and DMP parameters.

In order to compare to a more commonly used policy search algorithm we additionally

test the PI2 algorithm [Theodorou et al., 2010] for learning the DMP parameters. For all

experiments we empirically evaluate the optimal settings of the algorithms (such as the

exploration rate of CMA and PI2, the number of centers for the DMPs, or the number of

via-points for the PMPs), which are listed in Appendix C.2.
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3.4.1 One-dimensional via-point task

In this task the agent has to control a one dimensional point mass of 1kg. The state at

time t is denoted by xt = [φt, φ̇t]T and we directly control the acceleration ut. The time

horizon was limited to T = 50 time-steps, which corresponds to a simulation time of 0.5

seconds with a time-step of ∆t = 10ms. Starting at x1 = [0, 0]T the agent has to pass

through a given via-point gv = −0.2 at tv = 30. The velocity of the point mass at the

via-point is not specified and can have any value. The final target gT was set to 1. The

movement is shown in Figure 3.3. For this task we define the extrinsic cost function:

C(τ) = 104(φ̇2
T + 10(gT − φT )2) + 105(gv − φt30)

2 + 5 · 10−3
T∑

t=1

u2
t .

The first two terms punish deviations from the target gT and the via-point gv, where φt30

denotes the first dimension of the state xt = [φt, φ̇t]T at time index 30. The target should

be reached with zero velocity at T = 50. The last term punishes high energy consumption

where ut denotes the applied acceleration. The control action is noisy, we always add a

Gaussian noise term with a standard deviation of σ = 20 to the control action. As this

experiment is a very simple task, we use it just to show different characteristics of the

DMPs (using 10 Gaussians for that representation was optimal) and PMPs (apparently 2

via-points are sufficient for this task).

A quite similar task has been used in Todorov and Jordan [2002] to study human

movement control. The experiments showed that humans were able to reach the given via-

points with high accuracy, however, in between the via-points, the trial-to-trial variability

was rather high. This adaptive motor variability is a well known concept from optimal

control, called the minimum intervention principle, showing also that human movement

control follows basic rules of optimal control.

Optimality of the solutions We first estimate the quality of the best available policy

with the DMP and the PMP approach. We therefore use the PMPs with two via-points

and set the parameters θ per hand. As we are using a linear system model and a simple

extrinsic cost function, the PMP parameters can be directly obtained by looking at the

extrinsic costs. As the PMPs use the AICO algorithm, which always produces optimal

policies for LQG systems, the PMP solution is the optimal solution. We subsequently

use the mean trajectory returned by AICO and use imitation learning to fit the DMP
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parameters. We also optimized the feedback controllers used for the DMPs†. In Figure

3.3 we plotted 100 roll-outs of the DMP and PMP approach using this optimal policies.

The second column illustrates the trial-to-trial variability of the trajectories. The optimal

solution has minimum variance at the via-point and the target. As expected this solution

is reproduced with the PMP approach, because the parameters of the PMPs are able

to reflect the importance of passing through the via-point. The DMPs could not adapt

the variance during the movement because the used (optimized) feedback controller uses

constant controller gains. As we can see, the variance of the DMP trajectory is simply

increasing with time.

Comparing the optimal solutions we find that PMPs, in contrast to DMPs, can nat-

urally deal with the inherent noise in the system. This feature is also reflected by the

average cost values over 1000 trajectories, 1286±556 for the DMPs and 1173±596 for the

PMPs. The ± symbol always denotes the standard deviation. PMPs perform significantly

better than DMPs (t-test: p < 10−3).

Robustness to noise for learning This advantage would not be very useful if we were

not able to learn the optimal PMP parameters from experience. Next we test using CMA

policy search to learn the parameters for the DMPs and the PMPs. In addition, in order

to compare to a more commonly used policy search method, we also compare to the PI2

approach [Theodorou et al., 2010] which we could only evaluate for the DMP approach.

We evaluated the learning performance in the case of no control noise, Figure 3.4 (a), and

in the case of control noise σ = 20, Figure 3.4(b) performing 15 runs.

Without control noise the quality of the learned policy found by 2nd order search is

similar for the DMPs (657.5±0.18) and the PMPs (639.6±0.01). PI2 could not find as good

solutions as the stochastic search approach. The reason for this worse performance is that

PI2 could not find the very large weight values which are needed for the last few centers of

the DMPs in order to have exactly zero velocity at the final state (note that the weights

of the DMPs are multiplied by the phase variable s which almost vanishes in the end of

the movement and therefore these weight values have to be very high). Because CMA

policy search uses second order information, such large parameter values are easily found.

This comparison clearly shows that using 2nd order search for policy search is justified. If

we compare the learning speed in terms of required episodes or roll-outs between DMPs

and PMPs, we find an advantage for PMPs which could be learned an order of magnitude

†The control gains, i.e., the two scalars kpos and kvel of the linear feedback controller in Equation C.1
in the Appendix are learned using a 2nd order stochastic search method.
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(a) Optimal policy learned with DMPs (average costs over 1000 trajectories: 1286± 556)

(b) Optimal policy learned with PMPs (average costs over 1000 trajectories: 1173± 596)

Figure 3.3: This figure illustrates the best available policies for the DMPs and the PMPs
for the via-point task. From left—to—right shown are the point mass trajectories, the
variance of these trajectories, the velocity of the point mass, and the applied accelerations.
The agent has to pass the via-point at tv = 0.3s and deal with the stochasticity of the
system (Gaussian control noise with a variance of 202). The plots show 100 trajectories
reproduced with the optimal parameters for the DMPs (a) and 100 trajectories with the
(hand-crafted) optimal parameters for PMPs (b). The PMP approach is able to reduce the
variance of the movement if it is relevant for the task, while the DMPs can only suppress
the noise in the system throughout the trajectory in order to get an acceptable score. This
advantage is also reflected by the average costs over 1000 trajectories. The DMP solution
achieved cost values of 1286± 556 whereas the PMP result was 1173± 596.

faster than the DMPs.

The second experiment (with control noise of σ = 20) was considerably harder to

learn. Here, we needed to average each performance evaluation over 20 roll-outs. The use

of more sophisticated extensions of CMA [Heidrich-Meisner and Igel, 2009b] which can

deal with noisy performance evaluations and hence improve the learning speed of CMA

policy search in the noisy setup is part of future work. In Figure 3.4 (b) we find that

the PMPs could be learned an order of magnitude faster than the DMPs. As expected

from the earlier experiment, the PMPs could find clearly better solutions as the DMPs as
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they can adapt the variance of the trajectory to the task constraints. Again, PI2 showed

a worse performance than 2nd order search. Illustrated are mean values and standard

deviations over 15 runs of learning (1034 ± 1.46 for the PMPs and 1876 ± 131 for the

DMPs using CMA). To compare these results to the optimal costs we evaluated the best

learned policies of both approaches and generated 1000 trajectories. The learned solution

for the PMPs was similar to the hand-coded optimal solution, 1190± 584 versus costs of

1173± 596 for the optimal solution. DMPs achieved costs of 1478± 837, illustrating that,

eventhough the DMPs are able to represent much better solutions with costs of 1286±556

(see Figure 3.3), it is very hard to find this solution.

In Table 3.1, we show the mean and variance of the found parameters averaged over

15 runs for the first via-point in comparison to the optimal PMP parameters. We can see

that the found parameters matched the optimal ones. Interestingly, in the experiment with

no noise, the found parameters had a larger deviation from the optimal ones, especially

for the first via-point g[1] in Table 3.1. The reason for this larger deviation is the simple

observation that without noise, we can choose many via-points which results in the same

trajectory, whereas with noise we have to choose the correct via-point in order to reduce

the variance of the trajectory at this point in time.

scenario d[1] g[1] log(r[1]) log(h[1])

optimal 0.3 −0.2 [5, 0] −2.3
no noise 0.29± 0.01 −0.27± 0.03 [4.08± 4.18,−0.8±−0.77] −3.05±−4
with noise 0.29± 0.01 −0.23± 0.05 [4.93± 5.29,−0.31±−0.12] −2.85±−3

Table 3.1: Learned parameters using PMPs for the via-point task (1st via-point). The
symbol ± denotes the standard deviation.

Generalizability to different task settings Next, we investigate the ability of both

approaches to adapt to different situations or to adapt to different priors. In the previous

task, Figure 3.3 the initial and the target state were assumed as prior knowledge. The

movement was learned for the initial state φ1 = 0 and for the target state φT = 1. We

want to investigate if the same learned parameters can be re-used to generate different

movements, e.g., used for different initial or target states.

For PMPs we use the new initial or final states denoted by x1 and g[N ] in the graphical

model in Figure 3.1 and re-plan the movement (using the same learned parameters). The

change of the initial state or the target state is also allowed by the DMP framework.
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(b) Learning performance with noise

Figure 3.4: This figure illustrates the learning performance of the two movement represen-
tations, DMPs and PMPs, for the one-dimensional via-point task. Illustrated are mean
values and standard deviations over 15 runs after CMA policy search. In addition, we also
compare to the PI2 approach [Theodorou et al., 2010] which we could only evaluate for
the DMP approach. Without noise the final costs of the two representations are similar if
CMA policy search is used (a). In the second example (b) we use zero-mean Gaussian noise
with σ = 20 for the controls. In this setup we needed to average each performance evalua-
tion for CMA over 20 roll-outs. For both setups the PMPs could considerably outperform
the DMPs in terms of learning speed. For the noisy setup the PMPs could additionally
produce policies of much higher quality as they can adapt the variance of the trajectories
to the task constraints. PI2 could not find as good solutions as the CMA policy search
approach in both setups.

However, how the movement is generalized to these new situations is based on heuristics

[Pastor et al., 2009] and does not consider any task constraints (in this example to pass

through the via-point).

In Figure 3.5 the learned policies are applied to reach different initial states

φ1 ∈ {−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6} (a-b) and different goal states

φT ∈ {1.5, 1.25, 1, 0.75, 0.5} (c-d). All plots show the mean trajectory. In

order to change the initial or the target state of the movement we have to change

the point attractor of the DMPs, which changes the complete trajectory. Due to this

heuristic, the resulting DMP trajectories shown in Figure 3.5 (a,c) do not pass through
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the via-point any more. Note that we use a modified version of the DMPs [Pastor et al.,

2009] which has already been built for generalization to different initial or target points.

The PMPs on the other hand still navigate through the learned via-point when changing

the initial or the goal state as shown in Figure 3.5 (b,d).
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Figure 3.5: For the previous task illustrated in Figure 3.3 the movement was learned for a
single initial state φ1 = 0 and a single target state φT = 1. The initial and the target state
were assumed as prior knowledge. In this experiment we evaluated the generalization of
the learned policies to different initial states φ1 ∈ {−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6} (a-b)
and different target states φT ∈ {1.5, 1.25, 1, 0.75, 0.5} (c-d). Always the same parameters
θ have been used, i.e., the parameters were not re-learned. Illustrated are the mean
trajectories. The DMPs (a,c) are not aware of task-relevant features and hence do not
pass through the via-point any more. (b,d) PMPs can adapt to varying initial or target
states with small effects on passing through the learned via-point.

Concluding summary As we have seen the PMPs implement all principles of optimal

control, which allows to learn solutions for stochastic systems of a quality which is not

representable with traditional trajectory based methods such as the DMPs. The optimal

movement trajectory could be learned from scratch up to one order of magnitude faster

compared to DMPs. This difference was even more visible in the stochastic case, where

the DMPs needed more than 30000 episodes to find satisfactory solutions. In the setting
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with control noise the learned parameters matches the optimal ones because only by the

use of noise the parameters are uniquely determined. Finally the PMPs could extract

the task-relevant feature, the via-point. Even if the task changes — e.g., the initial or the

final state are changed, the movement trajectory still passes through the learned via-point.

The DMPs on the other hand heuristically scale the trajectory which offers no control for

fulfilling task relevant constraints.

With DMPs 12 parameters were learned, where we used 10 Gaussian kernels and

optimized 2 control gains. For the PMPs 2 via-points were sufficient, where the last one

was fixed. However, for both via-points we could specify 3 importance weights. Thus, in

total 8 = 2 + 3 + 3 parameters were learned.

3.4.2 Dynamic humanoid balancing task

In order to assess the PMPs on a more complex task, we evaluate the PMP and DMP

approach‡ on a dynamic non-linear balancing task [Atkeson and Stephens, 2007]. The

robot gets pushed with a specific force F and has to keep balance. The push results

in an immediate change of the joint velocities. The motor torques are limited, which

makes direct counter-balancing of the force unfeasible. The optimal strategy is therefore

to perform a fast bending movement and subsequently return to the upright position, see

Figure 3.6. This task is a very non-linear control problem, applying any type of (linear)

balancing control or local optimal control algorithm such as AICO with the extrinsic cost

function fails. Thus, we have to use a parametric movement representation. Like in the

previous experiment, we take the Dynamic Movement Primitive (DMP) [Schaal et al.,

2003] approach as a baseline.

We use a 4-link robot as a simplistic model of a humanoid (70kg, 2m) [Atkeson and

Stephens, 2007]. The 8-dimensional state xt is composed of the arm, the hip, the knee

and the ankle positions and their velocities. Table 1 in [Rückert and Neumann, 2012]

shows the initial velocities (resulting from the force F which always acts at the shoulder

of the robot) and the valid joint angle range for the task. In all experiments the applied

force was F = 25Ns. If one of the joints leaves the valid range the robot is considered

to be fallen. Additionally to the joint limits, the controls are limited to the intervals

[±250,±500,±500,±70]Nm (arm, hip, knee and ankle). For more details we refer to

Atkeson and Stephens [2007].

‡For PMPs again 2 via-points were optimal. DMPs performed best when using 10 Gaussian kernels per
dimension.
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Figure 3.6: This figure illustrates a dynamic balancing movement learned using the pro-
posed Planning Movement Primitives. The 4-link robot modelling a humanoid (70kg, 2m)
gets pushed from behind with a specific force (F = 25Ns) and has to move such that it
maintains balance. The optimal policy is to perform a fast bending movement and subse-
quently return to the upright robot posture. The circles denote the ankle, the knee, the
hip and the shoulder joint. The arm link is drawn as dotted line to differentiate it from
the rest of the body.

Let ts be the last time index where the robot has not fallen and let xts be the last valid

state. The final state or resting state (upright position with zero velocity) is denoted by

xr. The movement was simulated for 5 seconds with a ∆t = 10ms resulting in T = 500

time-steps. As extrinsic cost function C(τ) we use:

C(τ) = 20(ts − T )2 + (xts − xr)TRE(xts − xr) +
ts∑

t=1

uT
t HEut . (3.6)

The first term (ts − T )2 is a punishment term for falling over. If the robot falls over, this

term typically dominates. The precision matrix RE determines how costly it is not to

reach xr. The diagonal elements of RE are set to 103 for joint angles and to 10 for joint

velocities. Controls are punished by HE = 5 · 10−6I. Because of the term (ts − T )2 we

cannot directly encode the extrinsic cost function as a sum of intermediate costs, which

is usually required for stochastic optimal control algorithms. But we can use PMPs to

transform this reward signal into an intrinsic cost function for a local probabilistic planner.

Optimality of the solutions We use additive zero-mean Gaussian noise with a stan-

dard deviation σ = 10. In contrast to the simple via-point task where imitation learning

was used to compare the trajectories shown in Figure 3.3 are the policies for the 4-link

task learned from scratch. Figure 3.7 illustrates the best learned policies for DMPs (left

column) and PMPs (right column). Shown are the joint angle trajectories Figure 3.7 (a-b)
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and the variance of these trajectories Figure 3.7 (c-d). The corresponding controls are

illustrated in Figure 3.8. We evaluated 100 roll-outs of the best policies found by both ap-

proaches. While the DMPs cannot adapt the variance during the movement Figure 3.7 (c),

the PMPs can exploit the power of stochastic optimal control and are able to reduce the

variance at the learned via-point (marked by crosses) Figure 3.7 (d). As the PMPs are

able to control the variance of the trajectory, we can see that the variance of the movement

is much higher compared to the DMPs (c-d). Accuracy only matters at the via-points.

We can also see that the arm trajectory has a high variance after the robot is close to a

stable up-right posture Figure 3.7 (b), because it is not necessary to strictly control the

arm in this phase. The best found policy of the DMPs had costs of 568 while the best

result using PMPs was 307. This strongly suggests that it is advantageous to reduce the

variance at certain points in time in order to improve the quality of the policy.

Robustness to noise for learning Next, we again want to assess the learning speed of

both approaches. We again used CMA policy search for the PMPs and DMPs as well as

PI2 for the DMP approach. The average over 20 runs of the learning curves are illustrated

in Figure 3.9. Using the PMPs as movement representation, good policies could be found

at least one order of magnitude faster compared to the trajectory based DMP approach.

The quality of the found policies was better for the PMP approach (mean values and

standard deviations after learning: 993± 449 for the DMPs and 451± 212 for the PMPs).

For the DMP approach we additionally evaluated PI2 for policy search, however, PI2 was

not able to find good solutions—the robot always fell over.

Generalizability to different task settings In the next step we again test the gen-

eralization to different initial or final states. More specific we investigate how well the

approaches can adapt to different priors of the arm joint.

In the previous task the target was assumed to be known prior knowledge

and the policy was learned for a final arm posture of φTarm = 0. We used this

learned policy to generate movements to different final targets of the arm joint

φTarm ∈ {3, 2.5, 2, 1.5, 1, 0.5, 0,−0.2,−0.4,−0.6}. We only change either the arm-position

of the last via-point or the point attractor of the dynamical system. The results shown

in Figure 3.10 confirm the findings of the one-dimensional via-point task. The PMPs

first move to the via-point, always maintaining the extracted task constraints, and

afterwards move the arm to the desired position while keeping balance. All desired

target positions of the arm could be fulfilled. In contrast, the DMPs managed to keep
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(a) Joint angles using DMPs
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(b) Joint angles using PMPs
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(c) Variance of the joints using DMPs
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(d) Variance of the joints using PMPs

Figure 3.7: This figure illustrates the best learned policies for the 4-link balancing task
using DMPs (left column) and PMPs (right column). Shown are the joint angle trajectories
(a-b) and the variance of these trajectories (c-d). The applied controls are illustrated
in Figure 3.8. We evaluated 100 roll-outs using the same parameter setting θ for each
approach. The controls were perturbed by zero-mean Gaussian noise with σ = 10Ns.
PMPs can exploit the power of stochastic optimal control and the system is only controlled
if necessary, see the arm joint trajectories in (b). The learned via-points are marked by
crosses in (b) and (c). For DMPs the variance of the joint trajectories (c) is determined by
the learned controller gains of the inverse dynamics controller. As constant controller gains
are used the variance cannot be adapted during the movement and is smaller compared
to (d). For DMPs the best available policy achieved cost values of 568 whereas the best
result using PMPs was 307.
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(a) Controls using DMPs
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(b) Controls using PMPs

Figure 3.8: This figure illustrates the controls of best learned policies for the 4-link bal-
ancing task using DMPs (a) and PMPs (b). The corresponding joint angle trajectories
are shown in Figure 3.7. The controls were perturbed by zero-mean Gaussian noise with
σ = 10Nm. Shown are 100 roll-outs using the same parameter setting θ for each approach.
The dotted horizontal lines in the last row indicate the control constraints.
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Figure 3.9: The figure illustrates the learning performance of the two movement repre-
sentations, DMPs and PMPs for the 4-link balancing task. Illustrated are mean values
and standard deviations over 20 runs after CMA policy search. The controls (torques) are
perturbed by zero-mean Gaussian noise with σ = 10Nm. The PMPs are able to extract
characteristic features of this task which is a specific posture during the bending move-
ment, shown in Figure 3.7 (b). Using the proposed Planning Movement Primitives good
policies could be found at least one order of magnitude faster compared to the trajectory
based DMP approach. Also, the quality of the best-found policy was considerably better
for the PMP approach (993 ± 449 for the DMPs and 451 ± 212 for the PMPs). For the
DMP approach we additionally evaluated PI2 for policy search, which could not find as
good solutions as the CMA policy search approach.
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balance only for few target positions. The valid range of the target arm position with

DMPs was φTarm ∈ [−0.2, 1]. This shows the advantage of generalization while keeping

task constraints versus generalization per using the DMP heuristics.
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(a) DMPs for changing targets
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(b) PMPs for changing targets

Figure 3.10: This figure illustrates the joint angle trajectories (arm, hip, knee and ankle)
of a 4-link robot model during a balancing movement for different final targets of the
arm joint (3, 2.5, 2, 1.5, 1, 0.5, 0,−0.2,−0.4,−0.6). The applied policies were learned for
a final arm posture of φTarm = 0. (a) The valid range of the arm joint using DMPs is
φTarm ∈ [−0.2, 1]. Large dots in the plot indicates that the robot has fallen. (b) PMPs
could generate valid policies for all final arm configurations.

The ability of the two approaches to adapt to different initial states is illustrated in

Figure 3.11. We used the learned policy for φ1arm = 0 to generate movements using

different initial states of the arm joint: φ1arm = {1, 0.5, 0.2, 0,−0.2,−0.4,−0.6}. The push

perturbing the robot results in an immediate change of the joint velocities, which are

shown in Table C.5 in the appendix for these different initial states. For the DMPs only

the joint angles 0 and −0.2 resulted in successful policies. Whereas with PMPs the valid

range of the initial arm position was φ1arm ∈ [−0.6, 0.5].

Model learning using PMPs So far all experiments for the PMPs were performed

using the known model of the system dynamics, these experiments are denoted by PMP

in Figure 3.12. Note that also for the DMPs the known system model has been used

for inverse dynamics control. Now we want to evaluate how model learning affects the

performance of our approach. This can be seen in Figure 3.12. In the beginning of

learning the extrinsic costs are larger compared to motor skill learning with a given analytic

model. However, as the number of collected data-points 〈[xt;ut], ẋt〉 increases the PMPs
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(a) DMPs for changing initial states
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(b) PMPs for changing initial states

Figure 3.11: This figure illustrates the joint angle trajectories (arm, hip, knee and ankle)
of a 4-link robot model during a balancing movement for different initial states of the arm
joint (1, 0.5, 0.2, 0,−0.2,−0.4,−0.6). The applied policies were learned for an initial arm
posture of φ1arm = 0. (a) The valid range of the arm joint using DMPs is φ1arm ∈ [−0.2, 0].
Large dots in the plot indicates that the robot has fallen. (b) PMPs could generate valid
policies for φ1arm ∈ [−0.6, 0.5].

with model learning quickly catch up and converge finally to the same costs. The PMP

representation with model learning in parallel considerably outperforms the trajectory

based DMP approach in learning speed and in the final costs.
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Figure 3.12: This figure shows the influence of model learning on the 4-link balancing
task. Illustrated are mean values and standard deviations over 20 runs. The learning
performance with the given system model is denoted by PMP. Instead of using the given
model we now want to learn the system model from data (as described in Section 3.3.3),
which is denoted by PMP-M. In the beginning of learning the extrinsic costs are larger
compared to motor skill learning with a given analytic model. However, as the number of
collected data-points 〈[xt;ut], ẋt〉 increases the PMPs with model learning quickly catch
up and converge finally to the same costs. The PMP representation with model learning
in parallel considerably outperforms the trajectory based DMP approach in learning speed
and in the final costs.
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Computational time For our simulations we used a standard personal computer

(2.6Ghz, 8Gb ram) with implementations of the algorithms in C++. For the 4-link

pendulum the dynamic movement primitives could generate the movement trajectory

within less than 0.1 seconds. With the proposed planning movement primitives it took

less than 1 second (including model learning). The time horizon was 5 seconds and we

used a time-step of ∆t = 10ms.

Concluding summary In contrast to the via-point task the optimal solution for this

dynamic balancing task is unknown. The comparison to the DMPs shows a similar result

as for the via-point task. With the PMPs we could find movements of significantly higher

quality compared to the DMPs and the motor skill could be learned up to one order of

magnitude faster with PMPs. We again applied the same parameters to different initial

or final states to demonstrate the generalization ability. Now we can see the advantage of

the learned task-relevant features. While the PMPs still try to fulfill the extracted task

relevant constraints and therefore succeeded for almost all initial / final state configura-

tions, the DMPs again just heuristically scale the trajectory, which results in the robot

falling in almost all but the learned configurations. Finally we showed that the dynamic

model could be learned in parallel for the 4-link balancing task.

For all balancing experiments shown in this section the robot was pushed with the

specific force F = 25Ns. We have performed the same evaluations for various forces and

the results are basically the same. For example a comparison of the learning performances

using the negative force F = −25Ns is shown in Figure 3.13. The executed movement of

the best learned policy using PMPs is shown in Figure 3.14.

In total 40 weights and 8 control gains were learned with DMPs. For PMPs we used 2

via-points where the second one was fixed. Thus, we learned 8 parameters specifying the

first via-point and additionally 12 importance weights for each via-point. This results in

32 parameters.

3.5 Discussion

In this paper we concentrated on three aspects of biological motor control, which are

also interesting for robotic motor skill learning: (1) The modularity of the motor system,

which makes it possible to represent high-dimensional action spaces in terms of lower-

dimensional movement primitives, (2) its variability and behavior under stochasticity, and

(3) the efficiency in learning movement strategies.
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Figure 3.13: This figure illustrates the learning performance of the two movement represen-
tations, DMPs and PMPs for the 4-link balancing task. But in contrast to the evaluations
shown in the experimental section did we here apply a negative force F = −25Ns. Illus-
trated are mean values and standard deviations over 20 runs after CMA policy search. The
controls (torques) are perturbed by zero-mean Gaussian noise with σ = 10Nm. Using the
proposed Planning Movement Primitives good policies could be found at least one order
of magnitude faster compared to the trajectory based DMP approach. Also, the quality
of the best-found policy was considerably better for the PMP approach (720± 323 for the
DMPs and 227 ± 112 for the PMPs). For the DMP approach we additionally evaluated
PI2 for policy search which could not find good policies.
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Figure 3.14: This figure illustrates a dynamic balancing movement learned using the
proposed Planning Movement Primitives. The 4-link robot modelling a humanoid (70kg,
2m) gets pushed with the specific force (F = −25Ns) and has to move such that it
maintains balance. The circles denote the ankle, the knee, the hip and the shoulder joint.
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In order to achieve similar properties also for robotic motor skill learning we propose to

exploit the power of stochastic optimal control (SOC) already at the level of the movement

primitive (MP). Instead of endowing a MP with a dynamical system, like the Dynamic

Movement Primitives (DMPs) [Schaal et al., 2003], we endow a MP with an intrinsic

probabilistic planning system. The resulting MP is called Planning Movement Primitive

(PMP). For the dynamical systems approach the parameters of the MP indirectly define

the shape of the trajectory. In our case, the parameters of the MP define the intrinsic cost

function of a graphical model, which represents a SOC problem. Performing inference in

this graphical model yields the controls for executing the movement.

Due to the use of the intrinsic planning system our representation complies with basic

principles of SOC. For example, the PMPs are able to account for the motor variability

often observed in human motion. Instead of suppressing the noise of the system by follow-

ing a single reference trajectory, the PMPs are able to learn to intervene the system only

if it is necessary to fulfill a given task, also known as the minimum intervention principle

[Todorov and Jordan, 2002]. This allows a much higher variance in parts of the trajectory

where less accuracy is needed. Current methods which rely on a reference trajectory are

not able to reproduce these effects.

The parameters of PMPs encode learned task-relevant features of the movement, which

are used to specify the intrinsic cost function for the MP’s intrinsic planning system. Our

experiments have shown that such a task-related parametrization facilitates learning and

generalization of movement skills. Policies of higher quality could be found an order of

magnitude faster than with the competing DMP approach. In addition, as confirmed by

our experiments, the intrinsic planner also allows a wide generalization of the learned

movement, such as generalization to different initial or goal positions. The DMPs on the

other hand have to use heuristics for this generalization [Pastor et al., 2009], which had the

consequence that the robot typically fell over in a new situation. In this case relearning is

needed for the DMPs while the PMPs allow to reuse the learned parameters.

In traditional SOC methods [Todorov and Li, 2005, Kappen, 2007, Toussaint, 2009] the

intrinsic cost function is typically hand-crafted. In contrast we learn the cost function from

experience. We considered a general class of motor skill learning tasks where only a scalar

reward is observed for the whole movement trajectory. Thus, with PMPs this external

sparse reward signal is used to learn the intrinsic cost function. We applied the second

order stochastic search method CMA [Hansen et al., 2003] for finding appropriate intrinsic

cost functions. In this paper we focused on the representation of movements, and placed
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less emphasis on a specific policy search method. We want to point out again that our

method does not depend on the used policy search method, any episode-based exploring

policy search method can be used. We also do not want to argue for using episode-based

exploring methods for policy search, however, as our experiments show, these methods

provide useful alternatives to the more commonly used step-based approaches such as the

PI2 algorithm [Theodorou et al., 2010]. Future work will concentrate on more grounded

approaches for extracting immediate costs from a sparse reward signal. This can also

be of interest for imitation learning, where we do not know the immediate costs used by

the demonstrator, but often we can evaluate the demonstrators behavior by an external

reward signal.

The planner requires to know the system dynamics, which we also learn from data.

As shown by our experiments this can be done without significant loss of performance.

Hence, our approach combines model-based and model-free reinforcement learning (RL).

As in model-based RL, we learn a system model to plan with. Model-free RL is used as

method to search for appropriate intrinsic cost functions. We used the Locally Weighted

Regression [Atkeson et al., 1997] for learning the system dynamics as it is a very simple

and effective approach. Future work will also concentrate on more complex robot models

where more sophisticated methods like Vijayakumar et al. [2005], Nguyen-Tuong et al.

[2008a,b] could be applied for model learning.

In our experiments the number of phases was fixed (N = 2). It was assumed as

prior knowledge and can model the complexity of the movement representation (Similarly,

the complexity of DMPs can be scaled by the number of Gaussian activation functions).

During our experiments we also evaluated the balancing task with up to N = 5 phases,

but more than 2 phases did not improve the quality of the learned policy. One via-point

on the other hand was not sufficient to describe the movement.

A promising topic for future investigation is the combination of primitives in order

to achieve several tasks simultaneously. This combination of primitives is still a mostly

unsolved problem for current movement representations. Because of the non-linear task

demands and system dynamics a naive linear combination in trajectory space usually

fails. Here, our Planning Movement Primitives offers new opportunities. New movements

can be inferred by a linear combination of cost functions, which results in a non-linear

combination of the policies for the single tasks.
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A salient feature of human motor skill learning is the ability to exploit similarities

across related tasks. In biological motor control, it has been hypothesized that muscle

synergies, coherent activations of groups of muscles, allow for exploiting shared knowl-

edge. Recent studies have shown that a rich set of complex motor skills can be generated

by a combination of a small number of muscle synergies. In robotics, dynamic movement

primitives are commonly used for motor skill learning. This machine learning approach

implements a stable attractor system that facilitates learning and it can be used in high-

dimensional continuous spaces. However, it does not allow for reusing shared knowledge,

i.e., for each task an individual set of parameters has to be learned. We propose a novel

movement primitive representation that employs parametrized basis functions, which com-

bines the benefits of muscle synergies and dynamic movement primitives. For each task

a superposition of synergies modulates a stable attractor system. This approach leads

to a compact representation of multiple motor skills and at the same time enables ef-

ficient learning in high-dimensional continuous systems. The movement representation

59
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supports discrete and rhythmic movements and in particular includes the dynamic move-

ment primitive approach as a special case. We demonstrate the feasibility of the movement

representation in three multi-task learning simulated scenarios. First, the characteristics

of the proposed representation are illustrated in a point-mass task. Second, in complex

humanoid walking experiments, multiple walking patterns with different step heights are

learned robustly and efficiently. Finally, in a multi-directional reaching task simulated

with a musculoskeletal model of the human arm, we show how the proposed movement

primitives can be used to learn appropriate muscle excitation patterns and to generalize

effectively to new reaching skills.

4.1 Introduction

Reinforcement Learning of motor skills in robotics is considered to be very challenging

due to the high-dimensional continuous state and action spaces. In many studies it has

been shown that learning can be facilitated by the use of movement primitives [Schaal

et al., 2003, Rückert et al., 2013]. Movement primitives are parametrized representations

of elementary movements, where typically for each motor skill a small set of parameters

is tuned or learned. However, many motor control tasks are related and could be learned

more effectively by exploiting shared knowledge.

This concept is well known in motor neuroscience, where muscle synergies or coher-

ent activations of groups of muscles [d’Avella et al., 2003, d’Avella and Bizzi, 2005, Bizzi

et al., 2008] have been proposed to simplify the control problem of complex musculoskele-

tal systems. In analyzing muscle activation recordings it has been demonstrated that by

combining only few muscle activation patterns multiple task instances of natural motor

behaviors, e.g., fast reaching movements of humans [d’Avella et al., 2006], primate grasp-

ing movements [Overduin et al., 2008], or walking patterns of infants, toddlers, and adults

[Dominici et al., 2011] could be efficiently modeled. One important finding of these stud-

ies is that the dimensionality of the motor control problem can be drastically reduced by

reusing common knowledge of related tasks, i.e., grasping objects at different locations

using a linear combination of shared muscle synergies. While this has been demonstrated

in biological data analysis, only few robotic applications exist that use this shared task

knowledge [Chhabra and Jacobs, 2006, Alessandro et al., 2012]. These methods demon-

strate the advantages of shared synergies in learning robotic tasks. However, different

procedures were applied to obtain a parametric description of synergies, i.e., in Chhabra

and Jacobs [2006] a variant of non-negative matrix factorization [d’Avella et al., 2003] was
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used given a set of pre-computed trajectories and in Alessandro et al. [2012] the syner-

gies were extracted from dynamic responses of a robot system with random initialization.

In contrast, we propose to learn the synergies representation in a reinforcement learn-

ing framework, where task-specific and task-invariant parameters in a multi-task learning

setting are learned simultaneously.

In robotics the most widely used approach for motor skill learning are Dynamic Move-

ment Primitives (DMPs) [Schaal et al., 2003, Ijspeert et al., 2013]. This approach uses

parametrized dynamical systems to determine a movement trajectory and has several ben-

efits. First, as it is a model-free approach, there is no need to learn the typically nonlinear,

high-dimensional dynamic forward model of a robot (However, the model is required when

inverse dynamics controller are used to compute the control commands). Second, it pro-

vides a linear policy parametrization which can be used for imitation learning and policy

search [Kober and Peters, 2011]. The complexity of the trajectory can be scaled by the

number of parameters [Schaal et al., 2003] and one can adapt meta-parameters of the move-

ment such as the movement speed or the goal state [Pastor et al., 2009, Kober et al., 2010].

Finally, the dynamical system is constructed such that the system is stable. This simplifies

learning since even without modulating the dynamical system the movement trajectory is

always attracted by a known (or learned) goal state. However, this parametrization does

not allow for reusing shared knowledge, as proposed by the experimental findings studying

complex musculoskeletal systems [d’Avella et al., 2003, Bizzi et al., 2008, d’Avella and Pai,

2010]. Thus, typically for each motor task an individual movement parametrization has

to be learned.

In this paper we propose to use a superposition of learned basis functions or synergies to

modulate the stable attractor system of DMPs. This allows for reusing shared knowledge

for learning multiple related tasks simultaneously while preserving the benefits of the

dynamical systems, i.e., the stability in learning complex motor behavior. The synergies

and their activation in time are learned from scratch in a standard reinforcement learning

setup. Note that imitation learning could also be applied to implement an initial guess

for the synergies, e.g., by using decomposition strategies discussed in d’Avella and Tresch

[2001]. However, an application of such decomposition strategies is beyond the scope of

this paper. Moreover, our approach is like the DMPs applicable to discrete and rhythmic

movements and allows for modeling time-varying synergies [d’Avella et al., 2006]. We

therefore denote our approach DMPSynergies. By using for each task a combination of

individual, temporally fixed, basis functions DMPs can be modeled as special case of
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this approach. The benefit of the common prior knowledge is even more drastic when

generalizing to new motor tasks given the previously learned basis functions. Thus, for

simpler synergies only the weights for the linear combination have to be acquired and for

time-varying synergies additionally the time-shift parameters need to be learned. This

benefit is demonstrated on a complex walking task and on reaching task using an arm

actuated by muscles.

As in previous studies on DMPs [Meier et al., 2011, Mülling et al., 2013] we want

to go beyond basic motor skills learning. However, in contrast to those studies that

use a library of primitives for sequencing elementary movements [Meier et al., 2011] or

mixing basic skills [Mülling et al., 2013], we implement the common shared knowledge

among multiple tasks as prior in a hierarchical structure. On the lower level task related

parameters, i.e., amplitude scaling weights or time-shift parameters are used to modulate

a linear superposition of learned basis functions, the shared higher level knowledge. This

has the promising feature that by combining just a small number of synergies diverse

motor skills can be generated.

In the Materials and Methods, we will first briefly introduce DMPs [Schaal et al., 2003,

Ijspeert et al., 2013] as we build on this approach. We then extend DMPs to allow for

reusing shared task knowledge in the form of parametrized synergies. The advantage of

the shared knowledge is evaluated in the Results on three multi-task learning scenarios.

First, a simple via-point task is used to demonstrate the characteristics of the proposed

representation. Then, rhythmic movements are learned in a dynamic 5-link planar biped

walker environment. Finally, a musculoskeletal model of a human arm is used to evalu-

ate our primitives on a muscle actuated system learning discrete reaching movements to

multiple targets.

4.2 Materials and methods

4.2.1 Dynamic movement primitives

DMPs generate multi-dimensional trajectories by the use of nonlinear differential equations

(simple damped spring models) [Schaal et al., 2003]. The basic idea is to use for each

degree-of-freedom (DoF), or more precisely for each actuator, a globally stable, linear

dynamical system of the form

τ ż = αz(βz(g − y∗)− z) + f, τ ẏ∗ = z, (4.1)
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which is modulated by a learnable nonlinear function f . The final position of a movement

is denoted by g and the variables y and ẏ represent the desired state in i.e., joint angles and

joint velocities. The time constants α and β are usually pre-defined. The temporal scaling

factor τ can be used for de- or accelerating the movement execution as needed. Finally z

denotes an internal variable of the dynamical system. For each DoF an individual function

f is used which is different for discrete and rhythmic movements.

For discrete movements the function f only depends on the phase s, which is an

abstraction of time and was introduced to scale the movement duration [Schaal et al.,

2003]. The function f(s) is constructed of the weighted sum of N Gaussian basis functions

Ψn

f(s) =
∑N

n=1 Ψn(s)wns∑N
n′=1 Ψn′(s)

, (4.2)

where for discrete movements these Gaussian basis functions are

Ψn(s) = exp(− 1
2h2

n

(s− µn)2), τ ṡ = −αss.

Only the weights wn are parameters of the primitive which can modulate the shape of the

movement. The centers or means µn ∈ [0, 1] specify at which phase of the movement the

basis function becomes active. They are typically equally spaced in the range of s and

not modified during learning. The bandwidth of the basis functions is given by h2
n and is

typically chosen such that the Gaussians overlap.

For rhythmic movements periodic activation functions are used [Ijspeert and Schaal,

2003]. The nonlinear function f reads

f(φ) =
∑N

n=1 Ψn(φ)wn∑N
n′=1 Ψn′(φ)

, (4.3)

where the periodic phase angle is denoted by φ ∈ [0, 2π]. In Ijspeert and Schaal [2003]

additionally a scalar variable was used to scale the amplitude of the oscillator, which was

omitted for simplicity. The basis functions are given by

Ψn(φ) = exp(hn(cos(φ− µn)− 1)), τ φ̇ = 1,

which implement von Mises basis functions. Note that for the periodic basis functions the

trajectory in Equation 4.1 oscillates around the attractor point or goal state g.
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Integrating the dynamical systems in Equation 4.1 for each DoF results into a desired

trajectory 〈y∗t , ẏ∗t 〉 of the joint angles. To follow this trajectory, in the most simple case a

linear feedback controller is subsequently used to generate appropriate control commands

denoted by ut:

ut = diag(kpos)(y∗t − yt) + diag(kvel)(ẏ∗t − ẏt). (4.4)

For each actuator the linear weights W = [w1, ...,wD] as well as the control gains kpos and

kvel have to be specified, i.e. θ = [W,kpos,kvel]. This results into ND + 2D parameters

for the movement representation, where D denotes the number of actuators or muscles of

a system. The simulated trajectory is denoted by 〈yt, ẏt〉.
In multi-task learning we want to learn k = 1..K tasks simultaneously. For very

simply tasks, such as the via-point experiments described below, it could be sufficient

to adapt the goal state g. However, this simple adaptation approach is likely to fail

for more complex motor skill learning tasks in robotics. With DMPs typically for each

motor skill an individual movement parametrization θk has to be learned. However,

if we assume similarities among these tasks the learning problem could potentially be

simplified by reusing shared knowledge. Inspired by experimental findings in biology

[d’Avella et al., 2003, Bizzi et al., 2008, d’Avella and Pai, 2010] we extend these DMPs.

Only the parametrization for the nonlinear function f(s) for discrete movements or f(φ)

for rhythmic movement changes. The dynamical system in Equation 4.1 and the linear

feedback controller in Equation 4.4 remains the same.

4.2.2 Dynamic movement primitives with shared synergies (DMPSyn-

ergies)

For learning the kth task, we propose to use a linear combination of temporal flexible

basis functions or synergies to parametrize the nonlinear function f(s) in Equation 4.2 or

for rhythmic movements f(φ) in Equation 4.3:

f(s, k) =
∑M

m=1 βm,kΛ(s,θm,∆sm,k)s, (4.5)

f(φ, k) =
∑M

m=1 βm,kΩ(φ,θm,∆sm,k), (4.6)

where s denotes the phase variable which is only used for discrete movements. As with

DMPs (Ψn in Equation 4.2) are the functions Λ(.) and Ω(.) different for discrete and

rhythmic movements.
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0 1

Figure 4.1: Conceptual idea of using shared synergies in dynamical systems. (A)
A synergy is constructed by a superposition of parametrized Gaussians. The parameters
are the amplitude am,n, the mean µm,n and the bandwidth hm,n. In the example two
Gaussians (n = 1..2) are used to model the first m = 1 synergy. (B) For each task only
the activation βm of a synergy is learned. Time-varying synergies additionally implement
a time-shift ∆sm. The key concept is that multiple tasks share the same parametrized
synergies shown in (A), which represent task related common knowledge. (C) For each task
the nonlinear function f(s) is given by the weighted sum of the (time-shifted) synergies.
Shown is a normalized version of f(s) to illustrate the effects of the superposition also at
the end of the movement, which would usually converge towards zero. (D) Finally, the
nonlinear function f(s) is used to modulate a dynamical system. The unperturbed system
with f(s) = 0 is denoted by the dashed line which is attracted by the goal state that is
indicated by the large dot.

All K tasks share m = 1..M synergies which are parametrized via the vector θm.

Solely the weights βm,k and the time-shift ∆sm,k are individual parameters for each task.

The basic concept of the model is sketched in Figure 4.1 for a one-dimensional discrete

movement.

The complexity of each synergy is controlled by the number of Gaussians for discrete

movements or by the number of von Mises basis functions for rhythmic patterns. We

denote this number by N , where we parametrize in both cases the amplitude, the mean

and the bandwidth. Thus, each synergy is represented by a parameter vector θm =

[am,1, µm,1, hm,1, ..., am,N , µm,N , hm,N ].
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For discrete movements the function Λ(.) reads

Λ(s,θm,∆sm,k) =
N∑

n=1

am,nexp(− 1
2hm,n

2 (s− µm,n + ∆sm,k)
2). (4.7)

For rhythmic movements a superposition of von Mises basis functions is used

Ω(φ,θm,∆sm,k) =
N∑

n=1

am,nexp(hm,ncos(φ− µm,n + ∆sm,k)− 1). (4.8)

DMPs [Schaal et al., 2003] can be modeled as a special case of this formulation. For

DMPs using n = 1..N basis functions the mean µm,n and the bandwidth hm,n of the basis

functions are fixed as discussed in Section 4.2.1. Solely the n = 1..N amplitudes or weights

am,n are learned. By fixing these parameters and by modeling the nonlinear function f(s)

for discrete movements or f(φ) for rhythmic movements using a single (M = 1) synergy

our representation can be used to implement DMPs.

4.2.2.1 Multi-dimensional systems

For multi-dimensional systems for each actuator d = 1..D an individual dynamical system

in Equation 4.1 and hence an individual function f(s, k) in Equation 4.5 or f(φ, k) in

Equation 4.6 is used [Schaal et al., 2003]. The phase variable s or φ is shared among all

DoF (Note that k = 1..K denotes the task.).

Extending our notation for multi-dimensional systems the nonlinear function f(s, k)

in Equation 4.5 can be written as

f(s, d, k)︸ ︷︷ ︸
1x1

=
M∑

m=1

βm,k,d︸ ︷︷ ︸
1x1

Λ(s,θm,d,∆sm,k,d)s︸ ︷︷ ︸
1x1

.

Depending on the dimension d different weights βm,k,d, policy vectors θm,d and time-

shift parameters ∆sm,k,d are used. Note that the policy vector θm,d is task-independent.

Interestingly, when implementing additionally dimension-independent policy vectors, i.e.

θm anechoic mixing coefficients [Giese et al., 2009] can be modeled.

Here, we only discuss discrete movement representations, however, the reformulation

procedure applies also for rhythmic movement parametrizations. Let us also define a
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vector notation of f(s, k)

f(s, k)︸ ︷︷ ︸
1xD

=
M∑

m=1

βm,k︸︷︷︸
1xD

◦wm(s,θm,1..D,∆sm,k,d)︸ ︷︷ ︸
1xD

, (4.9)

where the symbol ◦ denotes the Hadamard product, the element-wise multiplication of

vectors. The synergy vectors are specified by

wm(s,θm,1..D,∆sm,k,d) = [Λ(s,θm,1,∆sm,k,1)s,Λ(s,θm,2,∆sm,k,2)s, ...,Λ(s,θm,D,∆sm,k,D)s].

This vector notation is used in the following to compare to existing synergies representa-

tions [d’Avella et al., 2003, 2006].

4.2.3 Musculoskeletal models and muscle synergies

We also use the proposed movement representation, the DMPSynergies, to generate muscle

excitation patters. These patterns are applied as input in a forward simulation of a

musculoskeletal model. A schematic overview of such a simulation is shown in Figure 4.2.

We briefly discuss all processes involved.

Musculoskeletal model simulation 

muscle

excitations

activation

dynamics

muscle tendon

dynamics

musculoskeletal

geometry

multibody

dynamics

muscle

activations

forces moments acceler-

ations

observed

movement

Figure 4.2: Forward simulation of musculoskeletal models. Muscle excitation pat-
terns are used as input, which result in a delayed muscle activity response (activation
dynamics). Muscle forces are the result of simulated muscle tendon dynamics, which
are typically approximated by a Hill-type contractile element in series with tendon. These
muscle forces are used to compute moments of force considering the musculoskeletal geome-
try. A physics engine is finally used to simulate multibody dynamics which are numerically
integrated to generate movement trajectories.

Muscle synergies for generating muscle excitation patterns are used as input in

forward dynamics simulations. In our simulation experiments we evaluate time-varying

synergies [d’Avella et al., 2006], which are a particular instance of the DMPSynergies, i.e.,

the weights βm,k and time-shift parameters ∆sm,k in Equation 4.9 are independent of the
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dimension d. Thus, for discrete movements in multi-dimensional systems f(s, k) reads

f(s, k)︸ ︷︷ ︸
1xD

=
M∑

m=1

βm,k︸︷︷︸
1x1

wm(s + ∆sm,k,θm,1..D, 0)︸ ︷︷ ︸
1xD

, (4.10)

where βm,k is a scalar and the time-shift parameter ∆sm,k is directly added to the phase

variable s. This allows for a comparison to e.g., the formulation of time-varying synergies

given in d’Avella et al. [2006], where

x(t, k) =
M∑

m=1

ak
mvm(t− tkm).

Shared synergies are represented by time-dependent vectors vm(t− tkm), where in contrast

to the proposed DMPSynergies a minor difference is the sign of the time-shift parameter

tkm.

In this formulation of time-varying synergies [d’Avella et al., 2006] only the time-

invariant combination coefficients ak
m are task-dependent, whereas the vector vm is task-

independent. However, by using task, spatial or temporal (in)variant implementations of

the mixing coefficients a or the basis vectors v other representations of synergies [Ivanenko

et al., 2004, d’Avella et al., 2003, Giese et al., 2009] can be also implemented.

Activation dynamics model the effect of the delayed force generating process in mus-

cles, as they are not capable of generating force instantaneously. Typically, for each muscle

a first order differential equation is used, i.e., ȧ = (f(s, k)2 − f(s, k)a)/τrise + (f(s, k) −
a)/τfall [Zajac, 1989]. Here, f(s, k) denotes the generated muscle excitation signal using

e.g., the proposed DMPSynergies. The actual muscle activation is denoted by a, which is a

function of the rise time constant τrise and the fall time constant τfall. For our evaluations

we implemented τrise = 10ms and τfall = 40ms [Winters and Stark, 1985].

Muscle tendon dynamics describe the complex and nonlinear force generation prop-

erties of muscles. For an approximation a variety of models exist [Zajac, 1989]. In these

models a muscle is approximated by a number of musculotendinous units, each of which

is implemented by a Hill-type contractile element in series with tendon. Characteristic

properties of muscles are the optimal fiber length LM
0 , the maximum isometric force FM

0 ,

and the muscle pennation angle α, which are shown in Table D.5 in the appendix for the

investigated model of a human arm. The tendon dynamics in this musculoskeletal model
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were approximated by the muscle model proposed in Schutte et al. [1993].

Musculoskeletal geometry represents the path of a muscle from its origin to its inser-

tion that can be implemented as a series of straight-line path segments, which pass through

a series of via points [Delp et al., 2007]. To simulate how muscles wrap over underlying

bone and musculature wrapping surfaces i.e., cylinders, spheres and ellipsoids are imple-

mented, where this model is based on the upper extremity model discussed in Holzbaur

et al. [2005]. A detailed description of the implemented musculoskeletal geometry is given

in the supplement (in form of a simulation model file, .osim).

Multibody dynamics are simulated by the physics simulation application OpenSim

[Delp et al., 2007, Seth et al., 2011]. It is an open source software that already implements a

variety of muscle models [Zajac, 1989] and a large number musculoskeletal models are freely

available. In our experiments the computational time needed to simulate a movement with

a duration of e.g., 500ms takes between 10 and 20 seconds (OpenSim implements numerical

integrators with an adaptive time step) on a standard computer (3GHz and 4GB memory).

However, we exploited parallel computing techniques for policy search, which resulted in a

gain of factor 10. Alternatively, the muscle dynamics could be approximated via regression

methods to speed-up the simulations [Chadwick et al., 2009].

4.2.4 Learning with movement primitives

We denote the parametrization of a movement primitive by a policy vector θ. A widely

used approach in robotics to learn these parameters is episodic reinforcement learning

[Kober and Peters, 2011], which is outlined in Figure 4.3 (A). A policy search method is

used to improve the movement primitive’s representation θ assuming a given objective or

reward function C(τ) ∈ R1. Throughout this manuscript C(τ) denotes a cost value that

is equivalent to the negative reward in classical reinforcement learning [Sutton and Barto,

1998]. It indicates the quality of an executed movement. A trajectory τ = 〈y1:T ,u1:T−1〉
is specified by the simulated joint angles y and the applied controls (torques) u, where

T denotes the number of time steps. We want to find a movement primitive’s parameter

vector θ∗ = argminθJ(θ) which minimizes the expected costs J(θ) = E [C(τ)|θ]. We

assume that we can evaluate the expected costs J(θ) for a given parameter vector θ

by performing roll-outs (samples) on the real or simulated system. In other words each

movement trajectory is quantified by a single scalar reward C(τ), which can be used by

an optimization method to improve the best guess of the movement policy θ.
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Figure 4.3: Overview of the learning framework. (A) A parametrized policy θ mod-
ulates the output of a movement primitive that is used to generate a movement trajectory
τ . The quality of the movement trajectory is indicated by a sparse reward signal C(τ)
which is used for policy search to improve the parameters of the movement primitive. For
a single iteration the implemented policy search method - Covariance Matrix Adaptation
(CMA) [Hansen et al., 2003] is sketched in (B). The parameter space is approximated
using a multivariate Gaussian distribution denoted by the ellipses, which is updated (from
left to right) using second order statistics of roll-outs or samples that are denoted by the
large dots (see text for details).

For learning or optimizing the policy parameters θ a variety of policy search algorithms

exist in the motor control literature. Examples are the REINFORCE [Williams, 1992], the

episodic Natural Actor Critic [Peters and Schaal, 2008], the PoWER [Kober and Peters,

2011] or the PI2 [Theodorou et al., 2010] algorithm, which are reviewed in Kober and

Peters [2011]. Alternatively, standard optimization tools such as the 2nd order stochastic

search methods [Hansen et al., 2003, Wierstra et al., 2008, Sehnke et al., 2010] can be used

for policy search. These machine learning tools make no assumptions on a specific form of

a policy and typically have just a single parameter to tune, the initial exploration rate. We

therefore use the stochastic search method Covariance Matrix Adaptation (CMA) [Hansen

et al., 2003] for learning the policy parameters in our experiments.

Roughly, CMA is an iterative procedure that locally approximates the function C(τ(θ))

by a multivariate Gaussian distribution, which is denoted by the ellipse in the sketch in

Figure 4.3 (B). From left to right a single optimization step for a two-dimensional policy
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vector θ = [w1, w2] is shown. The colored regions denote the unknown optimization land-

scape, where solid lines depict equal C(τ) values. From the current Gaussian distribution,

denoted by the ellipse in the left panel, CMA generates a number of samples, denoted

by the black dots, evaluates the samples (the size of the dots in the center panel is pro-

portional to their C(τ) values), computes second order statistics of those samples that

reduced C(τ) and uses these to update the Gaussian search distribution, which is shown

in right panel. For algorithmic details we refer to Hansen et al. [2003].

Note that for most interesting robotic tasks the unknown optimization landscape that

is also sketched in Figure 4.3 (B) is multi-modal and policy search might converge to a

local optimum. Thus, the result of learning is sensitive to the initial policy parameters

θ and for evaluating the convergence rate of different policy search methods multiple

initial configurations should be considered [Kober and Peters, 2011]. However, in this

manuscript we evaluate the characteristics of movement primitive representations and

put less emphasis on a particular policy search method. As we will demonstrate in our

experiments CMA is robust in terms of converging to “good” solutions given the initial

values of the evaluated movement primitive representations listed in the appendix.

In our experiments we compare single task learning with DMPs to learning multiple

tasks simultaneously with DMPSynergies. With DMPs for each task k = 1..K an individ-

ual policy vector θk is learned, where the objective function used in policy search takes the

task index as additional argument, i.e., C(τ, k). For learning multiple tasks simultaneously

with DMPSynergies the policy vector θ encodes all K task specific parameters βm,k and

∆sm,k, and all shared parameters denoted by θm in Equation 4.5 or Equation 4.6. The

objective function is the sum of the individual task dependent costs C(τ) =
∑K

k=1 C(τ, k).

4.3 Results

We evaluated the proposed movement representation, the DMPSynergies, with simulations

using three multi-task learning scenarios. A simple via-point task was used to illustrate the

characteristics of the proposed movement representation. A challenging robotic learning

task was used to generate rhythmic walking patterns for multiple step heights. Discrete

reaching movements were learned using a musculoskeletal model of a human arm with

eleven muscles.
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4.3.1 Via-point reaching task with a simple toy model

The goal of this simple multi-task learning problem is to pass through k = 1..5 via-points

(vpk ∈ {0.2, 0.1, 0,−0.1,−0.2}), denoted by the large dots in Figure 4.4 (A) and navigate

to the goal state g at 1. We used a point mass system (1kg), where the state at time t is

given by the position yt and the velocity ẏt. The applied controls ut shown in Figure 4.4 (B)

are computed using the linear feedback control law with kpos = 400 and kvel = 15 specified

in Equation 4.4. The finite time horizon is given by T = 50. For the dynamical system

in Equation 4.1 we used the parameters αz = 2, βz = 0.9 and τ = 0.1. Further parameter

settings used for policy search are summarized in Table D.1 in the appendix.

This task is specified by the objective function

C(k) = 105(ytvpk
− vpk)

2 + 104(ẏ2
T + 10(yT − g)2) + 5 · 10−4

T∑
t=1

ut.

The first two terms punish deviations from the via-point vpk and the goal state g, where

ytvpk
denotes the position of the state at the time index of the kth via-point. The last

term punishes high energy consumption, where ut denotes the applied acceleration. Note

that for simplicity we did not introduce the variable τ denoting the movement trajectory

in C(τ, k) in Subsection 4.2.4. We always add a Gaussian noise term with a standard

deviation of σ = 0.5 to the control action to simulate motor noise.

We used a single synergy (M = 1) with N = 2 Gaussians to model the shared prior

knowledge. The learning curve is shown in Figure 4.4 (C), where we compare to single-

task learning using DMPs with N = 8 Gaussian basis functions. For the via-point task

8 Gaussians were optimal with respect to the convergence rate, where we evaluated rep-

resentations using N = 2..20 Gaussians (not shown). Additionally, we compare to an

incremental learning setup (DMP inc.) in Figure 4.4 (C), where the DMP representation

is always initialized with the best learned solution from the previous task. On the x-axis

the number of samples or trajectory evaluations on the point mass system is plotted. As

it can be seen the proposed approach can benefit from the shared knowledge and has a

faster overall learning performance.

In this experiment, for each task we fixed the time-shift ∆sk = 0 and only learned

the k = 1..5 weights βk in Equation 4.5 (Note that the synergy index m was omitted as

only a single synergy was used). For each of the N = 2 Gaussians we learned the mean

µ, the bandwidth h and the amplitude a in Equation 4.7. Thus, in total 5 + 2 × 3 = 11

parameters were learned. In contrast with DMPs 8 Gaussian amplitudes were optimized.
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Figure 4.4: Results for the dynamic via-point task. The goal of this simple multi-
task learning problem is to pass through five via-points, denoted by the large dots in (A)
and navigate to the target state at 1. The corresponding controls (accelerations) of this
dynamical system are shown in (B). These five trajectories are simultaneously learned
using DMPSynergies with a single synergy (M = 1) represented by N = 2 Gaussians.
We compare to dynamic movement primitives (DMPs) with N = 8 Gaussians and to an
incremental variant of DMPs in (C). For the DMP approaches each task (via-point) has
to be learned separately. Thus, the two learning curves have five peaks. In contrast with
DMPSynergies we could learn these five tasks at once, which resulted in faster overall
convergence. The plot in (D) illustrates the mean and the standard deviation of the
learned β values for the DMPSynergy approach. Via interpolating β and by reusing the
learned synergy new motor skills can be generated without re-learning. This generalization
feature is illustrated in (E), where β ∈ [0.07, 0.34].

The β values of the DMPSynergies representation for the five via-points are shown

in Figure 4.4 (D) for 10 runs. New motor skills can be generated without re-learning

via a simple linear interpolation. The resulting trajectories are shown in Figure 4.4 (E).

However, this simple interpolation approach could only be applied in the simple via-point

task. For the more complex tasks discussed in this manuscript these β values have to be

learned.
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D

Figure 4.5: Dynamic biped walker model. (A) For the walker model, only the hip
angles q1, q2 and the knee angles q3, q4 are actuated. The reference angle to the flat
ground is denoted by q5. In this multi-task learning experiment we want to learn walking
patterns for different step heights. Examples for step heights of 0.15, 0.25 and 0.3m for a
single step are shown in (B-D). These patterns were learned using the proposed movement
primitives with shared synergies (M = 2 and N = 3). The green bars in (B-D) denote the
true (maximum) step heights, which are 0.19, 0.24 and 0.31m.

4.3.2 Dynamic biped walker task

To evaluate the DMPSynergies on a multi-dimensional robotic task we learned multiple

walking patterns using a 5 degree-of-freedom (DoF) dynamic biped robot model, which is

shown in Figure 4.5 (A). We demonstrate that by exploiting the shared knowledge among

multiple walking gaits, solutions could be found more robustly and more efficiently in terms

of learning speed compared to single task learning. Further, the shared synergies could be

used to generalize new skills. The model is only as complex as required to study difficulties

like limb coordination, effective underactuation, hybrid dynamics or static instabilities.

More details on the design and challenges can be found in Westervelt et al. [2004].

The 10-dimensional state qt = [q1:5, q̇1:5] of the robot is given by the hip angles (q1 and

q2), the knee angles (q3 and q4), a reference angle to the ground (q5), and the corresponding

velocities q̇1:5. Only the hip and the knee angles are actuated. Thus, 4 dynamical systems

in Equation 4.1 are used to generate desired trajectories for the linear feedback controller

in Equation 4.4. A phase resetting strategy is implemented to facilitate learning [Nakanishi

et al., 2004]. At each impact of the swing leg the phase φ in Equation 4.8 is set to zero.

This increases the stability of the robot as the gait cycle duration is implicitly given by

the impact time.

The initial state q1 ∈ R10, the goal state g and the control gains in Equation 4.4

were optimized in advance for a desired step height of r∗ = 0.2m to simplify learning.
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The resulting values are shown in Table D.2 in the appendix. For rhythmic movements

the goal state g ∈ R5 models an attractor point which is only specified for joint angles

and not for velocities in Equation 4.1. As for the via-point reaching task, Gaussian noise

with σ = 1 is added to the simulated controls. For Equation 4.1 we used the parameters

αz = 2, βz = 0.5 and τ = 0.06. The initial parameter values and the applied ranges used

for policy search are shown in Table D.3 in the appendix.

In this multi-task learning experiment we want to learn walking patterns for different

desired step heights, i.e., r∗k ∈ {0.15, 0.2, 0.25, 0.3}m. Example patterns for step heights

of 0.15, 0.25 and 0.3m are shown in Figure 4.5 (B-D), where the green bars denote the

maximum step heights during a single step (0.19, 0.24 and 0.31m).

The objective function for a single walking task is given by the distance travelled in

the sagittal plane, the duration of the simulation and deviations from the desired step

height r∗k with k = 1..4:

C(k) = −0.6(xT − x1) + 0.2(5− T ·∆t) + 50
S∑

i=1

(ri − r∗k)
2, (4.11)

where x denotes the x-coordinate of the hip, S the number of steps and ri the maximal step

height during the ith step. We used a time step ∆t = 2ms. The time horizon T ∈ [1, 5000]

is given by the last valid state of the robot, where the biped does not violate the joint

angle constraints specified by qmin and qmax in Table D.2 in the appendix.

With the proposed DMPSynergies the nonlinear function f(φ, k) in Equation 4.6 is

generated by combining a set of learned synergies that are shared among multiple task

instances, i.e. the four (k = 1..4) desired step heights. This combination mechanism is

illustrated for a representation using M = 2 synergies modeled by N = 3 Gaussians in

Figure 4.6. For each actuator (left hip, right hip, left knee, and right knee) an individual

function f(φ, k) is generated, which is subsequently used to modulate an attractor system

shown in Equation 4.1 to compute the desired movement trajectories. The shared synergies

shown in the last two rows in Figure 4.6 can be scaled and shifted in time. These shared

synergies are indicated by the enclosing rectangles. Note that the color of the synergies is

used to distinguish the four actuators of the walker model.

We evaluated different movement primitive representations with increasing complexity

compared to single-task learning using DMPs with N = 4 and N = 8 Gaussians. The

average final costs Cmean after learning over 10 runs are shown in Table 4.1. In the

most simple representation we used M = 2 synergies modeled by N = 2 Gaussians.
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Figure 4.6: Learned nonlinear functions f(φ, k) for the walker task. The learned
nonlinear functions f(φ, k) are illustrated in the first four rows. The four task instances,
i.e., the desired step heights are shown from left to right. For each actuator (left hip, right
hip, left knee, and right knee) an individual function f(φ, k) is used that is generated by
combining two learned synergies shown in the last two rows. These synergies are shared
among multiple task instances and can be scaled and shifted in time (via βm,k and ∆sm,k).
These shared synergies are indicated by the enclosing rectangles, where the color of the
synergies is used to distinguish the four actuators of the walker model.

More complex representations implementing time-varying synergies are denoted by the

symbol ∆ = 1 in Table 4.1. Here, additionally the time-shifts ∆s1:M were learned for all

synergies and all actuators. However, the final learning performance did not outperform

the representation with fixed time-shifts (i.e., M = 2, N = 3 and ∆ = 0: −21.4 ± 0.4

compared to M = 2, N = 3 and ∆ = 1: −20.5± 1.4). This can be also seen in Figure 4.7,

where we plot the learning curve for synergies with ∆s1:M = 0 in Figure 4.7 (A) and the

results for time-varying synergies in Figure 4.7 (B).

The average final cost value of the DMP representation is higher (i.e., DMPN=8:

−14.8±1.4) compared to the best costs achieved with shared synergies (M = 2, N = 3 and

∆ = 0: −21.4±0.4). This holds also for an incremental learning setup (e.g., DMP inc.N=4:

−19.2± 0.6), where DMPs were initialized with the best result from the previous task.

The joint angle trajectories of the left hip and knee joint for the DMPSynergy repre-

sentation using M = 2 synergies modeled by N = 3 Gaussians and ∆ = 1 are illustrated

in Figure 4.8. The average step heights were r ∈ {0.22, 0.22, 0.26, 0.28}, which do not

match the desired step heights r∗ ∈ {0.15, 0.2, 0.25, 0.3}. The reason for this mismatch is
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Table 4.1: Achieved costs for the walker task, where the standard deviation is denoted
by the symbol ±. In the second column the symbol ∆ denotes if additionally 16M time-
shift variables ∆s are learned. The total number of parameters is denoted by the symbol
#, where e.g., for the representation in the 1st row 4M = 8 task related weights and
3 ·M ·N ·4 = 48 shared parameters were optimized. The best results with the lowest costs
denoted by Cmean are highlighted in gray shading.

Setup ∆ Cmean best learned r [m] #
M = 2 0 −20.3 ±1.2 0.21, 0.21, 0.27, 0.27 56
N = 2 1 −20.8 ±0.9 0.19, 0.23, 0.28, 0.26 88
M = 2 0 −21.4 ±0.4 0.22, 0.24, 0.23, 0.26 80
N = 3 1 −20.5 ±1.4 0.22, 0.22, 0.26, 0.28 112
M = 3 0 −19.0 ±2.3 0.17, 0.19, 0.2, 0.26 84
N = 2 1 −19.6 ±1.9 0.19, 0.22, 0.19, 0.2 132

DMPN=4 −13.1 ±0.8 0.17, 0.17, 0.23, 0.28 64
DMPN=8 −14.8 ±1.4 0.15, 0.2, 0.23, 0.29 128

DMP inc.N=4 −19.2 ±0.6 0.15, 0.20, 0.22, 0.3 64
DMP inc.N=8 −18.8 ±0.5 0.18, 0.19, 0.31, 0.26 128
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Figure 4.7: Learning curves for the biped walker task. This figure illustrates the
learning performance over 10 runs of the proposed approach using M = 2 synergies with
N = 3 Gaussian basis functions. In (A) the time-shift variables ∆s are not learned and set
to zero. Whereas, in (B) also these ∆s variables are adapted during learning. We compare
to the dynamic movement primitives (DMP) with N = 4 Gaussians in (A) and to DMPs
with N = 8 Gaussians in (B). DMP inc. denotes an incremental learning setup, where
DMPs were initialized with the best result from the previous task. Generalizing to a new
step height (r∗ = 0.1m) is shown in (C), where we applied the best learned policy for
DMPSynergies from (B) and only optimized the weights β1:2 for the two (fixed) synergies.
The corresponding average step height over all steps is shown in (D). We compare to
DMPs with N = 8 Gaussians.

that the objective function in Equation 4.11 is designed to prefer correct multi-step walk-

ing movements over exact matches of the step heights since learning to walk is already

a complex learning problem (approximately 90 percent of the costs are determined by

the travelled distance and only 5 percent are caused by the distance to the desired step
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Figure 4.8: Results for the biped walker task. This figure illustrates the (initially) left
hip angle denoted by q1 and the left knee angle (q3) for the multi-task learning scenario.
Shown are the best learned trajectories using the proposed approach (with M = 2, N = 3
and ∆ = 1) for the desired step heights of r∗ ∈ {0.15, 0.2, 0.25, 0.3}. The true step heights
of the learned walking patterns are 0.22± 0.07, 0.22± 0.08, 0.26± 0.08, 0.28± 0.08. The
points in time of the ground contacts are denoted by large arrows for desired step heights
of 0.25m and 0.3m. For the later additionally the duration of the stance and the swing
phases are illustrated by large boxes.

heights). However, for the different desired step heights the shape of the trajectories as

well as the moment of the impact vary. The moments of impact are denoted by arrows in

Figure 4.8.

While generalizing to new motor skills was straightforward for the simple via-point

task, for the walking tasks a linear interpolation turns out to be ineffective. We therefore

demonstrate in Figure 4.7 (C-D) how a new walking pattern for a desired step height of

r∗ = 0.1m can be learned be reusing the previously learned prior knowledge (taking the

best solution for r∗ = 0.25m) for M = 2 synergies modeled by N = 3 Gaussians and

∆ = 1. Only the weights β1:M are optimized in this experiment, keeping the learned time-

shifts fixed. The costs in Figure 4.7 (C) and the average step height r in Figure 4.7 (D)

demonstrate the advantage of using a fixed prior, where we compare to DMPs with N = 8

Gaussians.

4.3.3 Multi-directional reaching task with a musculoskeletal model of

the human arm

A simplified model of a human arm based on the model by Holzbaur et al. [2005] was

used to learn six reaching tasks simultaneously. The shoulder and the elbow joint were

modeled by hinge joints. Thus, only movements in the sagittal plane were possible. The

initial arm configuration and the six target locations (with a distance of 15cm to a marker

placed on the radial stylion) are shown in Figure 4.9 (A). A learned example movement
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Figure 4.9: Musculoskeletal model for learning reaching tasks. A model of a
human arm with eleven muscles shown in Table D.5 in the appendix was used to learn
six reaching skills in the sagittal plane (A). As reward signal we encoded the distance to
a marker placed on the radial stylion (denoted by the plus symbol) and punished large
muscle excitation signals. Targets are denoted by large dots. We focused on fast reaching
skills of 500ms duration, where an example movement is shown in (B). To simulate how
muscles wrap over underlying bone and musculature wrapping surfaces are implemented
as cylinders, spheres and ellipsoids [Holzbaur et al., 2005].

is illustrated in Figure 4.9 (B), where the cylinders, the spheres and the ellipsoids denote

wrapping surfaces discussed in Section 4.2.3.

We focused on fast reaching movements of 500ms duration (T = 500 and ∆t = 1ms)

that can be implemented in an open-loop control scheme. Note that with our approach

also closed-loop systems with feedback could be implemented, as discussed below. Thus,

the learnable nonlinear function f(s, k) in Equation 4.10 is directly used as input to the

system in form of muscle excitation patterns. The parameter settings for learning are

shown in Table D.4 in the appendix.

For learning the reaching tasks we evaluated the Euclidean distance of a marker vk(t)

placed on the radial stylion to a given target gk, where k = 1..6 denotes the task index.

Additionally, large muscle excitations signals are punished:

C(k) =
6∑

k=1

3 · 1
T

T∑
t=1

‖gk − vk(t)‖+ 10−3

∫ 1

s=0
f(s, k)T f(s, k)ds, (4.12)

where ‖.‖ denotes the Euclidean distance between the marker vk(t) and the target gk at

time t.

We evaluated five movement representations, defined in Equation 4.10, with an in-

creasing number of shared synergies, i.e., M = {1, 2, 3, 4, 5}. Each synergy is represented

by a single (N = 1) Gaussian. For each target and for each synergy the task-specific
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Table 4.2: Details of the evaluated parametrizations and achieved costs for the reaching
task. M denotes the number of implemented synergies, Cmean the final cost values, and
the symbol ± the standard deviation. We use #K to denote the number of task-specific
parameters (6 ·M) and #M to denote the number of task-invariant or shared parameters
(3 · 11 ·M).

No. of synergies Cmean #K #M Total
M = 1 2.38 ±0.05 12 33 45
M = 2 1.52 ±0.12 24 66 90
M = 3 1.15 ±0.12 36 99 135
M = 4 1.15 ±0.05 48 132 180
M = 5 1.17 ±0.05 60 165 225

parameters βk,m and ∆sk,m are learned. The number of task-specific and the number of

task-invariant or shared parameters is shown in Table 4.2.

We hypothesized that a muscle excitation signal can be generated by combining a

small number of learned synergies. An example for the anterior deltoid muscle (DeltA)

is shown in Figure 4.10 for two movement directions. Here, DMPSynergies with M = 4

synergies were used to generate the muscle excitation patterns. The muscle excitation

patterns for all six movement directions and all eleven muscles are shown in Figure 4.11.

Two observations can be made: first, as our objective function in Equation 4.12 punishes

large muscle excitation signals a sparse representation of multiple motor skills is learned.

Second, the learned muscle patterns partially show the typical triphasic behavior of hu-

man movement [Hallett et al., 1975, Angel, 1975, Berardelli et al., 1996, Chiovetto et al.,

2010], where individual muscles (e.g., DeltA, PectClav and BRA in the first column in

Figure 4.11) become activated at the onset of the movement, shortly before the velocity

peak to decelerate, and finally, multiple muscles co-contract at the target location. These

three events are denoted by the labels 1, 2, and 3 in the last row in Figure 4.11, where a

threshold of 2 cm s−1 was used to determine the movement onset and the termination of

the movement.

Comparing all five movement representations (M = {1, 2, 3, 4, 5}), we found that at

least three synergies were necessary to accomplish all reaching tasks. This observation is

best shown in Figure 4.12 (A), where with only one (M = 1) or two synergies (M = 2)

not all targets can be reached. Shown are the marker trajectories of three independent

learning sessions (out of ten runs). Note that similar findings were obtained in analyzing

human arm reaching movements, where four to five synergies were observed [d’Avella
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Figure 4.10: Synergy combination mechanism. We hypothesize that a muscle exci-
tation signal can be generated by combining a small number of learned synergies. Here,
we illustrate this combination process for the deltoid anterior (DeltA) with four synergies
for two movement directions. For the two movement directions different combination co-
efficients βm,k and different time-shift parameters ∆sm,k were learned. The synergies are
represented by a single parametrized Gaussian, where the corresponding basis function for
DeltA is denoted by a bold line in the enclosing rectangles.

et al., 2006]. The corresponding learning curves for all five movement representations are

shown in Figure 4.12 (B), where the parametrizations with M = 3..5 synergies perform

equal. This equal performance of the three parametrizations is also reflected in the final

costs shown in Table 4.2 (rows 3..5). As an example the marker trajectories and the

tangential velocity profiles for the representation using M = 4 synergies are illustrated in

Figure 4.12 (C). As we evaluated an open-loop control scheme these marker trajectories

did not exactly terminate at the target location (after the limited number of episodes

for learning). However, by increasing the number of episodes or by adding feedback the

terminal accuracy could be improved.

For testing the generalization ability of DMPSynergies we rotated all six targets by 30

degrees and only re-learned the task-specific coefficients, i.e., the mixing coefficients βm,k

and the time-shift parameters ∆sm,k. Interim solutions with a movement representation

implementing M = 4 synergies are shown in Figure 4.13 (A). Note that, as we evalu-

ated an open-loop controller, the rotated targets were unknown to the controller. Solely

the objective function in Equation 4.12 quantifies deviations from the targets. After 15

episodes a first trend towards the new targets was visible, however, most of the trajectories

(three learned solutions are illustrated) ended at the original targets. The corresponding
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Figure 4.11: Learned muscle excitation patterns. Shown are the muscle excitation
patterns for all six targets (from left to right) and for all muscles (rows one to eleven). In
the last row the tangential velocity profiles of the marker placed on the radial stylion is
illustrated (see text for details).

learning curves for DMPSynergies with three (M = 3) and four (M = 4) synergies are

shown in Figure 4.13 (B). The learning curve for the unperturbed scenario from the pre-

vious experiment is denoted by the dashed line (M = 4 orig.). Note that in both - the

unperturbed and the perturbed experiments K = 6 reaching movements were learned,

which demonstrates the benefit of the shared learned knowledge when generalizing new

skills. For a comparison the blue line denoted by DMP N = 4 illustrates the convergence

rate of single task learning with DMPs, where DMPSynergies (M = 4 orig.) can compete

in terms of learning speed.
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Figure 4.12: Learning multi-directional reaching movements. We evaluated five
movement representations with an increasing number of shared synergies, i.e., M =
{1, 2, 3, 4, 5}. The resulting trajectories of the marker placed on the radial stylion are
shown in (A) and (C), where with less than three synergies not all targets can be reached.
Illustrated are three independent learning results. In (B) we illustrate the average learn-
ing curves over 10 runs for these movement representations. For the representation using
M = 4 synergies shown in (C) additionally the tangential velocity profiles are illustrated.

4.4 Discussion

We proposed a movement representation based on learned parametrized synergies (DMP-

Synergies) that can be linearly combined and shifted in time. These learned synergies are

shared among multiple task instances significantly facilitating learning of motor control

policies. This was demonstrated on simulated robotic and on musculoskeletal systems. Be-

low we discuss the significance and the implication of our findings with respect to robotics

and biological motor control.
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Figure 4.13: Generalization to new reaching directions. For testing the generaliza-
tion ability of the proposed DMPSynergies we fix the learned shared synergies and only
adapt the task-specific parameters, i.e., the mixing coefficients βm,k and the time-shift pa-
rameters ∆sm,k. The K = 6 targets were rotated by 30 degrees, where in (A) the marker
trajectories after 15, 50, 200, and 1000 episodes for a movement representation with M = 4
synergies are shown. In (B) we show the averaged learning curves for DMPSynergies with
three and four synergies over 10 runs (M = 3 and M = 4). The learning curve for the
unperturbed scenario from the previous experiment is denoted by the dashed line (M = 4
orig.). For a comparison the blue line denoted by DMP N = 4 illustrates the convergence
rate of single task learning.

4.4.1 Exploiting shared synergies for motor skill learning in robotics

For motor skill learning in robotics a common strategy is to use parametrized elementary

movements or movement primitives [Kober and Peters, 2011]. In this paper we proposed

a generalization of the most widely used movement primitive representation in robotics,

dynamic movement primitives (DMPs) [Schaal et al., 2003, Ijspeert et al., 2013]. DMPs

evaluate parametrized dynamical systems to generate trajectories. The dynamical system

is constructed such that the system is stable. This movement representation has many

advantages. It is a model-free approach, partially explaining its popularity in robotics as

model learning in high-dimensional stochastic robotics systems is challenging. Further,

its stable attractor system facilitates learning and DMPs can represent both rhythmic

and discrete movements. Meta parameters can be used for adapting the movement speed

or the goal state. Finally, the movement representation depends linearly on the policy

parametrization, i.e., the learnable function f depends linearly on the parameters θ of

the movement primitive, f(s) = Φ(s)T θ, where s is the time or phase variable. As a

result, imitation learning for DMPs is straightforward, as this can simply be done by

performing linear regression [Schaal et al., 2003]. However, for each task k an individual
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set of parameters θk has to be learned, which unnecessarily complicates learning of a large

number of related motor skills. In contrast we proposed a generalization that allows for

reusing shared knowledge among multiple related motor skills, i.e., the parameter vector

θ is task-invariant.

In particular, we replaced the nonlinear modulation function f(.) in DMPs by a hi-

erarchical function approximator. On the lower level task related parameters (amplitude

scaling weights and time-shift parameters) are used to modulate a linear superposition

of basis functions. These basis functions encode shared higher level knowledge and are

modeled by a mixture of Gaussians. With the proposed DMPSynergies representation

discrete and rhythmic movements can be generated. By using Gaussians at the higher

level DMPs can be implemented as special case. However, the DMPSynergies can com-

pete with DMPs in terms of learning efficiency while allowing for learning multiple motor

skills simultaneously.

This was demonstrated in two robotic multi-task learning scenarios, where we showed

that, with the DMPSynergies, good policies could be found more reliably, i.e., local min-

ima with high cost values were more often avoided, more efficiently (fewer samples were

needed), and new skills could be generalized by exploiting the previously learned shared

knowledge. A simple via-point task was used to demonstrate the characteristics of the

approach, where the proposed movement representation could be used to generalize new

movement trajectories by applying a linear interpolation on the synergy’s weights β. In a

second robotic task, a biped walker task, the hierarchical representation was used to learn

walking patterns with multiple step heights. In this complex reinforcement learning task,

it was shown that better solutions were found more reliably by exploiting the learned

shared knowledge, which is a strong feature of a movement representation. While also

with the classical DMP approach high quality movement gaits were learned, on average

the achieved costs were higher compared to the proposed hierarchical synergies repre-

sentation, i.e., −19.2 ± 0.6 for DMPs with 4 Gaussians (and with incremental learning)

compared to −21.4 ± 0.4 when using M = 2 synergies with N = 3 Gaussians (where

the time-shift parameters were fixed and set to zero, ∆ = 0). In this experiment 10000

samples were needed to learn 4 walking gaits simultaneously, where the DMPSynergies

approach can compete with DMPs (15000 samples). Additionally, we demonstrated in a

generalization experiment that walking patterns for an unknown step height (r∗ = 0.1m)

could be learned with 100 samples by exploiting the previously learned prior knowledge.

While DMPs [Schaal et al., 2003, Ijspeert et al., 2013] are most closely related to our
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shared synergies approach, there exist a few other approaches [Chhabra and Jacobs, 2006,

Alessandro et al., 2012] also implement shared knowledge. In Chhabra and Jacobs [2006] a

variant of non-negative matrix factorization [d’Avella et al., 2003] was used to compute the

synergies given a set of trajectories created by applying stochastic optimal control methods

[Li and Todorov, 2004]. In Alessandro et al. [2012] an exploration phase was introduced

to compute the dynamic responses of a robot system with random initialization. After

a reduction phase, where a small number of proto-tasks were executed, a reduced set of

dynamic responses was used to compute the synergies matrix by solving a linear system

of equations. We proposed an alternative for learning the synergies and their combination

parameters, where all unknowns are learned in a reinforcement learning setting from a

single sparse reward signal. Moreover, for robotic tasks we embed the synergies approach

in stable dynamical systems like in DMPs. This combines the benefits of DMPs and muscle

synergies, namely the efficient learning ability of DMPs in high-dimensional systems and

the hierarchical representation of movements that can be used for multi-task learning.

As with DMPs the complexity of the DMPSynergies representation can be scaled by

the number of combined synergies or the number of implemented Gaussians modeling

these synergies. However, as the trajectories generated with our representation depend

nonlinearly on the policy parameters (in contrast to DMPs) more sophisticated decom-

position strategies like for example d’Avella and Tresch [2001], Chiovetto et al. [2013] are

needed for imitation learning. With such approaches the extracted synergies could be

implemented as initial solutions in our learning framework.

4.4.2 Learned shared synergies for biological movement generation

The idea of reusing shared knowledge for movement generation is a well known concept

in biological motor control. Muscle activation patterns recorded during multiple task in-

stances of natural motor behavior, i.e., fast reaching movements of humans [d’Avella et al.,

2006], primate grasping movements [Overduin et al., 2008], or walking patterns [Dominici

et al., 2011], could be efficiently modeled by combining only few muscle activation pat-

terns. In particular, time-varying muscle synergies [d’Avella et al., 2003, Bizzi et al., 2008]

were proposed to be a compact representation of muscle activation patterns. The key idea

of this approach is that muscle activation patterns are linear sums of simpler, elemental

functions or synergies. Each muscle synergy can be shifted in time and scaled with a linear

factor to construct a large variety of activation patterns. In this manuscript we proposed

a generative model to represent and learn time-varying synergies [d’Avella et al., 2006].
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The proposed framework allows for studying the concept of muscle synergies from a

generative perspective in contrast to the analytical approach, where muscle synergies are

identified from observed data. Applying such a generative approach to a musculoskeletal

model, we could provide a proof-of-concept of the feasibility of a low-dimensional controller

based on shared synergies and a demonstration of its learning efficiency. Moreover, we

could ask different question, i.e., how does performance scale with the complexity of the

movement representation, how sparse is the encoding of the muscle patterns to solve par-

ticular tasks, and how well does the learned representation generalize to new movements?

We addressed these questions in a multi-directional reaching task, where we investigated

a musculoskeletal model of the upper limb with 11 muscles. Motor skills for 6 reaching di-

rections were learned within 3000 episodes and by exploiting the learned shared synergies

movements for rotated target directions can be generalized 3 times faster (Figure 4.13). We

found that a minimum of three synergies were necessary to solve the task (Figure 4.12 B).

In our objective function large muscle excitation signals were punished, which resulted

in a sparse representation of muscle excitation patterns. This sparse representation illus-

trated in Figure 4.11 shows similarities to observed electromyographic activity recorded in

related human reaching tasks [d’Avella et al., 2006], i.e., triphasic muscle patterns, where

some of the muscles contributed at the movement onset, some at point of the maximum

tangential velocity, and some at the end of the movement to co-contract. However, sensor

feedback might be an important modulation signal to make this effect more pronounced.

The model was designed to capture salient features of human musculoskeletal system,

such as muscle activation dynamics, Hill-type musculotendinous units, realistic geometry.

However, to reduce the computational effort needed to simulate a movement we made a few

simplifying assumptions. First, a limited number of muscles (11) were implemented, where

simplified wrapping objects and muscle paths were modeled. Further, we implemented the

shoulder and the elbow joint as hinge joints. Thus, only reaching movements in the sagittal

plane could be performed. Finally, we focused on fast reaching movements in an open-

loop control scheme. This was a valid assumption for comparing to human data for fast

reaching movements [d’Avella et al., 2006]. However, our proposed learning and control

framework also allows for implementing closed-loop controllers, i.e., when introducing an

inverse kinematics model Ψ ∈ RDx3 in Equation 4.1, i.e., τ ż = Ψ(αz(βz(g−y∗)− z)) + f ,

where D denotes the number of actuators and we assumed that the goal state g lives in

a three-dimensional Cartesian space. The inverse kinematics model Ψ maps the feedback

error signal into the muscle pattern space and modulates the learned muscle excitation
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basis f ∈ RD. With such closed-loop systems we might better understand the contribution

of feedback to muscle control in biological movement generation [Lockhart and Ting, 2007].

Musculoskeletal models have been used before to investigate movement generation

with muscle synergies [Berniker et al., 2009, Neptune et al., 2009, McKay and Ting, 2012].

Berniker and colleagues used model-order reduction techniques to identify synergies as

a low-dimensional representation of a non-linear system’s input/output dynamics and

optimal control to find the activations of these synergies necessary to produce a range of

movements. They found that such a set of synergies was capable of producing effective

control of reaching movements with a musculoskeletal model of a frog limb and that it was

possible to build a relatively simple controller whose overall performance was close to that

of the system’s full-dimensional nonlinear controller. Neptune and colleagues generated

muscle-actuated forward dynamics simulations of normal walking using muscle synergies

identified from human experimental data using non-negative matrix factorization as the

muscle control inputs. The simulation indicated that a simple neural control strategy

involving five muscle synergies was sufficient to perform the basic sub-tasks of walking.

McKay and Ting, studying an unrestrained balance task in cats, used a static quadrupedal

musculoskeletal model of standing balance to identify patterns of muscle activity that

produced forces and moments at the center of mass (CoM) necessary to maintain balance

in response to postural perturbations. CoM control could be accomplished with a small

number of muscle synergies identified from experimental data, suggesting that muscle

synergies can achieve similar kinetics to the optimal solution, but with increased control

effort compared to individual muscle control. In line with these simulation studies, we also

found that a small number of muscle synergies was sufficient to perform multiple reaching

tasks in a forward dynamic simulation of a musculoskeletal model. However, we did not use

experimental data or model-order reduction techniques to identify muscle synergies. In our

framework, both synergy structural parameters and synergy combination parameters were

found with reinforcement learning, supporting the generality of the solutions identified.

Moreover, we were able to test the generalization ability of the synergies in the same

framework by optimizing only the task-specific synergy combination parameters.

The proposed reinforcement learning framework with movement primitives relates to

optimal control approaches in the biological motor control literature [Erdemir et al., 2007,

Delp et al., 2007]. In these simulation studies muscle patterns are parametrized by e.g.,

bang-bang (on-off) controls, constant control values, or control vectors approximated with

polynomials (see Table 2 in Erdemir et al. [2007] for an overview of different control
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strategies). However, to the best of or knowledge non of these approaches implemented

shared synergies as control signal representation for learning multiple task instances si-

multaneously. Even with complex representations, e.g. with M = 5 synergies learning 225

parameters converged within 3000 episodes, which is a promising feature of the proposed

approach for studies on more complex musculoskeletal models.

In this manuscript we demonstrated how time-varying synergies [d’Avella et al., 2006]

can be implemented and learned from scratch. Interestingly, by adding an additional

constraint on the movement representation, i.e., by using a single policy vector for all

actuators anechoic mixing coefficients [Giese et al., 2009] can be implemented. However,

in general any synergy representation such as synchronous synergies [Ivanenko et al., 2004,

Dominici et al., 2011] used for locomotion can be learned. Thus, we do not argue for a

particular synergy representation. Our representation was motivated to extend the widely

used DMPs [Schaal et al., 2003] for exploiting shared task-invariant knowledge for motor

skill learning in robotics.

4.4.3 Conclusion

We proposed a movement primitive representation implementing shared knowledge in

form of learned synergies. The representation competes with the state-of-the-art, it can

implement DMPs [Schaal et al., 2003] as a special case, and it allows for an efficient

generalization to new skills. Importantly, shared knowledge simplifies policy search in

high-dimensional spaces, which was demonstrated in a dynamic biped walking task. Fur-

ther, the proposed learned synergies are a compact representation of high-dimensional

muscle excitation patterns, which allows us to implement reinforcement learning in mus-

culoskeletal systems. In such frameworks muscle patterns are learned from scratch using

a sparse reward signal, where we could investigate how muscles and muscle synergies con-

tribute to a specific task, how complex a task-invariant representation must be, and how

well the learned synergies generalize to changes in the environment. In a multi-directional

arm reaching experiment we provided first insights to these questions. In future research

the proposed movement generation and learning framework will be used to study feed-

back signals and feedback delays, imitation learning from biological data and the effect of

simulated muscle surgeries.
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Appendix to Chapter 2: A study

of morphological computation

using probabilistic inference

B.1 Extension of the approximate inference control method

The original formulation of the Approximate Inference Control (AICO) method [Tous-

saint, 2009] does not consider a linear term for the control costs. However, this linear

term is needed to encode torque limits, which are important for our dynamic balancing

experiments, and hence, we needed to extend AICO algorithm.

The introduction of a linear term for the control costs yields not only in a modified

cost function, but also results in different update equations for the messages and finally

in different equations of the optimal feedback controller. For completeness we will first

recap the main steps to derive the AICO method and will then discuss the modifications

to implement control constraints.

B.1.1 Approximate inference control without torque limits

For motor planning we consider the stochastic process:

P (x1:T ,u1:T−1, z1:T ) = P (x1)
T−1∏
t=1

P (ut|xt)
T∏

t=1

P (xt|xt−1,ut−1)
T−1∏
t=1

P (zt|xt,ut),
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where P (ut|xt) denotes the state dependent prior for the controls, the distribution

P (xt|xt−1,ut−1) the state transition model and P (x1) the initial state distribution. Here,

we assume that the prior of the controls is independent of the states and thus we will

simply use P (ut|xt) = P (ut) for the rest of the appendix. The time horizon is fixed to T

time-steps. The binary task variable zt denotes a reward event, its probability is defined

by P (zt = 1|xt,ut) ∝ exp(−ct(xt,ut)), where ct(xt,ut) is the immediate cost function∗

for time-step t. It expresses a performance criteria (like avoiding a collision, or reaching

a goal).

We want to compute the posterior P (x1:T ,u1:T |z1:T = 1) over trajectories, conditioned

on observing a reward (zt = 1) at each time-step t. This posterior can be computed

by using message passing in the given graphical model of Figure 2.1. To simplify the

computations we integrate out the controls:

P (xt+1|xt) =
∫
ut

P (xt+1|xt,ut)P (ut|xt)dut. (B.1)

The marginal belief bt(xt) of a state at time t is given by:

bt(xt) = αt(xt)βt(xt)φt(xt), (B.2)

where αt(xt) is the forward message, βt(xt) is the backward message φt(xt) is the current

task message. The messages are given by:

αt(xt) =
∫
xt−1

P (xt|xt−1)αt−1(xt−1)φt−1(xt−1)dxt−1, (B.3)

βt(xt) =
∫
xt+1

P (xt+1|xt)βt+1(xt+1)φt+1(xt+1)dxt+1, (B.4)

φt(xt) = P (zt|xt). (B.5)

We consider discrete-time, nonlinear stochastic systems with zero mean Gaussian noise

P (xt+1|xt,ut) = N (xt+1|fDyn(xt,ut),Qt).

The nonlinear stochastic system fDyn is approximated by a Linear dynamics, Quadratic

costs and Gaussian noise system (LQG) by Taylor expansion [Toussaint, 2009, Todorov

∗In this paper the immediate cost function is composed of the intrinsic costs and the constraint costs,
i.e., ct(xt,ut) + cp(xt,ut)
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and Li, 2005]:

P (xt+1|xt,ut) = N (xt+1|Atxt + at + Btut,Qt). (B.6)

Thus, the system is linearized along a given trajectory 〈x̂1:T , û1:T−1〉 at every point in

time. We will use ft as shorthand for fDyn(xt,ut). Then, the state transition matrix At

is given by At = (I + δft

δxt
∆t), the control matrix Bt is Bt = δft

δut
∆t and the linear term

reads at = (ft − δft

δxt
xt − δft

δut
ut)∆t.

In the original formulation of the AICO algorithm the cost function ct is approximated

as:

ct(xt,ut) = xT
t Rtxt − 2rT

t xt + uT
t Htut.

Note that there is no linear term for the control costs as we only punish quadratic controls.

We can now write P (zt = 1|xt,ut) = P (zt = 1|xt)P (ut) as

P (zt = 1|xt) ∝ N [xt|rt,Rt], (B.7)

P (ut) = N [ut|0,Ht], (B.8)

where the distributions in Equation B.7 and B.8 are given in canonical form. The canonical

form of a Gaussian is used because numerical operations such as products or integrals are

easier to calculate in this notation. The canonical form is indicated by the square bracket

notation and given by

N [x|a,A] =
exp(−1/2aTA−1a)
|2πA−1|1/2

exp(−1/2xTAx + xTa).

A Gaussian in normal form can always be transformed into the canonical form by

N (x|a,A) = N [x|A−1a,A−1]. For more details we refer to the Gaussian Identities in

Toussaint [2011].

We can see in Equation B.8 that our prior for applying the control ut is given by the

control costs, i.e., N [ut|0,Ht]. By integrating out the controls from our system dynamics

we get the following state transition probabilities

P (xt+1|xt) =
∫
ut

N (xt+1|Atxt + at + Btut,Qt)N [ut|0,Ht]dut, (B.9)

= N (xt+1|Atxt + at,Qt + BtH−1
t BT

t ), (B.10)

where the integral was solved using a reformulation of the propagation rule in Toussaint
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[2011].

As we can see, all distributions in the approximated LQG system in Equation B.10 are

Gaussian, and thus, also all messages are Gaussians and can be calculated analytically.

The resulting messages are given in Toussaint [2009].

B.1.2 Approximate inference control with torque limits

In order to implement torque and joint limits we introduce an additional cost function cp

which punishes the violation of the given constraints. The function cp is just added to

the current immediate costs. We use separate cost terms for control constraints cu
t and

joint constraints cx
t , i.e., cp(xt,ut) = cx

t (xt) + cu
t (ut). Here, we will only discuss how to

implement the function cu
t (ut) for the torque constraints, joint constraints are implemented

similarly.

The cost function cu
t is quadratic in u and punishes leaving the valid control limits of

u. In order to implement the upper bound umax for the torques, we use the following cost

function

cu
t (ut) = uT

t Htut + (ut − umax)THU
t (ut − umax),

= uT
t Htut + uT

t HU
t ut − 2uT

maxH
U
t ut + uT

maxH
U
t umax,

= uT
t Htut + uT

t HU
t ut − 2uT

maxH
U
t ut + const,

where matrix Ht denotes the quadratic control costs. The constrained costs are only

imposed for the control variable ui if the torque value exceeds the upper bound umax,i. In

order to do so HU
t is a diagonal matrix where the ith diagonal entry is zero if ui ≤ umax,i

and non-zero otherwise. The lower bound umin is implemented likewise using an individual

diagonal matrix HL
t .

We can again implement cu
t (ut) as prior distribution P (ut) for the controls.

P (ut) ∝ N [ut|ht,Ht], (B.11)

where ht = uT
maxH

U
t + uT

minH
L
t and the precision Ĥt = Ht + HU

t + HL
t . As we can see,

the linear term ht of the prior distribution P (ut) is now non-zero. This yields different

message equations.

Joint-limits can be imposed similarly by using additional terms costs for cx
t (xt). How-

ever, for joint limits the update equations stay the same because P (zt = 1|xt) has already

a non-zero mean denoted by rt in Equation B.7.
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To derive the messages we will first integrate out the controls to get the state transition

probabilities:

P (xt+1|xt) =
∫
ut

N (xt+1|Atxt + at + Btut,Qt)N [ut|ht, Ĥt]dut,

= N (xt+1|Atxt + at + BtĤ−1
t ht,Qt + BtĤ−1

t BT
t ). (B.12)

Note that, since the cost function cu
t (ut) contains a non-zero linear term ht, we get

a new linear term ât = at + BtH−1
t ht in the transition dynamics. The forward and the

backward messages are the same like in Toussaint [2009] except that at is replaced by ât

and Ht by Ĥt.

Like in Toussaint [2009] we use the canonical representations for the forward and the

backward message:

αt(xt) = N [xt|st,St],

βt(xt) = N [xt|vt,Vt],

φt(xt) = P (zt|xt) = N [xt|rt,Rt].

The messages are represented by Gaussians in canonical form, for which mathematical op-

erations like products are simply performed by adding the linear terms and the precisions.

The mean of the belief is given by bt(xt) = (St + Vt + Rt)−1(st + vt + rt) (multiplying

three canonical messages and a subsequent transformation to normal form). Furthermore

we use the shorthand Q̄t = Qt + BtĤ−1
t BT

t for the covariance in Equation B.12.

The messages are computed by inserting the state transition probabilities given in

Equation B.12 in the message passing Equations B.3 and B.4. Subsequently the integrals

are solved using the propagation rule in Toussaint [2011]. The final equations in canonical

form are:

St = (A−T
t−1 −Ks)St−1A−1

t−1, (B.13)

st = (A−T
t−1 −Ks)(̄st−1 + St−1A−1

t−1(ât−1 + Bt−1Ĥ−1
t−1ht−1)), (B.14)

Ks = A−T
t−1St−1(St−1 + A−T

t−1Q̄
−1
t−1A

−1
t−1)

−1. (B.15)
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And for the backward messages:

Vt = (AT
t −Kv)V̄t+1At, (B.16)

vt = (AT
t −Kv)(v̄t+1 − V̄t+1(ât + BtĤ−1

t ht)), (B.17)

Kv = AT
t V̄t+1(V̄t+1 + Q̄−1

t )−1. (B.18)

To obtain the same mathematical form as in Toussaint [2009] one needs to apply the

Woodbury identity and reformulate the equations. In contrast to the update message in

normal form [Toussaint, 2009], direct inversions of S̄t−1 and V̄t+1 are not necessary in the

canonical form and therefore, the iterative updates are numerically more stable.

Finally, in order to compute the optimal feedback controller we calculate the joint

state-control posterior

P (ut,xt) = P (ut,xt|zt = 1)

=
∫
xt+1

αt(xt)φt(xt)P (xt+1|xt,ut)P (ut)βt+1(xt+1)φt+1(xt+1)dxt+1,

= P (xt)P (ut)
∫
xt+1

P (xt+1|xt,ut)N [xt+1|v̄t+1, V̄t+1]dxt+1.

The conditional distribution is given by P (ut|xt) = P (ut,xt)/P (xt), and the solution is

P (ut|xt) = N (ut|M−1
t (BT

t V∗(V̄−1
t+1v̄t+1 −Atxt − ât) + ht),M−1

t ),

where V∗ = (Q+ V̄−1
t+1)

−1 and Mt = BT
t V∗Bt + Ĥt. After a reformulation we can obtain

an optimal feedback controller of the form ut = ot + Otxt with

ot = M−1
t (BT

t V∗V̄−1
t+1v̄t+1 −BT

t V∗at + ht), (B.19)

Ot = −M−1
t BT

t V∗At. (B.20)

Similar to Toussaint [2009], we use an iterative message passing approach where we

approximate the nonlinear system by an Linear dynamics, Quadratic costs and Gaussian

noise system (LQG) at the new mode of the trajectory. In Toussaint [2009], this iterative

optimization approach uses a learning rate on the current modes of the belief. However, in

difference to Toussaint [2009], we also need an estimate of the optimal action ut in order

to impose the control constraints. Using a learning rate on the control action ut turned

out to be very ineffective because feedback is attenuated. For this reason we will use a
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Algorithm 1: Approximate Inference Control for Constrained Systems
Data: initial trajectory x̂1:T , learning rate η
Result: x1:T and u1:T−1

initialize S1 = 1e10 · I, s1 = S1x1, k = 0, ô1:T−1 = 0, Ô1:T−1 = 0 · I ;
while L(τ) not converged do

for t← 1 to T do
Linearize Model: At,at,Bt using Equation B.6
Compute Costs: Ĥt,ht,Rt, rt using Equation B.7, B.11

for t← 1 to T do
Forward Messages: αt(xt) using Equation B.13 - B.15

for t← T − 1 to 1 do
Backward Messages: βt(xt) using Equation B.16 - B.18

for t← 1 to T − 1 do
Feedback Controller: ot,Ot using Equation B.19, B.20
if k == 0 then

ut = ot + Otxt

else
ôt = (1− η)ôt + ηot

Ôt = (1− η)Ôt + ηOt

ut = ôt + Ôtxt

xt+1 = Atxt + at + Btut

k = k + 1

learning rate on the feedback controller.

The complete message passing algorithm considering state and control constraints is

listed in Algorithm 1. This algorithm is a straightforward implementation of Gaussian

message passing in linearized systems, similar to an extended Kalman smoother.

In Toussaint [2009] or Rawlik et al. [2010] more time efficient methods are presented,

where for each time-step the belief is updated until convergence in contrast to updating all

messages and iterating until the intrinsic costs L(τ) converge. The computational benefits

of such an approach still needs to be evaluated for our messages.

B.2 4-link robot model specifications

For the 4-link model the 8-dimensional state x = [φ1, φ̇1, φ2, φ̇2, φ3, φ̇3, φ4, φ̇4] is composed

of the ankle, the knee, the hip and the arm positions and their velocities. In our ex-

periments the velocities are instantaneously affected by the applied force F [Atkeson and
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Joint Initial velocities Lower Bound Upper Bound

ankle +1.2 · 10−2F −0.8 0.8
knee −7.4 · 10−2F −0.05 2.5
hip +5.1 · 10−2F −2.0 0.1
arm −4.2 · 10−2F −0.6 3.0

Table B.1: Joint angle configurations where a robot gets pushed by a force F .

Stephens, 2007]. These initial velocities and the valid joint angle range are shown in

Table B.1.

In addition we use multiple initial joint angles. The ankle angle is given by φ1 = −α,

the knee angle by φ2 = −αf, the hip angle by φ3 = αf and the arm joint angle is φ4 = 2αf,

where α is sampled from α ∼ U [0, 7]π/180 and the linear factor is uniform distributed

with f ∼ U [−3.3,−2.3]. Four example initial states are illustrated in Figure 2.2.
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Appendix to Chapter 3: Learned

graphical models for probabilistic

planning

C.1 Dynamic movement primitives

The most prominent representation for movement primitives used in robot control are

the Dynamic Movement Primitives (DMP) [Schaal et al., 2003]. We therefore used the

DMPs as a baseline in our evaluations and will briefly review this approach in order to

clarify differences to our work. For our experiments we implemented an extension of the

original DMPs [Pastor et al., 2009], which considers an additional term in the dynamical

system which facilitates generalization to different target states. For more details we refer

to Schaal et al. [2003], Pastor et al. [2009].

DMPs generate multi-dimensional trajectories by the use of non-linear differential

equations. The basic idea is to a use for each degree-of-freedom (DoF) of the robot a

globally stable, linear dynamical system which is modulated by learnable non-linear func-

tions f :

τ ż = αzβz(g − y)− αzz − αzβz(g − y1)s + f, τ ẏ = z,

where the desired final position of the joint is denoted by g and the initial position of the

joint is denoted by y1. The variables y and ẏ denote a desired joint position and joint

velocity, which represent our movement plan. The temporal scaling factor is denoted by
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τ and αz and βz are time constants. The non-linear function f directly modulates the

derivative of the internal state variable z. Thus, f modulates the desired acceleration of

the movement plan. s denotes the phase of the movement.

For each DoF of the robot an individual dynamical system, and hence an individual

function f is used. The function f only depends on the phase s of a movement, which

represents time, τ ṡ = −αss. The phase variable s is initially set to 1 and will converge to

0 for a proper choice of τ and αs. With αs we can modulate the desired movement speed.

The function f is constructed of the weighted sum of K Gaussian basis functions Ψi

f(s) =
∑K

i=1 Ψi(s)wis∑K
i=1 Ψi(s)

, Ψi(s) = exp(− 1
2σ2

i

(s− ci)2).

As the phase variable s converges to zero also the influence of f vanishes with increasing

time. Hence, the dynamical system is globally stable with g as point attractor.

In our setting, only the linear weights wi are parameters of the primitive which can

modulate the shape of the movement. The centers ci specify at which phase of the move-

ment the basis function becomes active and are typically equally spaced in the range of s

and not modified during learning. The bandwidth of the basis functions is given by σ2
i .

Integrating the dynamical systems for each DoF results into a desired trajectory 〈yt, ẏt〉
of the joint angles. We will use an inverse dynamics controller to follow this trajectory

[Peters et al., 2008]. The inverse dynamics controller receives the desired accelerations q̈des

as input and outputs the control torques u. In order to calculate the desired accelerations

we use a simple decoupled linear PD-controller

q̈des = diag(kpos)(yt − qt) + diag(kvel)(ẏt − q̇t). (C.1)

Unfortunately standard inverse dynamics control did not work in our setup because we

had to deal with control limits of multi-dimensional systems. Thus, we had to use an

inverse dynamics controller which also incorporates control constraints. For this reason

we performed an iterative gradient ascent using the difference between the actual (using

constrainted controls) and the desired accelerations q̈des as error function. This process

was stopped after at most 25 iterations.

For our comparison, we will learn the linear weights w for each DoF as well as the

controller gains kpos and kvel, i.e., θ = [w1, . . . ,wD,kpos,kvel]. This results into KD+2D

parameters for the movement representation, where D denotes the number of DoF of the

robot.



C.2. Task settings and parameters 103

K αs αz βz τ

10 1 2 0.9 0.1

Table C.1: Via-point task: DMP movement primitive parameters.

w kpos kvel

lower bound −100 0 0
upper bound +100 100 100

Table C.2: Via-point task: DMP policy search configuration parameters.

d[1] g[1] r[i] h[i]

lower bound 0.05 -2 [1, 10−6] 10−4

upper bound 0.4 +2 [106, 104] 10−2

Table C.3: Via-point task: PMP policy search configuration parameters with i = 1, 2.

C.2 Task settings and parameters

In this section the movement primitive parameters and constants are specified for the

one-dimensional via-point task and for the humanoid balancing task.

C.2.1 One-dimensional via-point task

For the one-dimensional via-point task the parameters of the Dynamic Movement Primi-

tives are listed in Table C.1. The valid configuration space for the policy search algorithm

is listed in Table C.2. The CMA policy search algorithm has just one parameter, the

exploration rate. Where the best exploration rate using DMPs for this task found was

0.05.

The limits of the parametrization of the Planning Movement Primitives (see Equa-

tion 3.4) is listed in Table C.3. For the via-point task we choose N = 2, where the second

via-point g[N ] = gT was given. The exploration rate was set to 0.1 in all experiments.

C.2.2 Dynamic humanoid balancing task

The DMP parameters for the balancing task are listed in Table C.4. The policy search

parameters are the same like for the via-point task, Table C.2. The exploration rate was
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K αs αz βz τ

10 1 5 5 1

Table C.4: Balancing task: DMP movement primitive parameters.

φ0arm arm hip knee ankle

1 −2.39 7.56 −8.54 1.42
0.5 −3.61 6.12 −7.9 1.32
0.2 −4.15 5.29 −7.52 1.25

0 −4.27 5.09 −7.43 1.24
−0.2 −4.15 5.29 −7.52 1.25
−0.4 −3.82 5.8 −7.75 1.29
−0.6 −3.43 6.38 −8 1.34

Table C.5: Initial velocities (multiplied by 102/F ) for different initial states of the arm
joint φ0arm .

d[1] r[i] h[i]

lower bound 0.1 10−2 for angles and 10−4 for velocities 10−91
upper bound 4.6 104 for angles and 102 for velocities 10−31

Table C.6: Balancing task: PMP policy search configuration parameters with i = 1, 2.
Vector 1 denotes a 4-dimensional column vector, where all elements are equal to 1.

set to 0.1.

The PMPs were again evaluated with N = 2 via-points, where the second via-point

g[N ] = gT (the up-right robot posture) was given and for the first via-point the valid joint

angle configuration is shown in Table 1 in [Rückert and Neumann, 2012]. The exploration

rate was 0.1 and the policy search algorithm configuration is listed in Table C.6.

In the generalization experiment we applied the same learned policy of the 4-link

balancing task to different initial states. For different initial arm joint configurations the

push modulated with F resulted in different initial joint velocities, which are shown in

Table C.5.



Appendix D

Appendix to Chapter 4: Dynamic

movement primitives with shared

synergies

D.1 Parameter settings

For the via-point task the parameter settings for learning are shown in Table D.1. Initial

parameter values and parameter settings for policy search for the biped walker task are

shown in Table D.2 and in Table D.3. In Table D.4 we list the learning settings for the

multi-directional reaching task using a musculoskeletal model of a human arm.

Table D.1: Parameter settings for the discrete via-point task. In brackets are the variable
names for the dynamic movement primitives, which are used for comparison.

Parameter Range Initial Value
a, (w) ∈ [−5, 5] a0 = 0
µ, (µ) ∈ [0, 1] µ0 spaced

linearly in [0, 1]
h, (h) ∈ [0.01, 1] h0 = 0.1

β ∈ [0, 100] β0 = 1

D.2 Characteristic muscle parameters

The implemented muscles and their characteristic parameters are shown in Table D.5.
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Table D.2: Biped walker setting of pre-optimized quantities.

Variable Value
q1 [3.5, 4.4,−0.07,−0.5,−0.7,

−1.5,−0.6,−1.0, 0.3,−0.4]
g [2.8, 4.5,−0.3,−1.8]

kpos [632.5, 885.6, 463.4, 643.7]
kvel [14.5, 13.2, 38.6, 40.6]
qmin [2.8, 2.8,−2.6,−2.6,−1.04]
qmax [4.7, 4.7, 0, 0, 1.0]

Table D.3: Policy search parameter settings for the rhythmic walking task. In brackets
are the variable names for the dynamic movement primitives.

Parameter Range Initial Value
a, (w) ∈ [−2, 2] a0 = 0
µ, (µ) ∈ [0.8µ0, 1.2µ0] µ0 spaced

linearly in [0, 2π]
h, (h) ∈ [0.1, 10] h0 = 1

β ∈ [0, 2] β0 = 1
∆s ∈ [0, 0.5] ∆s0 = 0

Table D.4: Parameter settings for the multi-directional reaching task.

Parameter Range Initial Value
a ∈ [−1, 1] a0 = 0.5
µ ∈ [0.3, 0.7] µ0 spaced

linearly in [0.3, 0.7]
h ∈ 8[10−5, 10−3] h0 = 8 · 10−4

β ∈ [0, 1] β0 = 1
∆s ∈ [−0.2, 0.2] ∆s0 = 0
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Table D.5: Characteristic muscle parameters of an upper limb model taken from Garner
and Pandy [2001]. The tendon slack length is denoted by LT

s , the maximum isometric
force by FM

0 , the optimal fiber length by LM
0 , and the muscle pennation angle by α. To

increase the reachable space, we adapted the tendon slack length LT
s of a small number of

muscles (bold numbers versus the original values in brackets).

LM
0 [cm] LT

s [cm] FM
0 [N] α [rad]

anterior deltoid (DeltA) 14.68 9.3 (1.64) 277.48 0
posterior deltoid (DeltP) 17.02 5.93 567.15 0
latissimus dorsi-thoracic (LatDors) 34.87 14.75 173.43 0
pectoralis major-clav (PectClav) 22.65 0.45 342.46 0
triceps brachii-long (TrLong) 15.24 25.05 (19.05) 629.21 0.26
triceps brachii-lateral (TrLat) 6.17 19.64 1268.87 0.26
triceps brachii-medial (TrMed) 4.9 18.19 (12.19) 619.67 0.26
biceps-long (BicLong) 15.36 32.93 (22.93) 392.91 0.17
biceps-short (BicShort) 13.07 26.98 (22.98) 461.76 0.17
brachialis (BRA) 10.28 9.75 (1.75) 853 0.17
brachioradialis (BrRad) 27.03 6.04 101.58 0.08
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