
Understand-Compute-Adapt:
Neural Networks for Intelligent Agents
Verstehen-Berechnen-Anpassen:
Neuronale Netzwerke für intelligente Agenten
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
vorgelegte Dissertation von Daniel Tanneberg aus Offenbach am Main
Tag der Einreichung: 22.10.2020, Tag der Prüfung: 03.12.2020

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Prof. Dr. Elmar Rückert
3. Gutachten: Prof. Dr. Martin Riedmiller
Darmstadt – D 17



Understand-Compute-Adapt:
Neural Networks for Intelligent Agents
Verstehen-Berechnen-Anpassen:
Neuronale Netzwerke für intelligente Agenten

Doctoral thesis by Daniel Tanneberg

1. Review: Prof. Dr. Jan Peters
2. Review: Prof. Dr. Elmar Rückert
3. Review: Prof. Dr. Martin Riedmiller

Date of submission: 22.10.2020
Date of thesis defense: 03.12.2020

Darmstadt – D 17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-XXXX
URL: http://tuprints.ulb.tu-darmstadt.de/XXXX

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Weitergabe unter gleichen Bedingungen
– 4.0 International
https://creativecommons.org/licenses/by-nc-sa/4.0/

http://tuprints.ulb.tu-darmstadt.de/XXXX
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-nc-sa/4.0/


For mankind.

Just kidding – For myself.



Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftli-
chen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe-
ma und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 22.10.2020
D. Tanneberg



Abstract

An artificial intelligent agent needs to be equipped with a multitude of abilities in order to
interact in the world among us. These requirements for intelligent behaviour can roughly
be separated into two main categories, cognitive abilities and physical skills. The cognitive
abilities refer to cognition and problem solving, whereas the physical skills correspond to
movements of an intelligent robot in the real world. In this thesis, we investigate three
research questions tackling those different abilities. Precisely, how can new knowledge
be taught to a robot in a natural way? How can neural networks learn abstract solution
strategies that are independent of the task complexity, data representation and task
domain? How can a robot efficiently adapt its movement during execution with a bio-
inspired stochastic neural network? These questions span core requirements for intelligent
autonomous agents, which we categorize as Understand-Compute-Adapt (UCA), in the
style of the classical Sense-Plan-Act framework in robotics. To answer these questions, we
investigate neural network based models on these cognitive and physical abilities.

In detail, the first question tackles the ability of cognition, which refers to an understanding
of the world and is investigated by learning a set of skills from unlabelled demonstrations
of full task executions. Therefore, we studied the task of trajectory segmentation and skill
library learning. To provide a natural interface for teaching a robot new tasks, it is desirable
to have the user only demonstrating the desired task, without worrying about all the
skills that are required for the task and without manually annotating the demonstrations.
Such an interface not only enables non-experts to teach robots, but also provides a
cheaper approach to teaching robots, as demonstrating all individual skills or segmenting
and labelling demonstrations by hand is time consuming and expensive. The approach
proposed here learns to segment trajectories and the required skill library simultaneously
from unlabelled demonstrations. In addition to this segmenting and skill discovery, the
approach also learns the relations between individual skills, i.e., modelling how likely
a certain skill follows after another skill. This additional knowledge, or understanding,
can be used, for example, in human-robot-interaction scenarios by predicting the human
behaviour and therefore enables a more intelligent adaptive behaviour of the robot. The
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approach was successfully evaluated on multiple different trajectory datasets with varying
complexities.

The second aforementioned required cognitive ability, problem solving, refers to the second
question and the Compute step. In particular, we investigated the challenge of learning
algorithmic solutions, i.e., learning abstract strategies that can easily be transferred to
unfamiliar problem instantiations. This transferring of abstract knowledge and solution
strategies into novel domains is another crucial feature of intelligent behaviour. Therefore,
we investigated the learning of algorithmic solutions that are characterized by three
requirements highlighting the abstract nature of the solution: scaling to arbitrary task
configurations and complexities, and the independence of both the data representations
as well as the task domain. For this purpose we developed a novel framework, the Neural
Harvard Computer, that is based on memory-augmented neural networks and whose
modular design is inspired by the von Neumann and Harvard architectures of modern
computers. This framework enables the learning of abstract algorithmic solutions through
its modular design and the separation of information flow into data and control signals.
The algorithmic solution is learned in a reinforcement learning setting and solely operating
on the control signal flow, enabling the independence of the data representation and
task domain. We evaluated the framework’s generalization and abstraction features by
learning 11 different algorithms, where the approach was able to reliably learn algorithmic
solutions with perfect generalization and abstraction, allowing to solve problems with
complexities far beyond seen during training and by straight forward transfer to novel
task representations and domains.

Ultimately an intelligent robot has to interact in the real world, giving rise to the third
entry Adapt, the question of efficient online adaptation. In order to cope with the complex,
dynamic and often unstructured real world, in addition to dealing with other agents and
humans, the agent has to be able to adapt its models andmovements while interacting. This
online adaptation belongs to the mentioned physical skills that are required for intelligent
behaviour. Moreover, this online adaptation has to be efficient in terms of number of
physical interactions and be task-independent, as not every situation can be foreseen
when constructing the agent or the method. In this thesis, we studied online adaptation
within a bio-inspired spiking neural network that generates movements by simulating its
inherent dynamics. The underlying stochastically spiking neurons mimic the behaviour
of hippocampal place cells and their decoded activity represents the planned movement.
Task-independent adaptation is achieved by using intrinsic motivation signals inspired by
cognitive dissonance to guide the learning. These signals capture the discrepancy between
the agents expectation of the world (the current model) and the observations of the
world, and the online adaptation is triggered and steered through this mismatch. Sample-
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efficiency is accomplished by using a mental replay strategy to intensify experienced
situations and is implemented by using the inherent stochasticity of the framework. We
evaluated this framework for online model adaptation and movement generation on an
anthropomorphic KUKA LWR arm, where the robot has to adapt to unknown obstacles
while performing a waypoint following task. The online adaptation happens within seconds
and from few physical interactions while keeping interacting with the environment.

In summary, this thesis investigates three key aspects of intelligent behaviour with respect
to cognitive and physical abilities. In more detail, we investigated how neural network
based models can be used from learning to understand over learning to compute to learning
to adapt to tackle the three raised research question. Each topic has its own requirements
on the used neural network model and the learning mechanism. This modularity and
diversity of subroutines is a crucial aspect for creating artificial intelligence.
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Zusammenfassung

Ein künstlicher intelligenter Agent muss mit einer Vielzahl von Fertigkeiten ausgestattet
sein, um unter uns in der Welt zu interagieren. Diese Voraussetzungen für intelligentes
Verhalten können grob in zwei Hauptkategorien unterteilt werden, kognitive Fähigkeiten
und physische Fertigkeiten. Die kognitiven Fähigkeiten beziehen sich auf das Verstehen
und Problemlösen, wohingegen die physischen Fertigkeiten sich auf Bewegungen eines
intelligenten Roboters in der echten Welt beziehen. In dieser Thesis untersuchen wir drei
Forschungsfragen, die sich mit diesen verschiedenen Fertigkeiten beschäftigen. Konkret,
wie kann einem Roboter neues Wissen auf eine natürliche Art beigebracht werden? Wie
können Neuronale Netzwerke abstrakte Lösungsstrategien lernen, die unabhängig von
der Komplexität der Aufgabe, der Datenrepräsentation und dem Aufgabengebiet sind?
Wie kann ein Roboter seine Bewegungen effizient während ihrer Ausführung mit einem
biologisch-inspiriertem stochastischem Neuronalen Netzwerk anpassen? Diese Fragen
umfassen Kernanforderungen an intelligente autonome Agenten, welche wir als Verstehen-
Berechnen-Anpassen kategorisieren, in Anlehnung an das klassische Sense-Plan-Act Modell
in der Robotik. Um diese Fragen zu beantworten, untersuchen wir die Fähigkeiten von
Neuronalen Netzwerken basierten Modellen im Bezug auf diese kognitiven und physischen
Fertigkeiten.

Im Detail, die erste Frage beschäftigt sich mit der Fähigkeit des Erkennens, welche sich auf
ein Verstehen der Welt bezieht und welche durch das Lernen eines Sets von Fertigkeiten
aus unmarkierten Demonstrationen von vollständigen Aufgabenausführungen untersucht
wird. Hierfür haben wir die Aufgabe der Segmentierung von Trajektorien und das Lernen
einer Fertigkeiten Bibliothek studiert. Für eine natürliche Schnittstelle um einem Roboter
neue Aufgaben beizubringen, ist es wünschenswert dass der Benutzer nur die vollständige
Aufgabe demonstrieren muss, ohne sich über alle für die Aufgabe benötigten Fertigkeiten
Gedanken machen zu müssen und ohne händisch die Demonstrationen markieren zu
müssen. Solch eine Schnittstelle erlaubt es nicht nur Nicht-Experten das unterrichten
von Robotern, sondern stellt auch eine günstigere Möglichkeit des Unterrichtens von
Robotern da, denn das Demonstrieren von allen einzelnen Fertigkeiten oder das händische
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Segmentieren und Markieren von Demonstrationen ist zeitaufwendig und teuer. Die hier
vorgestellte Methode lernt gleichzeitig Trajektorien zu segmentieren und die benötigte
Fertigkeiten Bibliothek von unmarkierten Demonstrationen. Zusätzlich zu dieser Segmen-
tierung und Entdeckung von Fertigkeiten, lernt die Methode auch das Zusammenspiel
zwischen einzelnen Fertigkeiten, d.h. sie modelliert wie wahrscheinlich eine bestimmte
Fertigkeit auf eine andere folgt. Dieses zusätzliche Wissen, oder Verständnis, kann zum
Beispiel dafür genutzt werden, das menschliche Verhalten vorherzusagen, um ein intelli-
genteres adaptives Verhalten des Roboters in Mensch-Roboter Szenarien zu ermöglichen.
Die Methode wurde erfolgreich mit mehreren verschiedenen Trajektorien Datensets mit
unterschiedlicher Komplexität evaluiert.

Die zweite vorher erwähnte benötigte kognitive Fähigkeit, Problemlösen, bezieht sich
auf die zweite Fragen und damit den Berechnen Schritt. Im Detail haben wir die Her-
ausforderung des Lernens von algorithmischen Lösungen untersucht, d.h., das Lernen
von abstrakten Strategien, die einfach auf unbekannte Probleminstanzen übertragen
werden können. Dieses Übertragen von abstraktem Wissen und Lösungsstrategien auf
neue Aufgabengebiete ist eine weitere wichtige Eigenschaft von intelligentem Verhalten.
Hierzu untersuchten wir das Lernen von algorithmischen Lösungen, welche durch drei
Anforderungen charakterisiert sind, die die abstrakte Natur der Lösung hervorheben:
das Skalieren auf beliebige Konfigurationen und Komplexitäten von Aufgaben, und die
Unabhängigkeit von sowohl der Datenrepräsentation als auch des Aufgabengebiets. Zu
diesem Zweck haben wir ein neues Modell entwickelt, den Neural Harvard Computer, das
auf Neuronalen Netzwerken mit externen Speichern basiert und dessen modularer Aufbau
von der von Neumann und Harvard Architektur von modernen Computern inspiriert ist.
Dieses Modell ermöglicht das Lernen von abstrakten algorithmischen Lösungen durch
seinen modularen Aufbau und die Trennung des Informationsflusses in Daten und Kontroll-
signale. Die algorithmischen Lösungen werden in einem verstärkendem Lernen Szenario
gelernt und operieren ausschließlich auf den Kontrollsignalen, was die Unabhängigkeit
von der Datenrepräsentation und des Aufgabengebiets ermöglicht. Die Generalisierungs-
und Abstraktionsfähigkeiten des Modells wurde durch das Lernen von 11 verschiedenen
Algorithmen evaluiert, bei denen das Modell verlässlich algorithmische Lösungen mit
perfekter Generalisierung und Abstraktion gelernt hat. Dies ermöglicht Probleme mit einer
deutlich höheren Komplexität zu Lösen als während des Lernens und das Übertragen auf
neue Repräsentationen und Aufgabengebiete.

Letztendlich muss ein intelligenter Roboter in der echten Welt interagieren, was sich
auf den dritten Schritt Anpassen bezieht, die Frage nach effizienter Onlineanpassung.
Um mit der komplexen, dynamischen und oft unstrukturierten echten Welt zurecht zu
kommen, zusätzlich zum Beschäftigen mit anderen Agenten und Menschen, muss der
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Agent die Fähigkeiten haben seine Modelle und Bewegungen während der Interaktion
anzupassen. Diese Onlineanpassung gehört zu den erwähnten physischen Fertigkeiten,
die für intelligentes Verhalten nötig sind. Zusätzlich muss diese Onlineanpassung effizient
im Bezug auf die Anzahl der physischen Interaktionen und Aufgabenunabhängig sein, da
nicht jede Situation vorhergesehen werden kann wenn der Agent oder das Modell kon-
struiert werden. In dieser Thesis studieren wir die Onlineanpassung mit einem biologisch
inspiriertem feuerndem Neuronalem Netzwerk, welches Bewegungen generiert indem
es seine inhärente Dynamik simuliert. Die zugrundeliegenden stochastisch feuernden
Neuronen imitieren das Verhalten von Ortszellen im Hippocampus und ihre dekodierte
Aktivität repräsentiert die geplante Bewegung. Aufgabenunabhängige Anpassung wird
durch intrinsische Motivationssignale erreicht, welche durch kognitive Dissonanz inspiriert
sind und die das Lernen steuern. Diese Signale messen den Unterschied zwischen der
Erwartung des Agenten von der Welt (das aktuelle Modell) und die Beobachtung der
tatsächlichen Welt, und die Onlineanpassung wird durch diese Ungleichheit ausgelöst
und gesteuert. Sample-Effizienz wird durch eine mentale Wiederholungsstrategie erreicht,
die widerfahrende Situationen verstärkt, und welche durch die inhärente Stochastizität
des Modells implementiert ist. Wir haben das Modell zur Onlineanpassung und Bewe-
gungsgenerierung mit einem anthropomorphen KUKA LWR Roboterarm evaluiert, wobei
der Roboter sich an unbekannte Hindernisse anpassen musste während er die Aufgabe
hatte Wegpunkten zu folgen. Die Onlineanpassung erfolgte innerhalb von Sekunden und
von wenigen physischen Interaktionen, während der durchgehenden Interaktion mit der
Umgebung.

Zusammengefasst untersucht diese Thesis drei Schlüsselaspekte von intelligentem Ver-
halten im Bezug auf kognitive und physische Fähigkeiten. Im Detail untersuchten wir
wie auf Neuronalen Netzwerken basierte Modelle benutzt werden können, um die vom
Lernen zu Verstehen, über Lernen zu Berechnen, bis hin zu Lernen Anzupassen gestellten
Forschungsfragen zu untersuchen. Dabei hat jedes Thema seine eigenen Anforderungen
an das Neuronale Netzwerk und die benutzten Lernmethoden. Diese Modularität und
Diversität von Teilroutinen ist ein entscheidender Aspekt, um künstliche Intelligenz zu
erschaffen.
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1. Introduction

The integration of artificial intelligence (AI) technologies in our life, in personal and
social environments as well as at work, already had an immense impact and currently
it seems as there is no end of that development [1–3]. From personal assistants that
help to organize daily routines or work flows, over smart devices for intelligent homes,
to less observable applications like automated loan decisions and surveillance, artificial
intelligence technology is part of the daily life. Notably though, there are two main
limitations of current AI systems: the targeted applications are usually restricted and
specialized with individual solutions, and the seemingly intelligent behaviour is mostly
carried out by software agents without physical interaction.

One major current barrier underlying those limitations is that an intelligent robot has
to interact in the real world, in contrast to aforementioned smart decision systems. This
physical component raises multiple challenges in addition, ranging from the perception and
cognition of the complex environment, over the calculation of a solution to the queried
task, up to the point of executing the appropriate movements. Therefore, intelligent
autonomous agents and especially physical robots require a number of different skills
and abilities, both cognitive and physical, to interact in the real world. In this thesis we
therefore investigated the following three research questions:

1) How can tasks and their structure be taught to a robot in a natural way?

2) How can neural networks learn abstract solution strategies that are independent of
the task complexity, data representation and task domain?

3) How can a robot efficiently adapt its movement during execution with a bio-inspired
stochastic neural network?

These research questions tackle core requirements of an intelligent autonomous agent and
we categorize them into Understand-Compute-Adapt (UCA), in the style of the classical
concept of Sense-Plan-Act (SPA) in robotics. The topics are not intended to implement the
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Figure 1.1.: Illustration depicting the thesis title ’Understand-Compute-Adapt: Neural Networks for
Intelligent Agents’ as the three investigated research questions of cognition, problem solving
and online adaptation linked together by the Understand-Compute-Adapt framework and
the underlying neural network based models.

SPA framework directly, but the UCA framework rather serves as both the separation as
well as the junction of the topics spanned by these questions.

The first limitation of restricted and specialized tasks refers to cognitive skills of the
system and is tackled by the first two research questions. These questions investigate
cognitive abilities related to intelligent behaviour, precisely, the ability of understanding
and abstraction – a crucial feature for intelligent agents [4, 5]. When talking about
intelligent behaviour, we need to clarify the term intelligent. Defining if an artificial
system is intelligent is a fundamental research question, dating back to Alan Turing’s
’turing test’ [6] and John Searle’s ’chinese room’ experiment [7], and this thesis is not
aiming at solving this question. Rather, the question investigated here is how AI systems
can learn more intelligent behaviour, where intelligent here refers to the ability to make
sense of the perceived input and to learn more general solutions.

In more detail, the agent needs to have an ability of cognition in order to make sense
of its perceived input and to learn a transferable solution. Both of these features are
characterized by the concept of abstraction.

Starting with the first question, an intelligent agent should be equipped with mechanisms
that allow to teach it structured tasks in a natural way. In detail, when teaching a robot
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a new task, the user should be able to demonstrate the full task to the robot, rather
than being forced to show all individual skills that may occur within the whole task.
An intelligent robot learns simultaneously to segment these raw demonstrations into
reoccurring patterns and a skill library to reproduce those. By showing only the full task
execution, without worrying about individual skills, the teaching interface is not only
more natural and usable by non-experts, it is also cheaper in terms of data acquisition
and required time. Moreover, the agent can additionally learn relations between skills,
like which skill is likely to follow another skill. This task structure learning is beneficial
for using the learned skill library in novel situations by, for example, reducing the search
space for planning algorithms. Additionally, this understanding may also be used in
human-robot-interaction scenarios to predict the human behaviour and allowing the robot
a more intelligent adaptive behaviour.

The described cognitive understanding, i.e., the abstract knowledge inferred from the
raw data, helps the agent to think about possible actions, with their effects, for solving a
given task. This leads to the second question, on how abstract solution strategies can be
learned and links to the next step within our UCA frame, namely the Compute part. Here,
Compute refers to the ability of cognitive planning of abstract solutions, a form of thinking
or computing, i.e., learning abstract structured solutions that can be directly transferred
to novel problem instantiations. In more detail, the agent is equipped with mechanisms
that allow to learn algorithmic solutions with strong abstraction features. The abstract
nature of the algorithmic solutions is characterized by the ability of the solution to scale
to arbitrary task configurations and complexities, as well as the independence from both
the data representation and the task domain. Having learned such general routines for
solving certain problem categories, enables the agent to compute solutions efficiently and
reliably – a step towards more human-like learning and intelligence [5].

After understanding the input and computing a solution to a given problem, a physical
agent ultimately has to interact in the real world to solve the task. As the real world is
dynamic, complex and in general not exactly as the agent believes it is, meaning the agent’s
reception of the real world differs from its cognitive models of the world, online adaptation,
to be able to alter its movements and models while interacting in the world is another
crucial ability – investigated by the third research question and refers to the third UCA
part Adapt. Here, online adaptation focuses on altering a probabilistic model for motion
planning to adapt to changes in the environment represented as unknown obstacles. This
online adaptation is task-independent and utilizes an intrinsic motivation signal for that
purpose. In combination with a mental replay strategy, to intensify experienced situations,
the adaptation happens within few seconds and from few physical interactions – another
important feature for intelligent robots equipped with lifelong learning capacities.
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In summary, this thesis investigates three topics tackling core requirements of an intelligent
autonomous agent – skill discovery, learning abstract solutions, and online adaptation –
and explores how these can be implemented with neural network based models.

1.1. Overview

In this section, the three main topics of this thesis, spanned by the three investigated
research questions, are summarized and presented in the UCA-based categorization. In
particular, the main findings on how the aforementioned abilities for intelligent behaviour
can be implemented and learned in neural network based models are presented.

1.1.1. Understand - Unsupervised Skill Discovery

Integrating robots in complex everyday environments requires a multitude of problems
to be solved. One crucial feature among those is to equip robots with a mechanism for
teaching them a new task in an easy and natural way. When teaching tasks that involve
sequences of different skills, with varying order and number of these skills, it is desirable
to only demonstrate full task executions instead of all individual skills. For this purpose,
we propose a novel approach that simultaneously learns to segment trajectories into
individual skills and these skills to reconstruct the data from unlabelled demonstrations
without further supervision. Moreover, the approach learns a skill conditioning that can be
used to understand possible sequences of skills, a practical mechanism to be used in, for
example, human-robot-interactions for a more intelligent and adaptive robot behaviour.
The Bayesian and variational inference based approach is evaluated on synthetic and
real human demonstrations with varying complexities and dimensionality, showing the
successful learning of segmentations and skill libraries from unlabelled data.

This topic is described in Chapter 2 and is based on our work presented in [8].

1.1.2. Compute - Learning Algorithmic Solutions

A key feature of intelligent behaviour is the ability to learn abstract strategies that scale
and transfer to unfamiliar problems. An abstract strategy solves every sample from a
problem class, no matter its representation or complexity – like algorithms in computer
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science. Neural networks are powerful models for processing sensory data, discovering
hidden patterns, and learning complex functions, but they struggle to learn such itera-
tive, sequential or hierarchical algorithmic strategies. Extending neural networks with
external memories has increased their capacities in learning such strategies, but they
are still prone to data variations, struggle to learn scalable and transferable solutions,
and require massive training data. We present the Neural Harvard Computer (NHC), a
memory-augmented network based architecture, that employs abstraction by decoupling
algorithmic operations from data manipulations, realized by splitting the information flow
and separated modules. This abstraction mechanism and evolutionary training enable the
learning of robust and scalable algorithmic solutions. On a diverse set of 11 algorithms
with varying complexities, we show that the NHC reliably learns algorithmic solutions with
strong generalization and abstraction: perfect generalization and scaling to arbitrary task
configurations and complexities far beyond seen during training, and being independent
of the data representation and the task domain.

This topic is described in Chapter 3 and is based on our work presented in [9, 10].

1.1.3. Adapt - Efficient Online Adaptation

Autonomous robots need to interact with unknown, unstructured and changing envi-
ronments, constantly facing novel challenges. Therefore, continuous online adaptation
for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes
in the environment, the constraints, the tasks, or the robot itself are crucial. In this
work, we propose a novel framework for probabilistic online motion planning with online
adaptation based on a bio-inspired stochastic recurrent neural network. By using learning
signals which mimic the intrinsic motivation signal cognitive dissonance in addition with a
mental replay strategy to intensify experiences, the stochastic recurrent network can learn
from few physical interactions and adapts to novel environments in seconds. We evalu-
ate our online planning and adaptation framework on an anthropomorphic KUKA LWR
arm. The rapid online adaptation is shown by learning unknown workspace constraints
sample-efficiently from few physical interactions while following given way points.

This topic is described in Chapter 4 and is based on our work presented in [11–14].
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2. Skill Discovery from Raw Trajectories

In this chapter we are going to investigate the first research question related to the topic
Understand, i.e., the questions of how new tasks and their structure can be taught to a
robot in a natural way. Therefore, we investigate the challenge of simultaneously learning
to segment unlabelled trajectories and the required skills to reproduce them.

2.1. Introduction

While pattern recognition, the ability to find order and regularities in noisy observations, is
a necessary skill for intelligent behaviour, learning to abstract and transfer that information
is a crucial ability that goes beyond pattern recognition [5]. Such cognition abilities are
also helpful to employ intelligent robots into our everyday life, by lowering the barrier to
program the desired robotic behaviour. While often trained experts can program robots
with complex behaviour, this process requires a lot of expert knowledge in different
domains, is cost intensive and often limited to special tasks or domains. Instead, it is
easier to teach the robot the desired behaviour instead of programming it and is the
main motivation behind the learning from demonstrations paradigm [15]. Teaching the
robot by showing the desired behaviour is not only a more natural and intuitive way of
programming the robot, but it also drastically reduces the required expert knowledge of
the system and time.

Typically demonstrations consist of single tasks, and one skill, or policy, per such task is
learned from these demonstrations. Fore more complex tasks, that typically consist of
multiple subtasks, the task is often either broken down into demonstrated subtasks or
the demonstrations are segmented and labelled afterwards. Both methods again require
specific knowledge, are time consuming, and scale poorly with the number of (sub)tasks
and their arrangements. Subtasks can appear within a demonstration as well as across
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Figure 2.1.: Snapshot from the data collection process from the human teaching experiment. The
human was instructed to move 1-3 cubes from one position to another, while the hand
position was tracked. These unlabelled hand position trajectories consisting of a variable
number of moved cubes are used to learn to segment these into skills and the skills
simultaneously.

demonstrations and it can be challenging to decide where to cut or which segments can
be considered the same subtask.

A more natural approach is to just demonstrate the full tasks, and let the system automati-
cally learn to segment the full demonstration into subtasks [16, 17]. Such decompositions
of movements into different phases were also detected in the primary motor cortex of
monkeys performing reaching tasks [18]. When equipping robots with such an automatic
segmentation technique, teaching tasks which consists of a sequence of skills becomes eas-
ier for non-experts. Furthermore, by learning the segmentation, the robot can understand
the demonstrated tasks by, for example, learning important (sub)goals or which skills
are likely to follow each other. This approach can therefore also be used in human-robot
interaction [19] by, for example, learning the sequence of movements of a human, and
using this knowledge to predict the humans future behaviour, which allows for a more
intelligent and adaptive robot behaviour.
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Figure 2.2.: (a) Graphical model representation of the relationship between the N -dimensional latent
trajectory description z = {zd, zs}, the sub-trajectory τ̄ and the full trajectory τ . (b)
Sketch of the SKID implementation with the learned neural networks in orange. The
recurrent neural network (RNN) and the output layer learn the distribution of zd given
the, potentially p transformed, trajectory τ . Then zd and the raw trajectory are used in a
spatial transformer (ST) to extract the sub-trajectory τ̄ . This sub-trajectory is used to
learn the skill library and the approximated sub-trajectory τ̂ is added to the reconstructed
trajectory τ̃ with a spatial transformer. This process is repeated N times, iteratively
segmenting the full trajectory into sub-trajectories utilizing the simultaneously learned
skill library. The two inlays show examples from the 1D synthetic task, where the left
inlay shows the original trajectory τ in blue and the reconstructed trajectory τ̃ in red.
The coloured background indicates the learned skill zs used to approximate this segment
of size zd. The right inlay shows the learned skill library.

2.1.1. Contribution

Here, we propose a novel approach for learning simultaneously to segment trajectories
into skills and these skill from unlabelled trajectories without supervision. Our approach
is based on the variational autoencoder (VAE) [20] framework and the iterative idea
of AIR [21] to explain sub-parts of the given data per iteration. In contrast to related
approaches [22, 23] that learn skills with VAEs from single-skill trajectories, our approach
operates on trajectories with a varying and unknown number of skills per demonstration
and learns to segment the trajectory and the skill library simultaneously.

Furthermore, the proposed method requires less initial knowledge like heuristic cutting
points [16], expert domain knowledge [24], segmented and labelled demonstrations [25],
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pretraining [26], and segmentation and skill library are trained simultaneously instead of
subsequently [17, 27, 28] to use the skill knowledge for segmentation.

We show that our approach can be used to learn skills from unlabelled demonstrations of
full task executions involving a varying and unknown number of skills per demonstration,
and that the learned model can also be used to understand the relation between skills
and, hence, predict possible future skills for adaptive behaviour.

2.2. Discovering Skills from Raw Trajectories

The proposed skill discovery (SKID) approach is inspired by the AIR [21] model for images.
AIR is a generative model that learns to reconstruct visual scenes by learning the properties
of individual objects to render the scene. We take this approach as inspiration to construct
an AIR-like generative model for trajectories, that learns to segment raw trajectories
into skills and the individual skills to reconstruct the demonstrations simultaneously and
without supervision.

We assume that a trajectory τ is composed of N sub-trajectories τ̄ that we call skills.
Like AIR [21] did for images, we take a Bayesian perspective of trajectory understanding
and treat it as inference in a generative model. In general, for a given trajectory τ , the
model parametrized by θ is given by pτ

θ(τ |z)pz
θ(z), where the prior pz

θ(z) over the latents
z captures the trajectory assumptions, and the likelihood pτ

θ(τ |z) describes how the latent
trajectory description is composed into the full trajectory. We are interested in recovering
the trajectory description z, given by computing the posterior

p(z|τ) = pτ
θ(τ |z)pz

θ(z)/p(τ) . (2.1)

As we assume a trajectory τ consists of N sub-trajectories or skills, the trajectory description
is structured into a sequence of zi. Each zi is a structure that describes the properties
of one skill, here, duration and skill type, i.e., z = {zd, zs}. The duration of a skill zd

is used for the segmentation and the skill type zs is a discrete identifier for each skill.
Figure 2.2(a) shows this relation between τ and zi in a graphical model. The generative
model is given as

pθ(τ) =
N∑︂

n=1

∫︂
pz

θ(zn|zn−1)pτ
θ(τ |z)dz , (2.2)

2. Skill Discovery from Raw Trajectories 9



where N is given by the sequence of zn
d summed up until a given threshold is reached, i.e.,∑︁N

n=1 zn
d ≥ tϵ. The condition of zn on zn−1 allows to learn a conditional sequencing of the

skills, i.e., learning which skills are likely to follow after each other. This conditioning is
necessary to sample valid trajectories from the generative model, i.e., trajectories without
big jumps between the individual skills. Additionally, by learning this conditioning, the
model can be used to understand the presented task trajectories, e.g., like predicting which
skills are likely to follow each other for adaptive robot behaviour, or be used in planning
algorithms when solving new tasks with the learned skills.

2.2.1. SKID Instantiation

We use an amortized variational approximation of the true posterior p(z|τ) which learns a
parametrized distribution qϕ(z|τ) by minimizing the Kullback–Leibler divergence between
KL(qϕ(z|τ)||p(z|τ)). The inference model qϕ(z|τ), parametrized by ϕ is realized as a
recurrent neural network to take previous zd’s into account, i.e., allowing the model to
remember which part of the trajectory have been explained already. Before the trajectory
τ is fed into the recurrent network, it is preprocessed by a function p. In our experiments,
we tested with p as the identity function and p outputting the mean velocity of τ . The
mean velocity performed slightly better and was used in all evaluations. The skill duration
zd is modelled with a Gaussian distribution with a given prior, i.e., zd ∼ N (µd, σ2

d), fed
into a sigmoid activation to get the duration as the fraction of the trajectory length.

To extract the part of the trajectory τ indicated by zd in a differentiable way, a spatial
transformer (ST) [29] is used. Each skill duration zd is used starting with the remaining
part of the trajectory, i.e., the part of the trajectory that has not been explained by all
previous zd. This extracted sub-trajectory τ̄ is then used as the input for learning the
skill library, the generative model parametrized by θ. Here, we use discrete β-variational
autoencoder (VAE) [20, 30, 31] with skip-connections [32] using the continuous gumbel-
softmax/concrete approximation [33, 34] for the discrete skill type zs. This realization
of the skill library is very general, which allows to capture any kind of trajectories and is
trainable end-to-end within the SKID framework. Similar VAE based approaches but for
single skill trajectories were successfully used in [22, 23]. The condition of zn on zn−1 is
realized as an additional neural layer, with zn−1 as input and the output is added to the
logits of the encoder network before sampling zn. The output of the skill library is the
sub-trajectory τ̂ approximated with one activated skill, which is then added to the overall
approximated trajectory τ̃ by a spatial transformer. This iterative process is repeated N
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times until the sum of zn
d reaches a given threshold tϵ, reconstructing a fraction zd of the

full trajectory τ per step. The full framework is shown in Figure 2.2(b).

2.2.2. SKID Learning

Learning is done by jointly optimizing the generative model and the inference network,
i.e., the parameters θ and ϕ, to maximize the evidence lower bound (ELBO) given as

L(τ ; θ, ϕ) = Eqϕ(z|τ)
[︁
logpθ(τ, z)

qϕ(z|τ)
]︁

= Eqϕ(z|τ)
[︁
logpθ(τ |z)

]︁
− KL(qϕ(z||τ)|p(z)) , (2.3)

with the parametrized likelihood pθ(τ |z), the parameterized inference model qϕ(z|τ)
and the latent prior p(z). The first term aims at reconstructing the data while the KL-
divergence forces the model to stay close to a given prior. Due to the reparametrization
trick for the Gaussian distributed zd and the gumbel-softmax/concrete distributed zs, the ϕ
parametrized inference network and the θ parametrized generative model, can be learned
jointly via stochastic gradient descent.

To enforce disentangled representations, the β-VAE [30] was introduced, which weights
the KL term by the hyperparameter β. This balancing was further refined by adding
capacity terms to the KL [31, 35], which can be seen as a slack variable allowing some
distance in the KL, and which is increased during training. Adding these to Equation 2.3
and separating the different latent variables [35], we get our learning objective as

L(τ ; θ, ϕ) = Eqϕ(z|τ)
[︁
logpθ(τ |z)

]︁
(2.4)

− γd|KL(qϕ(zd||τ)|p(zd))− Cd|
− γs|KL(qϕ(zs||τ)|p(zs))− Cs| ,

with γd, γs constant scaling factors, and Cd, Cs the information capacities, i.e, the allowed
slack.

To tighten the lower bound estimate and get a more complex implicit distribution, we
use the importance weighted autoencoders (IWAE) [36] objective. This formulation uses
K samples of the latent variables and weights the according gradients by their relative
importance.
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2.3. Experiments

In all experiments, SKID is presented unlabelled trajectories and learns to segment those
into skills and the required skills simultaneously. The different datasets vary in their
complexity in multiple ways: artificially created or real world recorded trajectories, the
dimensionality of the trajectories, the number of subsequent skills N , or the total number
of different skills. With these different datasets, we test the capacity of SKID to uncover
the underlying latent representation from various complex data.

2.3.1. 1D Synthetic

This dataset consists of 1-dimensional trajectories with up to N = 3 skills per trajectory, and
with a 6 different skills. Here skills refer to reaching specific locations. Data was generated
by sampling 10.000 trajectories for each sequence length. The individual locations per
trajectory are sampled uniformly and Gaussian noise is added to each skill location. The
resulting trajectory is generated by creating a minimum jerk trajectory connecting all the
locations. To create a diverse dataset, we adapt a trajectory augmentation method [22] to
generate the trajectory τ as:

τ = N (τo, aB†) , (2.5)

with the original trajectory τo, the constant a and B† the Moore-Penrose pseudo-inverse
of M , where M is set to

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0

0 2 −1 0
...

0 −1 2 . . . 0
... 0 . . . . . . −1

0 · · · 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.6)

to smoothly propagate the disturbances along the trajectory.
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2.3.2. 3D Synthetic

This dataset consists of 3-dimensional trajectories with up to N = 3 skills per trajectory,
with a 12 different skills. Thus, the dataset is more complex in contrast to the 1-dimensional
not only in the dimensionality of the trajectories, but also in the number of skills that need
to be learned. Generating the dataset was done similar to the 1-dimensional dataset.

2.3.3. 2D Human-Robot-Interaction

This dataset is taken from a human-robot-interaction (HRI) scenario presented in [37],
where we use the tracked hand movements of the human to learn the skills used by
the human. As SKID also learns the conditioning or sequencing of the skills, this can
be used to predict the human behaviour for a more intelligent robot adaptation in such
collaborative scenarios. The dataset was created by taking 1000 random cuts at the four
known goal locations, such that each trajectory consists of 2 to 5 of those locations, and
use the described trajectory augmentation method to create 30.000 trajectories in total.
The augmented dataset consists of two-dimensional x, y trajectories with up to N = 4
subsequent skills, and ideally 5 different skills to learn. Due to the heuristic cuts and
human variation, the actual dataset includes samples with N > 4, and has the biggest
variability within skills and the biggest noise across the datasets.

2.3.4. 2D Teaching

For this dataset, we recorded the wrist position of a human during an object manipulation
task, shown in Figure 2.1. The human was instructed to move between 1 and 3 boxes
per demonstration between the four locations. SKID learns the required skills for such
manipulation tasks, than can be used for planning by sequencing the discovered skills, and
to directly teach the skills to the robot as task space trajectories. The learned conditioning
can be used, for example, to reduce the search complexity of planning algorithms. In total
we recorded 223 demonstrations and used the trajectory augmentation method described
in the synthetic datasets to create a dataset of 5000 trajectories for each number of moved
boxes. Thus, the resulting dataset consists of two-dimensional x, y trajectories with up to
N = 5 subsequent skills and 12 different skills to learn.
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2.3.5. Experimental Setup

Learning is done by optimizing Equation 2.5 with the Adam optimizer [38] with learning
rate α = 1e−3, weight decay λ [39] and variance normalization is applied. The capacities
Cd, Cs are linearly increased during training. The mini-batch size is set to 64 and for the
IWAE importance sampling k = 20 samples are used. The recurrent neural network that
learns zd is a vanilla recurrent network with 64 neurons, and the threshold tϵ = 0.9. The
skill library VAE encoder and decoder consist of two hidden layers with [30, 15] neurons
with tanh activations and skip connections within the decoder. For the gumbel-softmax
encoded zs the temperature is decreased from 1.5 to 0.15 over 30.000 iterations with a
cosine schedule, using the continuous approximation for training but hard one-hot vectors
for evaluation. Trajectories are normalized to 200 steps and the sub trajectories extracted
by the spatial transformer consist of 50 steps. The remaining best performing parameters
for all datasets are given in Table 2.1.

2.3.6. Results

The goal of SKID is to simultaneously learn to segment trajectories into a varying number
of sub-trajectories (skills) and these skills from unlabelled trajectories. Additionally, as
part of the skill library, a skill conditioning is learned, that encodes how likely a certain
skill follows after another skill. In Figures 2.3 & 2.4 the results on the different datasets
are summarized, showing the evaluation of the test model on held-out data and using
hard one-hot samples of zs.

Table 2.1.: Hyperparameters used in the Experiments.
1D syn. 3D syn. 2D HRI 2D teaching

λ 1e−1 5e−1 2e−1 7e−1

Cd (0, 2, 30k) (1, 5, 30k) (0, 3, 30k) (1, 5, 30k)
Cs (0, 1, 30k) (0, 2, 30k) (0, 1, 30k) (0, 1, 30k)
γd 30 50 30 50
γs 10 50 10 30
µd 0 0 0.5 0
σd 1 1 1 1

VAE σ 0.02 0.02 0.03 0.02
pθ σ 0.1 0.02 0.1 0.02
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Figure 2.3.: Showing the learned segmentations and skill libraries by SKID for the four datasets. A
shows segmented and reconstructed sample trajectories. Line colours indicate trajectory
dimensions, where solid lines show the original data and dashed lines show the reconstruc-
tions. The coloured area highlights the segmentation and the colour indicates which skill
is used for that segment. B shows the learned skill library with one panel per trajectory
dimension and one colour for each skill.

Segmentation & Skill Library

The segmentation and skill library learning results for all four datasets are shown in
Figure 2.3, where each row corresponds to one dataset. The plot shows one exemplary run
for each dataset. In the left part of the figure (A), different random trajectories are shown
along with their reconstruction and segmentation. Line colours indicate the different
dimensions of the trajectories, where solid lines show the input trajectory τ and dashed
lines show the reconstructed trajectory τ̃ . Shaded areas indicate the skill used for that
segment, where the according learned skills are shown in the right part of the figure (B),
with one panel per trajectory dimensions and one coloured line per skill.

For all datasets SKID is able to learn to segment given trajectories into skills and the
required skill library simultaneously without supervision. Learning the underlying skills
and their segmentation from full plan executions without additional knowledge and
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Figure 2.4.: Showing the learned skill conditioning by SKID for the four datasets. A shows two
examples of learned skills and the sequencing of the subsequent skills in one dimension,
where the strength of the plotted skill indicates how likely that skill follows the first one.
B shows the learned conditioning for all skills as a matrix heatmap, encoded as how likely
the skill in column j follows the skill in row i.

feedback, enables users to teach a robot sequential tasks in a natural way by just executing
the full task, without having to specify and demonstrate the individual skills. This learned
knowledge can then be used by the robot to, for example, solve new task instantiations by
planning with the learned skills.

Skill Conditioning

In addition to learning the segmentation and skill library, SKID also learns a skill condi-
tioning. This learned conditioning and sequencing is shown for all datasets in Figure 2.4,
with each dataset in one row. In the left part (A), two examples are shown in the two
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panels. In each panel, first one learned skill is plotted followed by all learned skills, but
with the line intensity scaled by how likely this skill follows the first one. This sequencing
shows that SKID is able to learn which skills are likely to follow each other, and that, for
example, jumps between subsequent skills are unlikely. The right part of the figure (B)
shows this learned skill conditioning for the whole skill library with a matrix heatmap,
where the values indicate how likely the skill in column j follows the skill in row i.

SKID is able to learn this skill conditioning, i.e., task structures, for all datasets. This
information can additionally be used, for example, to support the planning for new tasks
with the learned skills by reducing the planning space. Another possibility for human-
robot-interaction scenarios, the robot can learn to understand the movements of the
human, and use the learned structure to predict the future behaviour of the human in
order to adapt its own behaviour.

2.3.7. Limitations

While SKID is able to learn the segmentation, conditioning and skill library from different
datasets with varying complexities, the stochastic variational inference setting is chal-
lenging. Not all runs achieve perfect results, where the major problem that occurs is that
the discrete VAE used for the skill library sometimes misses one or a few skills, while the
segmentation is still perfect. Due to the continuous approximation during training, the
training model can mix multiple skills to achieve good performance, the test model with
hard one-hot vectors for the skills type zs can only use one skill, and thus, this results in a
sub-perfect performance. While using lower temperatures for the gumbel-softmax during
training can help with this issue, the lower temperatures create higher variance in the
gradients.

As the number of skills has to be specified for the skill library, another possibility is to use
more skills than required, such that unused latent dimensions matter less. This strategy
was successful in some experiments, but with more potential skills, the segmentation
becomes worse, as the model tends to learn too complex skills, i.e., combining multiple
skills into one, as the higher number of available skills reduces the necessity of finding the
simplest individual skills.
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2.4. Conclusion

Here we proposed a novel Bayesian approach to learn trajectory segmentation from
unlabelled raw trajectories. The SKID framework builds on a hierarchical VAE structure
and learns simultaneously to segment trajectories into reoccurring skills, the required
skills, and the temporal relation between these skills. These features were successfully
shown on multiple datasets with varying complexities, including two datasets with motions
tracked from a human teacher.

Such automatic skill discovery can be used as a natural interface for teaching a robot
complex tasks consisting of multiple skills. In addition with the learned skill conditioning,
the framework can also be used to analyse and predict the behaviour of a human, or
another robot, for a more intelligent adaptive behaviour of the agent.

Moreover, the framework is not limited to robotic or human movement trajectories, but
can be applied to any kind of trajectories, that consist of reoccurring patterns and opens
interesting future research. Another promising direction could tackle the limitation of
the offline setting, i.e., a full trajectories are used for segmentation and learning, by
integrating online change point detection [40, 41] into the SKID framework and feeding
the trajectory step by step to allow the processing of longer tasks.
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3. Algorithmic Generalization of Neural
Computers

The following chapter investigates the second research question, namely, the question
how abstract strategies in form of algorithmic solutions can be learned, relating to topic
Compute. Abstraction here refers to the ability to find solutions that scale to arbitrary task
complexities, and that are independent from the data representation and task domain.
Such abstract solutions are beneficial for an intelligent agent in order to cope with
unforeseen situations.

3.1. Introduction

A crucial ability for intelligent behaviour is to transfer strategies from one problem to
another, studied, for example, in the fields of lifelong and transfer learning [42–45].
Learning and especially deep learning systems have been shown to learn a variety of
complex specialized tasks [46–51], but extracting the underlying structure of the solution
for effective transfer is an open research question [44].

The key for effective transfer, and a main pillar of (human) intelligence, is the concept
of structure and abstraction [4, 5, 52]. To study the learning of such abstract strategies,
the concept of algorithms like in computer science [53] is an ideal example for such
transferable, abstract and structured solution strategies.

An algorithm is a sequence of instructions, which often represent solutions to smaller
subproblems. This sequence of instructions solves a given problem when executed, inde-
pendent of the specific instantiation of the problem. For example, consider the task of
sorting a set of objects. The algorithmic solution, specified as the sequence of instructions,
is able to sort any number of arbitrary classes of objects in any order, e.g., toys by colour,
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waste by type, or numbers by value, by using the same sequence of instructions, as long as
the features and comparison operators defining the order are specified.

Learning such structured, abstract strategies enables the effective transfer to new domains
and representations as the abstract solution is independent of both. In contrast, transfer
learning usually focuses on improving learning speed on a new task by leveraging knowl-
edge from previously learned tasks, whereas algorithmic solutions do not need to (re)learn
at all, only the data specific operations need to adapt. In other words, the sequence of
instructions does not need to be adapted, only the instructions, i.e., the solutions to smaller
subproblems. Moreover, such structured abstract strategies have built-in generalization
capabilities to new task configurations and complexities, and can be interpreted better
than, for example, common blackbox models like deep end-to-end networks.

3.1.1. The Problem of Learning Algorithmic Solutions

To study the learning of such abstract and structured strategies, we investigate the problem
of learning algorithmic solutions which we characterize by three requirements:

• R1 – generalization and scaling to different and unseen task configurations and
complexities

• R2 – independence of the data representation

• R3 – independence of the task domain

Picking up the sorting algorithm example again, R1 represents the generalization and
scaling properties, which allow to sort lists of arbitrary length and initial order, while
R2 and R3 represent the abstract nature of the solution. This abstraction enables the
algorithm, for example, to sort a list of binary numbers while being trained only on
hexadecimal numbers (R2). Furthermore, the algorithm trained on numbers is able to
sort lists of strings (R3). If R1 – R3 are fulfilled, the algorithmic solution does not need to
be retrained or adapted to solve unforeseen task instantiations – only the data specific
operations need to be adjusted.

Earlier research on solving algorithmic problems has been done, for example, in grammar
learning [54–56], and is becoming a more and more active field in recent years outside of
it [57–71], with a typical focus on identifying algorithmic generated patterns or solving
algorithmic problems in an end-to-end setup [57–66], and less on finding algorithmic
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solutions [67–71] that consider the three discussed requirements R1 – R3 for generalization,
scaling and abstraction.

While R1 is typically tackled in some (relaxed) form, as it represents the overall goal
of generalization in machine learning, the abstraction abilities R2 and R3 are missing.
Additionally, most algorithms require a form of feedback, using computed intermediate
results from one computational step in subsequent steps, and a variable number of
computational steps to solve a problem instance. Thus, it is necessary to be able to
cope with varying numbers of steps and determining when to stop, in contrast to using a
fixed number of steps [60, 72], and to be able to re-use intermediate results, i.e., feeding
back the models output as its input. These features make the learning problem even more
challenging.

3.2. The Neural Harvard Computer

The proposed Neural Harvard Computer (NHC) is a modular architecture that is based
on memory-augmented neural networks [54–60, 62, 63, 66–68, 72–78] and inspired
by modern computer architectures (see Figure 3.1 for a sketch of the NHC). Memory-
augmented networks add an external memory to a neural network, that allows to separate
computation and memorization – in classical neural networks both is encoded in the
synaptic weights.

The external memory can be realized differently, e.g., as a memory matrix [59], tape [62],
or stack [58], and the so called controller network can write and read information through
a defined interface, that controls the memory access, e.g., moving the head one step to
the right for a tape memory, or pop the top information in a stack memory. In the NHC
the external memory is realized as a matrix and interaction with the memory is done
via write and read heads, similar to the Differential Neural Computer [59]. These heads
interact with the memory by writing or reading information into or from the memory
matrix, where each row corresponds to a memory location with a specified word size, i.e.,
length of the information vector.

Information Split Learning algorithmic solutions requires the decoupling of algorithmic
computations from data dependent manipulations and domain. Therefore, an abstraction
level is introduced by dividing the information flow into two streams, data d and control
stream c. Like the introduction of external memories to neural networks helps to separate

3. Algorithmic Generalization of Neural Computers 21



Memory

prev. write gate

free gates

read modes

data memorycontrol memory

write

prev. write

prev. erase

read

read data

read

prev

write data

H1 H2 B F P C

H1 H2 B F P C

usage

temporal
linkage

ancestry
linkage

Algorithmic modules

Controller

Bus

data
control

previous
timestep write read 1 read 2

write

Input

ALU

Figure 3.1.: The neural harvard computer architecture. Information flow is divided into data
(green) and control (orange) streams. The modules inside the light grey area – the
controller, the memory and the bus – are learning the algorithmic solution on the control
stream, whereas the data modules are either learned beforehand or hand-designed. The
algorithmic solution operates solely on the control stream to steer the data access and
manipulation, whereas the learning signal can be provided on any connection in the
architecture (data or control) due to the evolution based training. Inside the memory
module the learnable interfaces which control the data access to the two memory matrices
are shown. Sign and magnitude of vectors are shown as the colour and size of the boxes
and circles.

computation and memorization, the information flow split helps to separate algorithmic
computations and data specific manipulations.

This information split induces two major features of the NHC: (1) the split into data
modules that operate on the data stream d and algorithmic modules that operate on the
control stream c, and (2) the introduction of two coupled memories. The algorithmic
modules operate on the control stream c, i.e., AlgModule(c) −→ c, whereas the data
modules Input and ALU are operating on the data stream d, i.e., DataModule(d, c) −→ d, c.
They create an abstract interface and separation between algorithmic computation and
data specific processing. While the Input module receives the external data and provides
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algorithm specific control signals, the ALU receives data and control information to
manipulate the data to create new data – hence the name arithmetic logic unit – that is
fed back to Input to be available in the next computation step. These two modules are
data specific and need to be adapted for a new data representation or domain.

The Algorithmic Modules consists of the Controller, Memory and Bus. These modules
form the core of the NHC (see Figure 3.1) and are responsible for encoding and learning
the algorithmic solution based on the control stream c.

The Controller receives the control signals from the Input and the information read
from the memory in the previous step – depending on the task to learn, it can also receive
feedback from the Bus and ALU. It learns an internal representation of the algorithm state
that is send to the Memory and Bus modules.

The Memory module uses this representation in addition to the control signals from
the Input to learn a set of interfaces for interacting with the memory matrices. These
learned interfaces control the write and read heads and hence, what information is
accessed. First the locations read in the previous step are potentially updated (prev), then
new information is written via the write heads (write), and finally the read heads read
information (read) that is send back to controller and the Bus. Write and read heads are
using hard decisions, i.e., each head interacts with one memory location.

The abstraction introduced by the information split also creates the necessity to store
data and control information separately. Therefore, the Memory module uses two memory
matrices M c : N×C and Md : N×D to store the control and data information respectively,
with N locations, C and D the word size accordingly. The two memories are coupled
such that in each step the same locations are accessed. This allows to store algorithmic
control information alongside the data information. New information is written via the
write heads to unused memory locations, and locations can be freed by free gates to be
reused. For reading information from the memory, there are several read modes to steer
the read heads.

The HALT modes move the read head to the previously read location of the associated
head. For example, with two read heads, each head can use two modes H1 and H2 to
move to the location previously read by the corresponding head.
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To read data in the order of which it was written, the DNC introduced a temporal linkage
mechanism that keeps track of the order of written locations. The NHC uses a simplified
version of this temporal linkage. This temporal linkage provides two read modes, one to
move the read head forward to the location that was written next (F), and one to move
the head backwards to the location that was written before (B).

Algorithms often require hierarchical data structures or dependencies. To provide such
dependencies, the NHC employs an ancestry linkage mechanism. This mechanism keeps
track for each written location, which location was read before. Therefore, this mechanisms
provides two read modes, one to move the read head to the parent (P), the location that
was read before, and one to move the read head to the child (C), the location that was
written after.

The Bus combines the representation learned by the Controller with the information
read out from the Memory to produce the control signal that is send to the ALU, indicating
which operation to apply on the read data. By using the information read from memory,
the Bus can incorporate this new information in the same computational step.

3.3. Learning Algorithmic Solutions

For evaluating the proposed NHC on the three algorithmic requirements R1 – R3, a diverse
set of algorithms was learned and the solutions were tested on their generalization, scaling
and abstraction abilities.

The 11 learned algorithms solve search, plan, addition, sorting, evaluating arithmetic
expressions, and sequence retrievals problems. In Figure 3.2 all 11 algorithms are sketched
with their pseudocode and examples (more details can be found in Section 3.6).

Learning is done in a curriculum learning setup [79], where the complexity of presented
samples increases with each curriculum level. During learning, samples up to curriculum
level 10 are considered, with an additional level 11 that samples from all previous levels.
Generalization and scaling is tested on complexities up to level 1000. The direct transfer
is tested by transferring the learned solutions to novel problem representations.
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stack.push(o)
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right = stack.pop()
left = stack.pop()
r = compute(left, o, right)
stack.push(r)

r = stack.pop()
return r
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Input : Start and goal state (s0, g)
Output: BFS traversal (+ backtracking)
unexplored = [s0], su = ?, output = [ ]
while su 6= g do

sn = unexplored.popLeft()
// a 2 A(sn) (search+ & plan+)

for a 2 A do
su = apply(sn, a)
unexplored.push(su)
output.push((sn, a))

// additional for plan & plan+

sn = g
while sn 6= s0 do

sn = parent(sn)
output.push((sn, nop))

return output

1

complexity:  steps

Figure 3.2.: Overview of the learned algorithms. All considered algorithms to learn are shown
with their pseudocode, how their curriculum level complexity is defined, how the step
complexity scales with the level, and examples from indicated levels. Note, the step
complexity indicates the runtime complexity and only considers the steps after the input
data is shown, neither taking the complexity of the data manipulation into account, nor
the structure learning required while the input data is presented.

3.3.1. Learning Procedure Overview

The algorithmic modules, encoding the algorithmic solution, are learned via Natural
Evolution Strategies (NES) [80]. In each iteration t, a population of P offspring (altered
parameters θo

t ) is generated, and the parameters are updated in the direction of the best
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performing offspring. Parameters are updated based on their fitness, a measurement
that scores how well the offspring perform. Such optimizers do not require differentiable
models, giving more freedom to the model design, e.g., using non-differentiable hard
memory decisions [63] and instantiating the modules freely and flexible.

An update at iteration t+1 of the parameters θ with learning rate α and search distribution
variance σ2 is performed as θt+1 = θt + α∇θt with the sampled NES gradient given as

∇θtEϵ∼N(0,I) [f(θt + σϵ)] ≈ 1
Pσ

P∑︂
o=1

f(θo
t )ϵi .

Hence, parameters are updated based on a performance-weighted sum of the offspring.
Here, the fitness function f(·) scores how many algorithmic steps were done correctly –
if the correct data was manipulated in the correct way at the correct step. These binary
signals for each step are averaged over all steps and all samples in the minibatch to get a
scalar fitness value. This results in a coarse feedback signal and harder learning problem
in contrast to gradient based training, where the error backpropagation gives localized
feedback to each parameter.

For all algorithms, generalization and scaling (R1) was tested in two ways. First, testing
for scaling to more complex configurations is integrated into our learning procedure, and
second, the solutions were tested on complexities far beyond those seen during training.

A curriculum level is considered solved after a defined number of subsequent iterations
with maximum fitness, i.e., with perfect solutions where every bit in every step is correct.
When a new level is unlocked, samples with higher complexity are presented and hence,
if the fitness stays at maximum, the acquired solution scaled to that new complexity.
Learning is only performed in iterations which do not have maximum fitness.

In addition to this built-in generalization evaluation, the learned solutions were tested on
complexities far beyond seen during training, i.e., corresponding to curriculum levels 100,
500 and 1000, while being trained only up to level 10.

3.3.2. Learning Results

Learning results on all 11 algorithms are presented in Figure 3.3, Table 3.1 and the
Extended Data Figure 3.6, where all results are obtained over 15 runs of each configuration,
and Figure 3.5 illustrates the learned algorithmic behaviour for four algorithms.
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Figure 3.3.: Learning overview of all 11 learned algorithms. (Top) The last curriculum level that
triggered learning, i.e., where the last mistake occurred, is shown as the median (black
line), the interquartile range (box) and outliers (plus). All algorithms are learned within
the first few levels and the solution generalizes to higher levels. (Bottom) The number
of training iterations per curriculum level is shown. The coloured numbers indicate the
percentage of runs that triggered learning in each level. Learning occurs in the first levels,
mostly within the first two, and subsequent levels only need a small amount of iterations
to adapt, if at all. The total iterations show median and distances to the interquartile
range of the total number of learning iterations. Results are obtained over 15 runs for
each algorithm.

In Figure 3.3, we illustrate in which curriculum levels learning was triggered. The top row
shows the last level in which training was triggered, the last level with an error, indicating
that learning only occurs in the first levels and solutions generalize to subsequent levels, i.e,
to higher complexities, which can be observed for all 11 algorithms reliably over all runs.
In the bottom row, we investigated in how many iterations learning was observed in each
level and in total. This highlights the fact that most training happens in the first levels, and
subsequent levels only need a few iterations to adapt, if at all. The total number of learning
iterations highlights the efficient training in terms of samples. This measure provides an
indicator for the task complexity, i.e., for sorting 9016 iterations caused network updates,
whereas copying is less challenging and only required 814 iterations of network updates.

In Table 3.1 more details of the learning, the generalization and scaling evaluation for R1,
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and comparison methods are shown. The last level entry shows the last level triggering
learning alongside the last level that was solved successfully, highlighting that all runs for
all algorithms were able to solve all 11 training levels while triggering learning only in
the first levels. Next, the table shows the results on testing the solutions on complexities
far beyond those seen during training. Each run was presented 50 samples from the
associated level (20 samples for sort levels 500 and 1000 due to runtime scaling).

For the majority of algorithms, all runs generalized perfectly to complexities up to level
1000. In the harder tasks, like sorting, some runs fail for perfect generalization, still
performing well and the majority of runs also shows perfect generalization. Note that, a
sample from level 1000 in the sort task requires over 1 million perfect computational steps
to be considered solved. The performances below 100% for some runs can be explained
with the mechanisms of the previous write head. The model has to learn if the previously
read location should be updated and with which information, without explicit feedback
on these signals. Thus, an update mechanism that learned to slightly update the previous
location works fine on shorter sequences (like seen during training), but the small changes
accumulate on longer sequences and may result in wrong behaviour. A possible solution
would be to add feedback to these signals during training if it can be provided.

Overall, the results summarized in Figure 3.3 and Table 3.1 show that the solutions learned
by the NHC fulfil the algorithmic requirement R1 of generalization.

Comparison For comparison we trained four additional models. First, the DNC [59]
model as a state-of-the-art memory-augmented neural. This model is trained in a super-
vised setting with backpropagation, i.e., having a much richer and localized learning signal.
It was able to learn some of the baseline algorithms up to level 5, like addition, copy and
reverse, but failed in earlier levels in the remaining tasks, despite being trained for 500k
iterations. Notably, the DNC struggled with those tasks requiring to reuse intermediate
results or iterating over the data multiple times.

Second, we integrated the DNC into the NHC architecture by replacing the algorithmic
modules of the NHC – controller, memory, bus – with the original DNC. This DNC+is+ha
model uses the same data modules and is trained like the NHC with NES. It performs
notably better than the DNC, indicating the help of the proposed abstraction mechanisms
and the evolutionary training. Nevertheless, it still is not able to generalize comparable
to the NHC and struggles with the same algorithms as the DNC. More details on these
comparisons and their learning are given in Section 3.7.
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level 500 – – – – 100% 100% – 86.7% 93.2% 100% 100% 93.3% 93.3% 86.7% 86.7% –

level 1000 – – – – 100% 100% – 86.7% 93.2% 100% 100% 93.3% 93.3% 86.7% 86.7% –

DN
C+

is
+
ha tr

ai
n

iterations 3159 +937
−749 – – – 4315 +1584

−365 5539 +2653
−905 4360 +1842

−845 4355 +945
−1121 4163 +475

−999 2126 +766
−123 3756 +2025

−1046

last level 1 +0
−0 0 +0

−0 – – – 10 +0
−0 11 +0

−0 1 +0
−0 0 +0

−0 2 +1
−0 1 +0

−1 10 +0
−1 11 +0

−0 10 +0
−0 11 +0

−0 10 +0
−1 11 +0

−0 2 +1
−0 1 +0

−1

level 10 0% 0% – – – 20% 65.2% 0% 0% 0% 0% 100% 100% 20% 92% 100% 100% 0% 5.7%

te
st

level 100 – – – – 0% 0% – – 0% 0% 13.3% 13.3% 0% 0% 0% 0%

level 500 – – – – – – – – 13.3% 13.3% – –

level 1000 – – – – – – – – 13.3% 13.3% – –

DN
C[

59
] tr

ai
n

iterations 500k – – – 500k 500k 500k 500k 500k 500k 500k

last level 1 +0
−0 0 +0

−0 – – – 6 +0
−0 5 +0

−0 2 +0
−0 1 +0

−0 2 +0
−0 1 +0

−0 6 +0
−0 5 +0

−0 2 +0
−0 1 +0

−0 6 +0
−0 5 +0

−0 5 +0
−0 4 +0

−0

level 10 0% 0% – – – 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 13.3% 13.3% 0% 0%

te
st

level 100 – – – – – – – – – 0% 0% –

level 500 – – – – – – – – – – –

level 1000 – – – – – – – – – – –

Table 3.1.: Evaluation and Comparison. Shown are results over 15 runs for each algorithm and
model. Triplets like 5 +3

−2 show median and distances to the interquartile range. Iterations
refers to the number of learning iterations. The two last level triplets show the last learning
level (left) and the last solved level (right). The two percentages in level X indicate the
amount of perfect runs (left), i.e., runs that solved all presented samples, and the amount
of solved samples over all runs (right). All NHC variants and the DNC+is+ha model are
using the information split and data modules, and are trained with NES. The original DNC
is trained in a supervised setting with backpropagation.

Next, we removed the proposed ancestry linkage (NHC-anc) and the previous location
update (NHC-prev) to evaluate their influence. To counter the removed update head, the
NHC-prev model uses two write heads, enabling it to learn a similar update mechanism.
Both models perform better than the DNC+is+ha and are able to learn the majority of
algorithms and even achieve perfect generalization in some, strengthening the importance
of the evolutionary training and highlighting the influence of the proposed mechanisms.
The performance of the two ablation models depends on the algorithm to learn, i.e.,
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whether the algorithm requires the hierarchical knowledge provided by the ancestry
linkage or the updating of previously read locations. Notably, both mechanisms are
required to learn the search and plan algorithms.

These results suggest that the evolutionary training with the proposed abstraction mecha-
nisms and the new memory module are key ingredients for reliably learning algorithmic
solutions that generalize and scale, and hence, fulfilling R1.

3.3.3. Transfer of the Learned Algorithmic Solutions

Next, we evaluated the ability to generalize the learned solutions to new problem instanti-
ations, testing the requirements R2 (independence of the data representation) and R3
(independence of the task domain). Therefore, the algorithmic solutions were tested on
unseen data representations and task domains. For these transfers, the learned algorithmic
modules were used with adapted data modules for the new setups.

In Figure 3.4 all transfers are illustrated, showing the training setup and the successful
transfers. The transferred solutions solved all 11 curriculum levels in the new setup
without triggering learning once, i.e., no single error occurred.

For search and plan, we investigated if the strategy learned in sokoban could be transferred
to bigger environments, to a different data representation, to a sliding puzzle problem,
and to a robot manipulation task. The solutions were learned in 6× 6 environments, and
could perfectly solve 8 × 8 environments and a changed encoding of the environment,
e.g., the penguin represents a wall instead of the agent (see Figure 3.4). In the 3 × 3
sliding puzzles, the white space represents empty space onto which adjacent tiles can be
moved. In the robotic setup, the task is to rearrange the four stacks of boxes from one
configuration into another.

Addition, sort and the baseline algorithms – copy, repeatCopy, reverse, duplicated – were
trained on binary numbers and were successfully transferred to decimal numbers.

The arithmetic algorithm was trained on decimal arithmetic and was transferred to a
boolean algebra. As the atomic operations [+,−, ∗, /] are part of the data input sequence,
the solution is independent from the number of atomic operations, shown by having only
two atomic operations AND & OR in the boolean algebra setup.
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search & plan addition

arithmeticsort

copy, repeatCopy & reverse duplicated

transfertrain

sokoban changed 
encoding

sliding puzzle

robotic manipulation

1001011001
+ 0110011011

1111110100
binary

6859132475
+ 8754906501
15614038976

decimal

001 010 011 100

010 001 100 011

binary
1 4 6 19

4 1 19 6

decimal

= 593 4 + 9 * 4 -
decimal arithmetic

= TT F ^ F ^ T

^

boolean algebra

101 111 001 010101 111 001 010 101 111 001 010
repeatCopy

reversecopy

101 111 001 010 010 001 111 101

101 111 001 010

binary
4 1 19 64 1 19 6 4 1 19 6

repeatCopy

reversecopy

4 1 19 6 6 19 1 4

4 1 19 6

decimal

101 101 111 111 010 010 001 001

101 111 010 001

binary

4 4 1 1 6 6 8 8

4 1 6 8

decimal

train train

train train

train transfer

transfertransfer

transfer transfer

bigger world

Figure 3.4.: Overview of the transfers of the learned algorithms. To show the abstract nature
of the learned algorithms, each learned algorithm was transferred and tested on at
least one different data representation or domain. All transfers were successful, i.e., the
learned algorithm solved all samples in the new domain without triggering learning of
the algorithmic modules, indicating the fulfilment of R2-R3.

Limitations and Assumptions In our transfer experiments, we assumed the same num-
ber of operations available for the ALU and adapted data modules. The number of
operations needs to be the same as these, together with the control signals from the Input,
form the abstraction interface between data and algorithmic modules. This can be relaxed
either by including the domain specific operations into the data sequence, as shown with
the arithmetic transfer, or by extending the interface between Bus and ALU. The learned
algorithmic solution is represented by the Controller, Memory, and Bus, which encode
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Figure 3.5.: Learned algorithmic behaviour of the NHC. The learned behaviour for four algorithms
solving the examples shown at the top is illustrated. Shown are the written and read
memory locations, the used read mode for each read head, and the operation signal sent
to the ALU. First an example from the (plan+) task. The algorithm first builds the search
tree by applying all applicable operations in a state and then shifts reading to the next
state until the goal is found, then it backtracks the solution. Next an example from the
(addition) task. First, the two numbers to be added are presented after each other and
are just stored. Then the two numbers are traversed from the low to the high end in
parallel, adding the corresponding digits including possible carry bits. Next an example
from the (sort) task. After reading the unsorted list, the algorithm iterates over the list,
finding and outputting the smallest element in each iteration. Lastly an example from
the (arithmetic) task. In the arithmetic task, the free gates were activated and the model
learned to reuse memory locations in order to emulate the behaviour of a stack. The
read heads always keep track of the head of the stack and when an arithmetic operation
should be applied, it pops the two top elements from the stack, which are then combined
by the ALU according to the read operation.

the abstract strategies fulfilling R1-R3, building on the data modules implementing the
abstract interface. As the data modules are domain and representation dependent, they
need to be relearned or handcrafted for new setups. Typically learning these modules
is less complex than learning a new algorithm as they solve smaller subproblems (and
often can be hardcoded), and is a benefit of the modular architecture with its abstraction
mechanism and the evolutionary training.
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3.4. Conclusion

A major challenge for intelligent artificial agents is to learn strategies that scale to higher
complexities and that can be transferred to new problem instantiations. We presented a
modular architecture for representing and learning such algorithmic solutions that fulfil
the three introduced algorithmic requirements: generalization and scaling to arbitrary
task configurations and complexities (R1), as well as independence from both, the data
representation (R2) and the task domain (R3). Algorithmic solutions fulfilling R1 –
R3 represent strategies that generalize, scale, and can be transferred to novel problem
instantiations, providing a promising building block for intelligent behaviour.

On a diverse set of 11 algorithms with varying complexities, the proposed NHC was able
to reliably learn such algorithmic solutions. These solutions were successfully tested on
complexities far beyond seen during training, involving up to over 1 million recurrent
computational steps without a single bit error, and were transferred to novel data represen-
tations and task domains. Experimental results highlight the importance of the employed
abstraction mechanisms, supporting the ablation study results of prior work [9], providing
a potential building block for intelligent agents to be incorporated in other models.

Discussion The modular structure and the information flow of the NHC enable the learn-
ing and transfer of algorithmic solutions, and the incorporation of prior knowledge. Using
NES for learning removes constraints on the modules, allowing for arbitrary instantiations
and combinations, and the beneficial use of non-differentiable memories [63]. As the com-
plexity and structure of the algorithmic modules need to be specified, it is an interesting
road for future work to learn these in addition, utilizing recent ideas [63, 77]. To speed
up computation, parallel models like the neural GPU [61] may be incorporated into the
NHC architecture.

The presented work showed how algorithmic solutions with R1 – R3 can be represented
and learned. Based on this foundation, a challenging and interesting research question
is how such algorithms can be learned with less feedback. The usage of NES allows to
provide different kinds of feedback on any connection in the architecture, and on different
timescales. This opens the opportunity to discover new and unexpected strategies, novel
algorithms, and may be achieved by incorporating intrinsic motivation [81, 82] to explore
the space of hidden algorithmic solutions in the model.
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3.5. Methods

In this section a detailed description of the NHC architecture and its modules is given, the
learning procedure is described, the task specific data module instantiations are discussed,
and details about the comparison methods are given.

All modules are described with their formal functionality, i.e., the input signals they receive
and the output signals they produce, in the form of Module(inputs) −→ output. The
information flow is split into data and control signals, denoted with d and c respectively.
In addition to this high level description, details how the output signals are generated are
given for each module.

3.5.1. The Algorithmic Modules

The algorithmic modules consists of the Controller, Memory and Bus module and form the
core of the NHC architecture. These modules are learning the algorithmic solution on the
control stream and are responsible for the data management in the memory and steer
the data manipulation done by the ALU module. They share similarities with the original
DNC [59], like the temporal linkage and usage vector, but with major changes, e.g., hard
decisions for the heads and read modes, two coupled memories, simplified and additional
attention mechanisms and more, described in detail next.

Controller

The controller module receives input from the Input and the signals read from Memory
from the previous step. Additionally feedback signals from the Bus and ALU from the
previous step can be activated if desired. It produces one output signal going to the
Memory and Bus modules. Formally given by

Ctr(ci→c
t , cb

t−1, ca
t−1, cm

t−1) −→ cc
t .

Here we use a single layer of size LC to learn cc
t ∈ (−1, 1)LC at step t, given by

cc
t = tanh(Wcxc + bc) ,

with xc = [ci→c
t ; cb

t−1; ca
t−1; cm

t−1]. Depending on the task to learn, the feedback signals
cb

t−1 and ca
t−1 can be activated, and more complex instantiations can be used for the

controller, like more layers or recurrent networks.
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Memory

The memory module receives signals from the Input and the Controller and is responsible
for storing and retrieving information from the two memories. Therefore it produces two
output signals, a data and a control signal, give by

Mem(di
t, ci→m

t , cc
t) −→ (dm

t , cm
t ) .

The memory module has two coupled control and data memories, M c and Md, which are
matrices of size N × C and N ×D with N locations, C the control memory word size
and D the data memory word size. Multiple write and read heads can be used, where the
number of write and read heads is set task dependently to hw and hr respectively.

Learnable Interfaces As input for all learned layers only the concatenated control signals
are used, i.e., xm = [ci→m

t ; cc
t ], and the weight matrices W and biases b are the parameters

that are learned.

The write vectors vi
t ∈ ℜC at step t are the control signals that are stored in M c via the

write heads and given by

vt = Wvxm + bv ,

with vt split into {vi
t | ∀i : hw} for each write head.

The previous write vectors v̂j
t ∈ ℜC at step t are the control signals that are used to

update M c and given by

v̂t = Wv̂xm + bv̂ ,

with v̂t split into {v̂j
t | ∀j : hr} for each read head.

The previous erase vectors êj
t ∈ (0, 1)C at step t are the control signals used to erase

values in M c and given by

êt = σ(Wêxm + bê) ,

where σ(·) is the logistic sigmoid function and êt is split into {êj
t | ∀j : hr} for each read

head.
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The previous write gate ĝt ∈ {0, 1}hr at step t determines if the memory M c is updated
with v̂j

t and êj
t , given by

ĝt = H(Wĝxm + bĝ) ,

where H(·) is the heavyside step function.

The read modes mj
t ∈ {0, 1}hr+4hw at step t are the control signals that determine which

attention mechanism is used to read from the memory, and is given by

mt = Wmxm + bm ,

with mt split into {onehot(mj
t ) | ∀j : hr} and onehot(x) = {xk = 1 if xk = max(x) , xk =

0 else}.

The free gates fw
t ∈ {0, 1}hw and f r

t ∈ {0, 1}hr at step t determine if locations written to
and read from can be freed after interaction, and are given by

fw
t = H(Wfwxm + bfw) and f r

t = H(Wfr xm + bfr ) .

These are all learned parameters of the memory module that define the interfaces to
manipulate the memory.

Writing and Reading Given the learned interface described before and the write wi
t and

read rj
t head locations, information is stored and retrieved from memory as follows.

Writing vi
t to location wi

t in M c at step t is done via

M c
t = M c

t−1 ◦ (E − wi
t1⊤) + wi

tv
i
t
⊤

,

where ◦(·) denotes element-wise multiplication and E is a matrix of ones of the same size
as M c.

Writing di
t to location wi

t in Md at step t is done via

Md
t = Md

t−1 ◦ (E − wi
t1⊤) + wi

td
i
t
⊤

,

here E is a matrix of ones of the same size as Md. Note that the same write location wi
t is

used to couple the control and data memories.
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Updating the previously read location rj
t−1 in M c is done via

M c
t = M c

t−1 ◦ (E − ĝj
t rj

t−1êt
j⊤) + ĝj

t rj
t−1v̂t

j⊤ ,

where E is a matrix of ones of the same size as M c. If the previous write gate ĝj
t = 0 no

update is performed, and with ĝj
t = 1 the previously read location rj

t−1 is erased with êt
j

and v̂t
j is written to it.

Reading from memory is done via the read locations rj
t used on both memories to obtain

the data and control output of the memory module via

dm,j
t = Md

t
⊤

rj
t and cm,j

t = M c
t

⊤rj
t ,

and are concatenated for the final memory module output dm
t = [dm,1

t ; . . . ; dm,hr
t ] and

cm
t = [cm,1

t ; . . . ; cm,hr
t ].

Next, how to obtain the head locations is described in detail.

Head Locations The write and read heads locations, wi
t ∈ {0, 1}N and rj

t ∈ {0, 1}N ,
are hard decisions, i.e., onehot encoded vectors, where exactly one location is written
to or read from respectively. To determine the write head locations wi

t, i.e., the memory
locations for writing to, a simplified dynamic memory allocation scheme from the DNC
is used. It is based on a free list memory allocation scheme, where a linked list is used
to maintain the available memory locations. Here, a usage vector ut ∈ {0, 1}N indicates
which memory locations are currently used, with u0 = 0 and updated in each step with
the written wi

t and read rj
t locations via

ut = ut−1 + (1− fw,i
t )wi

t and ut = ut−1(1− f r,j
t rj

t ) ,

with the free gates fw,i
t and f r,j

t determining if the write location is marked as used and if
the read location can be freed respectively. Due to this dynamic allocation scheme, the
model is independent from the size of the memory, i.e., can be trained and later used
with different sized memories. To obtain the write location wi

t, the memory locations are
ordered by their usage ut, and wi

t is set to the first entry in this list – the first unused
location is used to write to.

Read head locations rj
t are determined by the active read mode given by mj

t ∈ {0, 1}hr+4hw ,
i.e, only one mode can be active. There are three main attentions implemented for reading
from memory, HALT, temporal linkage and ancestry linkage. The total number of available
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read modes is hr + 4hw as HALT is depended on the number of read heads and both
linkages can be used in two directions for each write head.

The HALT attentions are used to read the previously read locations again. When multiple
read heads are used, each head can read its own last location or the locations from
the other read heads, e.g., with three read heads, each head has three HALT attentions
(H1,H2,H3).

The temporal linkage attention is used to read locations in the order they were written,
either in forward or backward direction. This mechanism enables the architecture to
retrieve sequences, or parts of sequences, in the order they were presented, or in reversed
order. Here, we use a simplified version of the mechanism from the DNC. As our architec-
ture uses hard decisions for the heads locations, the linkages can be stored more efficiently
in N -dimensional vectors, in contrast to a N ×N matrices in the DNC. Each temporal
linkage vector LT,i stores the order of write locations for one write head, updated at step
t via

LT,i
t = LT,i

t−1 ◦ (1− wi
t−1) + w̃i

tw
i
t−1 ,

where w̃i
t = argmax(wi

t). The temporal linkage mechanism can be used in two directions.
Either move the read head in the order of which the locations were written, or in reversed
order – resulting in two read modes, backward (B) and forward (F), per write head for
each read head, given by

B : rj
t = I(LT,i

t , r̃j
t−1) and

F : rj
t = onehot(LT,i

t ◦ rj
t−1) ,

where ri
t−1 is the previously read location, r̃j

t−1 = argmax(ri
t−1) and I(x, y) = {xk =

1 if xk = y , xk = 0 else}. When a location is freed through the free gates, the location is
removed from the linkage such that it remains a linked list.

The ancestry linkage also uses N -dimensional vectors to store relations between memory
locations. While the temporal linkage stores information about the order of which locations
were written to, the ancestry linkage stores information about which memory locations
were read before a location was written – captures a form of usage or hierarchical relation
instead of temporal relation. Each ancestry linkage vector LA,i,j stores which location
rj

t−1 was read before location wi
t was written, and is updated at step t via

LA,i,j
t = LA,i,j

t−1 ◦ (1− wi
t) + r̃j

t−1wi
t ,
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where rj
t−1 is the previously read location and r̃j

t−1 = argmax(rj
t−1). The ancestry linkage

mechanism can also be used in two directions, to either move the read head to parent (P)
location or the child (C) location. This results in two modes per write head for each read
head, given by

P : rj
t = onehot(LA,i,j

t ◦ rj
t−1) and

C : rj
t = onehot(I(LA,i,j

t , r̃j
t−1) ◦ ht) ,

where ht is a N -dimensional vector storing for each location the step t when it was written.
A location can be read multiple times, thus it can have multiple children. But as we need
a single location to read, the C mode returns the location that was written to the latest
when rj

t−1 was read, i.e., the newest child. This is implemented with the history vector ht.
When a location is freed through the free gates, the location is removed from the linkage
and its children are attached to its parent.

Bus

The Bus module is responsible to generate the control signal that indicates how the ALU
module should manipulate the data stream, i.e., which action or operation to perform.
Therefore, it receives the control signal from the Controller and the Input as well as the
output from the memory signal, given by

Bus(ci→b
t , cc

t , cm
t ) −→ cb

t .

Here we use a single layer of size LB to learn cb
t ∈ {0, 1}LB at step t, given by

cb
t = onehot(Wbxb + bb) ,

with xb = [ci→b
t ; cc

t ; cm
t ].

3.5.2. Learning Procedure

Learning the algorithmic modules, and hence the algorithmic solution, is done using
Natural Evolution Strategies (NES) [80]. NES is a blackbox optimizer that does not require
differentiable models, giving more freedom to the model design, e.g., the hard attention
mechanisms are not differentiable and the data modules can be instantiated arbitrarily.
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Recent research showed that NES and related approaches like Random Search [83] or
NEAT [84] are powerful alternatives to gradient based optimization in reinforcement
learning. They are easier to implement and scale, perform better with sparse rewards and
credit assignment over long time scales, have fewer hyperparameters [85] and were used
to train memory-augmented networks [63, 77, 78].

NES updates a search distribution of the parameters to be learned by following the
natural gradient towards regions of higher fitness using a population P of offspring o
(altered parameters) for exploration. The performance of an offspring o is measured
with one scalar value summarized over all samples N in the mini-batch and over all
computational steps Tmax of each sample, with sparse binary signals for each step –
framing a challenging learning problem albeit given the sequence. Let θ be the parame-
ters to be learned – the weight matrices and biases in the three algorithmic modules θ =
[Wc; bc; Wv; bv; Wṽ; bṽ; Wẽ; bẽ; Wg̃; bg̃; Wm; bm; Wfw ; bfw ; Wfr ;
bfr ; Wb; bb] – and using an isotropic multivariate Gaussian search distribution with fixed
variance σ2, the stochastic natural gradient at iteration t is given by

∇θtEϵ∼N(0,I) [u(θt + σϵ)] ≈ 1
Pσ

P∑︂
o=1

u(θo
t )ϵi ,

where P is the population size and u(·) is the rank transformed fitness f(·) [80]. With a
learning rate α, the parameters are updated at iteration t by

θt+1 = θt + α

Pσ

P∑︂
o=1

u(θo
t )ϵi .

For all experiments the fitness function is defined for N samples as f(θo
t ) = 1/N

∑︁N
s fs(θo

t )
with

fs(θo
t ) = 1

Tmax

Te∑︂
k=1

δ(dm
k − d̄

m
k ) + δ(cb

k − c̄b
k)m(cb

k)

to evaluate the offspring parameters θo
t on one sample s. Here, δ(x) = {1 if x = 0, 0 else}

gives sparse binary reward if the two signals are equal or not, where dm
k is the data output

from the memory, cb
k the control output from the Bus, and d̄

m
k and c̄b

k the true values
respectively. Thus, reward is given for choosing the correct data and operation for the
ALU in each step. Note, there is no feedback on memory access, only on the output, i.e.,
where, when and how to write and read has to be learned without explicit feedback. The
stepwise signals are summed up until the first mistake occurs (Te) or until the maximum
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length of the sample Tmax, and is normalized with 1/Tmax, i.e., f(θo
t ) measures the fraction

of subsequently correct algorithmic steps. To encourage strong operation choices, the
operation reward is multiplied with the margin penalty

m(cb
k) = clip

(︃
c̃1/c̃2 − 1

mmax
, 0 , 1

)︃
,

where c̃1, c̃2 are first and second largest values of cb
k, i.e., the chosen operation and the

runner up, and mmax is a chosen percentage indicating how much bigger the chosen action
should be. Note that this penalty is only considered if the operation is already correct.

For robustness and learning efficiency, weight decay for regularization [86] and automatic
restarts of runs stuck in local optima are used [80]. This restarting can be seen as another
level of evolution, where some lineages die out. Another way of dealing with early
converged or stuck lineages is to add intrinsic motivation signals like novelty, that help to
get attracted by another local optima, as in NSRA-ES [87]. In the experiments however,
we found that within our setting, restarting – or having an additional survival of the fittest
on the lineages – was more effective in terms of training time.

The algorithmic solutions are learned in a curriculum learning setup [79] with sampling
from old lessons to prevent unlearning and to foster generalization. Furthermore, we cre-
ated bad memories, a learning from mistakes strategy, similar to the idea of AdaBoost [88],
which samples previously failed samples to encourage focusing on the hard cases. This can
also be seen as a form of experience replay [47, 89], but only using the initial input data
to the model, not the full generated sequences. Bad memories were initially developed
for training the data-dependent modules to ensure their robustness and 100% accuracy,
which is crucial to learn algorithmic solutions. If the individual modules do not have 100%
accuracy, no stable algorithmic solution can be learned even if the algorithmic modules
are doing the correct computations. For example, if one module has an accuracy of 99%,
the 1% error prevents learning an algorithmic solution that works always. This problem is
even reinforced as the proposed model is an output-input architecture that works over
multiple computation steps using its own output as the new input – meaning the overall
accuracy drops to 36.6% for 100 computation steps. Therefore using the bad memories
strategy, and thus focusing on the mistakes, helps significantly in achieving robust results
when learning the modules, enabling the learning of algorithmic solutions.

Experimental Setup In all experiments, the hyperparameters were set to: batch size
N = 32, population size P = 20, learning rate α = 0.01, search distribution exploration
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σ = 0.1, weight decay λ = 0.9995, action margin mmax = 0.1, max iterations = 20.000,
restart iterations = 2.000. In each batch, 33% of the samples were drawn from previous
levels and another 33% were drawn from the bad memories buffer, which stores the last
200 mistakes. A curriculum level is considered solved when 750 subsequent iteration are
perfectly solved, i.e., no single mistake in any sample, any step, any bit, that is 24.000
perfectly solved samples. In levels were training was triggered, the required subsequent
perfect iterations are doubled, i.e., 48.000 perfectly solved samples. Whenever an iteration
achieves maximum fitness, no learning is triggered, i.e., no parameter update is performed.

3.5.3. The Modules Instantiations

The preceding sections described the design and functionality of the algorithmic modules
in general. Here, the used instantiations and parameters for the experiments are presented
as well as the data modules and their task-dependent instantiations.

Algorithmic Modules In all experiments, the Controller size was set to LC = 6 and the
control memory word size C = 4. All tasks use one write head, hw = 1, and the number
of read heads is hr = 1 for the four search & plan, and the four copy tasks, hr = 2 for
addition and sort and hr = 3 for the arithmetic task. The data memory word size D and
the Bus size LB are set by the task, as each task has a different data representation (D)
and a different amount of available operations for the ALU (LB). In all tasks the ALU
to Controller feedback (ca

t−1) was activated, except for the four copy tasks as the ALU
has no functionality there. The free gates were activated for the four copy tasks and the
arithmetic task. In total, depending on the algorithm to learn, this results in 300-650
trainable parameters in the algorithmic modules.

Input The first data dependent module is the Input module. That is the interface to
receive data and provide control signals. It receives the data input from the outside din

t as
well as the data output from the ALU from the previous computational step dout

t−1, formally
given as

In(din
t , dout

t−1) −→ (di
t, ci→c

t , ci→m
t , ci→b

t ) .

The main functionality is to generate task related control signals, data preprocessing if
applicable and determining to stop. The control signals ci→c

t , ci→m
t , ci→b

t can be different
to provide different signals to the Controller, Memory and Bus, but can also share the
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same information. The data di
t is forwarded to the memory module with or without

preprocessing, depending on the task.

ALU The arithmetic logic unit (ALU) module is responsible for data manipulation. It
receives the read data from the memory and the operation to apply on these from the Bus
to produce the next data output alongside control signals via

ALU(dm
t , cb

t) −→ (dout
t , ca

t ) .

This module implements elemental operations for each task such that the algorithmic
solution can be learned by applying the correct operation on the correct data in the correct
step.

Both data modules can be instantiated arbitrarily due to the NES approach for learning
the algorithmic solution. They can also be trained from data beforehand or be hardcoded
if possible. In the experiments, we tested both variations and details for each algorithm
are given in the next section.

3.6. Algorithms to Learn

In this section additional information for the different algorithms that are learned and the
modules instantiations are given.

3.6.1. Search & Plan

In the Search & Plan tasks, the goal is to reach a given goal from a starting state (search),
and to generate a path between them utilizing the search result (plan). Therefore, a
breadth-first-search algorithm with additionally backtracking is learned. Given a start and
goal state (s0 and g), the model has to learn to implicitly build a search tree by applying
all available actions on a state and then move on to the next unexplored state until the
goal state is reached. For the planning tasks, after reaching the goal state, the model
has to output the sequence of states from goal to start, encoding the sequence of actions
to solve the given planning problem. For the extended versions (search+ and plan+),
the available actions for each state are state dependent such that only actions that have
an effect in this state should be applied. This increases the complexity of the learned
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algorithm, but the resulting search trees after learning are smaller and, hence, search+
and plan+ more efficient.

As training domain, the gridworld game sokoban is used, where an agent can move in
four directions – move up (U), right (R), down (D), left (L) – and an additional nop
operation(N) that leaves the data unchanged, resulting in 5 operations. The world consists
of empty spaces that can be entered, walls that block movement and boxes that can be
pushed onto adjacent spaces. Figure 3.5 shows a learned solution, where the agent is
visualized as a penguin, empty space is water, boxes are icebergs and walls are ice floes.

The curriculum level complexity is the number of fully explored nodes, i.e., for level 3,
three nodes have to be explored. See Figure 3.2 for an example for the extended version
from level 3 alongside the pseudocode of the algorithm to learn.

For learning, we use a sokoban world of size 6× 6 that is enclosed by walls. A world is
represented with binary vectors and four-dimensional one-hot encodings for each position,
resulting in 144-dimensional data words, and thus D = 144. The configuration of each
world – inner walls, boxes and agent position – is sampled randomly. Each world is
generated by sampling uniformly the number of inner walls from [0, 2] and boxes from
[1, 5]. The positions of these walls, boxes and the position of the agent are sampled
uniformly from the empty spaces.

Input The Input module produces control signals indicating in which phase the algorithm
is – building the search tree, goal reached and backtracking the solution. The signal is
created as cp

t = [c[1]
t ; c

[2]
t ; c

[3]
t ; c

[4]
t ], with

c
[1]
t = max(0, (1− Et)− c

[2]
t−1) ,

c
[2]
t = min(1, Et + c

[2]
t−1) ,

c
[3]
t = (1− Et)p[2]

t ,

c
[4]
t = Etp

[2]
t−1 .

The signal Et is a learned equality function using differential rectifier units as inductive
bias [90] and consists of a feedforward network with 10 hidden units and leaky-ReLU
activation, trained in a supervised setting with cross-entropy loss. This signal indicates
if two given states are equal and is used to identify the goal and initial state. The four
signals c

[x]
t are created using this information and represent the state of the algorithms,

where c[1] = 1 during building the search tree, c[2] = 1 when the goal was found, c[3] = 1
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during the backtracking, and c[4] = 1 when backtracking reached the initial state. The
algorithm stops if c

[4]
t = 1 for the planning tasks, and if c

[2]
t = 1 for the search tasks, as

search only uses the two first signals.

For the extended search and plan tasks, the Input module additionally learned an action
mask a. This binary action mask indicates which operations are applicable in a given state
and which not, and is learned with a feedforward network with 256 hidden units and
leaky-ReLU activation.

Using these learned signals, the outputs of the Input module are given by

di
t = din

t if t = 0 , dout
t−1 else ,

ci→c
t = cp

t ,

ci→b
t = ci→c

t ,

ci→m
t = ci→c

t or ci→m
t = [a; cp

t ] (extended) .

ALU The ALU learns to apply the available operations on the data, i.e., it encodes an
action model A by learning preconditions and effects, and outputs the new data together.
There are four available operations in sokoban and the sliding block puzzle domain, i.e.,
move up (U), right (R), down (D), left (L), and a fifth nop operation is added that does
not change the data (N). In the robotic manipulation domain, the available actions are
the four locations on which objects can be stacked, e.g., the action pos1 encodes to move
the gripper to the position and place the grasped object on top, or to pick up the top object
if no object is grasped. The maximum stacking height is 3 boxes, resulting in a discrete
representation of the object configuration with a 3× 4 grid. Thus, the ALU for the search
and plan algorithms has five operations and, hence, LB = 5.

For this task, the ALU internally uses three submodules – one does dimensional reduction
on the data, one applies the operation to manipulate the lower-dimensional data, and one
combines the manipulated and original data for the final output. Each submodule consists
of feedforward networks with 1 : 500, 2 : ([128, 64], [64, 64]), 3 : ([500, 500], [500, 250])
hidden units to produce the data and control stream respectively. All networks use
leaky-ReLU activation and are trained with cross-entropy loss in a supervised setting.
The output of the ALU is therefore defined as

dout
t = A(dm

t , cb
t) ,

ca
t = [l, 1− l, n] ,
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where dm
t is the read state, cb

t the operation to apply, l = 1 if the applied operation was
the last for this state, and n = 1 if the nop operation was used.

A more detailed description of these submodules and the search & plan specific data
modules can be found in the predecessor model [9] used for symbolic planning tasks.

3.6.2. Addition

In the addition task, two numbers have to be added. The two numbers a, b are presented
subsequently in big-endian order. To solve the task, the model has to learn to read the
two numbers correctly aligned, add the corresponding bits and remember the carry for
the next step. Therefore, 3 operations are available, adding two given bits without (A)
and with carry bit (C), and a nop operation (N).

Curriculum level complexities are defined as the bit length of the numbers a, b, i.e., in
level 3 numbers of length 3 have to be added, and a, b have an additional leading 0. For
training, a, b were randomly generated binary numbers and thus D = 1.

Input The Input module produces control signals indicating if a or b is presented, or if
addition should be done. Thus, the module output is given by

di
t = din

t if t ≤ 2Tl , 0 else ,

ci→c
t = ci→m

t = ci→b
t = [ca; cb; cs] ,

where Tl is the the length of a and b, ca = 1 and cb = 1 when a or b are presented
respectively, and cs = 1 during the addition phase. The algorithm stops after Tl steps with
cs = 1.

ALU There are 3 operations for the ALU module here, adding two given bits without
(A) and with carry bit (C), and a nop operation (N), and hence, LB = 3. The data input
consists of two bits dm

t = [v1; v2], read from the memory with the two read heads. The
outputs of the ALU are given by

dout
t = v1 + v2 + carry ,

ca
t = [c, 1− c, n] ,

where carry = 1 if the operation C is chosen, c = 1 if the current operation produced a
carry bit, and n = 1 if the nop operation was used.
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3.6.3. Sort

In the sort task the model is given an unordered list of objects and has to output the objects
in order. There are 3 operations, comparing two objects (C), skipping the current objects
(S), and outputting one object (O). To solve the task, the model has to iterate over the
sequence of objects and output the smallest object in each iteration. Note, it does not need
to be the smallest, if the sequence should be ordered in descending order for example, it
outputs the largest. The order is defined by the compare operation implemented in the
ALU module, the learned algorithm can therefore order any sequence in any order.

Curriculum level complexities are defined as the length of the sequence to order, e.g.,
in level 3 sequences of length 4 have to be sorted. For training, the sequences consist
of randomly generated 8 bit binary numbers (D = 8) and the ALU uses lessEqual as
compare function.

Input The Input module generates control signals indicating if the unordered sequence
is presented or if sorting should be done. Thus, the module output is given by

di
t = din

t if t ≤ Ts , 0 else ,

ci→c
t = ci→m

t = ci→b
t = [cf ; ce; cl; cs] ,

where Ts is the length of the sequence, cf = 1 if the first object in the sequence is presented,
cl = 1 for the last object, ce = 1 for all other objects, and cs = 1 during the sort phase.
The algorithm stops if the output operation was used Ts times during the sort phase.

ALU The ALU has 3 operations, a compare operation (C) that compares two objects, a
skip operation (S), and a output operation (O) to mark one object for output, so LB = 3.
The data input consists of two objects dm

t = [o1; o2], read from the memory with the two
read heads. The outputs of the ALU are given by

dout
t = o1 ,

ca
t = [c, 1− c, s, o] ,

where c = 1 if compare(o1, o2) = true, s = 1 if the skip operation was used, and o = 1 if
the output operation was used. For training, sequences consisted of binary numbers and
compare(o1, o2) = o1 ≤ o2, i.e., sorting numbers in ascending order.
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3.6.4. Arithmetic

In the arithmetic task the model is given a sequence that encodes an arithmetic expression
in postfix notation, e.g., 3 + 5 ∗ 6 is presented as 5 6 ∗ 3+. There are 2 operations, a
calculation operation (C) that calculates a given atomic operation, and a read operation
(R). To solve the task, the model has to essentially learn to emulate a stack. It iterates
over the input sequence and learns that numbers need to be stored on the stack, and if
an atomic operation is presented, takes the two most recent numbers from the stack to
combines them accordingly until the input sequence has finished. As the atomic operations
[+,−, ∗, /] are part of the input sequence, the solution is independent from the amount of
different atomic operations, and the ALU has the two described operations.

For training, the sequences consist of arithmetic expression with the four atomic operations
[+,−, ∗, /], where a modulo 10.000 operation was applied to atomic results for numeric
stability, and numbers in the input sequence were drawn from [1, 10], and hence D = 1.
Training sequences are generated randomly, with uniformly sampled atomic operations and
numbers. Curriculum level complexities are defined as the number of atomic operations,
i.e., 5 6 ∗ 3+ is an example for level 2.

Input The Input module provides controls signals indicating if the current data word is
a value or an atomic operation. Therefore, the module outputs are given by

di
t = din

t if ci→c
t−1 = [1, 0] , dout

t−1 else ,

ci→c
t = ci→m

t = ci→b
t = [cv; ca] ,

where cv = 1 when di
t is a value (e.g., a number), and ca = 1 is di

t is an atomic operation.
The algorithm stops if the last atomic operation was presented.

ALU The ALU module has 2 operations, a calculation operation (C) that calculates a
given atomic operation, and a read operation (R), and hence LB = 2. The data input
consists of three values dm

t = [d1; d2; d3], read from the memory with the three read heads.
The module outputs are then given by

dout
t = d1(d2, d3) if C , d2 else ,

ca
t = cb

t ,
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where cb
t is the signal coming from the Bus module, indicating which operation to apply,

i.e., here cb
t = [C; R] with C = 1 is an atomic operation should be used, or R = 1 if not. If

C = 1, the first data word d1 read from the memory is interpreted as the atomic operation
and is applied on d2 and d3, e.g., if dm

t = [+; 4; 5] then dout
t = d1(d2, d3) = 4 + 5 = 9.

The four atomic operations [+,−, ∗, /] are encoded as [−1,−2,−3,−4] in the input, as
the input sequence can only contain positive numbers in the used setup – the learned
algorithm is independent from that choice.

3.6.5. Copy, RepeatCopy, Reverse, Duplicated

In the four baseline tasks – Copy, RepeatCopy, Reverse, Duplicated – there is no data
manipulation. For solving these tasks, the model has to learn the proper data management.
There are 2 ALU operations to mark the data (O and M), which do not alter the data.

In the copy task, the model is presented a sequence of objects L and has to output the
same sequence of objects, i.e., L = [x1, . . . , xn] −→ [x1, . . . , xn]. Therefore, it needs to
learn to iterate over the data in the presented order.

In the repeatCopy task, the model is also presented a sequence of objects L and has to
output the sequence c times, i.e., L = [x1, . . . , xn], c −→ [x1, . . . , xn, x1, . . . , xn, . . . ]. Here,
it needs to learn to iterate multiple times over the data, requiring to jump back to the
start of the sequence.

In the reverse task, the model is presented a sequence of objects L and has to output the
sequence in reversed order, i.e., L = [x1, . . . , xn] −→ [xn, . . . , x1]. Solving requires to
learn to iterate over the data in reversed order of presentation.

In a remove duplicates (duplicated) task, the model is presented a sequence of objects L
with duplicates of each object and has to output the sequence without these duplicates,
i.e., L = [x1, x1, x1, x2, x2, x2 . . . , xn, xn, xn] −→ [x1, . . . , xn]. In order to solve this task,
the model has to learn during the presentation of the input sequence which data to ignore,
while getting only feedback for outputting the sequence without duplicates.

Curriculum level complexities are defined as the number of objects in the sequence, and
as the number of copies or duplicates for the repeatCopy and duplicated tasks respectively.
For training, objects were random binary vectors of length 6 (D = 6).
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Input The Input module provides control signals indicating if objects are presented or
output should be done. For the copy, repeatCopy and reverse tasks, the modules outputs
are given by

di
t = din

t if t ≤ TL , 0 else ,

ci→c
t = ci→m

t = ci→b
t = [cf ; ci; cl; co] ,

where TL is the length of the sequence L, cf = 1 if the first object is presented, cl = 1 for
the last object, ci = 1 for the remaining objects, and co = 1 indicating the output phase.
The algorithm stops, if the M action was used cTl times in the output phase, with c = 1
for copy and reverse.

For the duplicated task, the outputs are given by

di
t = din

t if t ≤ TL , 0 else ,

ci→c
t = ci→m

t = ci→b
t = [cf ; ci; co] ,

, where TL is the length of the sequence L including the duplicates, cf = 1 when an object
is presented the first time, ci = 1 for the remaining times, and co = 1 indicating the output
phase. The algorithm stops, if the M action was used in the output phase.

ALU The ALU has 2 operations, an output operation (O) to mark data for output, and a
mark operation (M), to mark an output as the last, thus LB = 2. In these four baseline
task, these operations signals are only indicating what the algorithm is currently doing,
but the ALU has no functionality, i.e., there is no data manipulation. Hence, the output is
just the forwarded input, given by

dout
t = dm

t ,

ca
t = cb

t .

3.7. Details to the Comparison Methods

For comparison we used the original Differential Neural Computer [59] (DNC), trained in a
supervised setting with gradient descent using the Adam [38] optimizer and cross-entropy
loss for each step. The loss is computed based on the correct algorithmic sequences created
by the linear layer in the DNC, similar like the fitness function for our architecture, but
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the cross-entropy loss provides a much richer and localized learning signal. The DNC is
trained for considerable more iterations (500k) to counter the pretrained data modules.
It also receives its own output as Input and the data input is managed equally as in our
model for each task (see Input module descriptions). For the repeatCopy task, as in the
original implementation, the number of copies c is normalized in the input. The controller
network is a LSTM [91] network with 64 hidden units except for the Search task, where
it has 256 hidden units to counter the additional data modules. In the arithmetic task, the
modulo 10.000 operator for intermediate results is replaced with a modulo 10 operator
and the numbers are binary encoded with 4 bits. This is done as dealing with decimal
input adds an additional challenge and the reduction of the range of the numbers lets
the DNC focus on the algorithmic structure of the task, instead of data encoding related
issues. The same bad memories strategy and curriculum schedule as for the NHC are used.
The memory size as well as the number of write and read heads is set to the same values
as in the NHC for each task.

As second comparison method, we integrated the DNC into the NHC architecture, named
DNC+is+ha. Therefore, we replaced the NHC algorithmic modules – Controller, Memory
and Bus – with the original DNC. To enable this, the information split including the second
memory was added to the DNC (+is), and the memory access was changed to hard
attentions (+ha), i.e., each head writes and reads one memory location in each step, in
contrast to the soft attention and weighted averaged readouts in the DNC. This is enabled
by transforming the computed soft attention heads from the DNC just before memory
access into hard attention vectors. For training this DNC+is+ha model, the exact same
learning procedure and parameters were used as for the NHC model.
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Figure 3.6.: Learning curves comparison. Shown are the mean and the standard error of the fitness
during learning over 15 runs. Note the log-scale of the x-axis. Solved X in the legend
indicates the median solved level. The full NHC is the only model that successfully learns
all algorithms reliably. More details on these evaluations are given in Table 3.1.
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4. Efficient Online Adaptation in Stochastic
Recurrent Networks

As a physical intelligent autonomous agent has to interact in a complex environment,
the real world, it has to have physical adaptation skills. While the previous two chapters
mainly focused on cognitive abilities for intelligent behaviour, this chapter tackles the
question of physical interaction, related to the topic Adapt. In detail, how can a robot
efficiently adapt its movement during execution with a bio-inspired stochastic network?

4.1. Introduction

One of the major challenges in robotics is the concept of developmental robots [92–
94], i.e., robots that develop and adapt autonomously through lifelong-learning [95–97].
Although a lot of research has been done for learning tasks autonomously in recent years,
experts with domain knowledge are still required in many setups to define and guide the
learning problem, e.g., for reward shaping, for providing demonstrations or for defining
the tasks that should be learned. In a fully autonomous self-adaptive robot however,
these procedures should be carried out by the robot itself. In other words, the robot
and especially its development should not be limited by the learning task specified by
the expert, but should rather be able to develop on its own. Thus, the robot should be
equipped with mechanisms enabling autonomous development to understand and decide
when, what, and how to learn [98, 99].

Furthermore, as almost all robotic tasks involve movements and therefore movement
planning, this developing process should be continuous. In particular, planning a move-
ment, executing it, and learning from the results should be integrated in a continuous
online framework. This idea is investigated in iterative learning control approaches [100,
101], which can be seen as a simple adaptation mechanism that learns to track given
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repetitive reference trajectories. More complex adaptation strategies are investigated
in model-predictive control approaches [102–105] that simultaneously plan, execute
and re-plan motor commands. However, the used models are fixed and cannot adapt
straightforwardly to new challenges.

Online learning with real robots was investigated in [106], where multiple models were
learned online for reaching tasks. Online learning of push recovery actions during walking
in a humanoid robot was shown in [107], and in [108] a mechanism for online learning
of the body structure of a humanoid robot was discussed. Recurrent neural networks
were used to learn body mappings in a humanoid robot [109], and for efficient online
learning of feedback controllers [110]. However, in all these online learning settings,
the learning problem was designed and specified a priori by a human expert, providing
extrinsic reward.

From autonomous mental development in humans however, it is known that intrinsic
motivation is a strong factor for learning [111, 112]. Furthermore, intrinsically motivated
behavior is crucial for gaining the competence, i.e., a set of reusable skills, to enable
autonomy [113]. Therefore, the abstract concept of intrinsically motivated learning has
inspired many studies in artificial and robotic systems, e.g. [114–116], which investigate
intrinsically motivated learning in the reinforcement learning framework [117]. Typically,
such systems learn the consequences of actions and choose the action that maximizes a
novelty or prediction related reward signal [118–120].

Intrinsic motivation is used for self-generating reward signals that are able to guide
the learning process without an extrinsic reward that has to be manually defined and
provided by an expert. For the concept of lifelong-learning, intrinsic motivation signals are
typically used for incremental learning within hierarchical reinforcement learning [121]
and the options framework [122]. Starting with a developmental phase, the robots learn
incrementally more complex tasks utilizing the previously and autonomously learned skills.
Furthermore, the majority of related work on intrinsically motivated learning focuses
on concepts and simulations, and only few applications to real robotic systems exist, for
example [123, 124].

Contribution The contribution of this work is a neural-based framework for robot control
that enables efficient online adaptation during motion planning tasks. A novel intrinsically
motivated local learning signal is derived and combined with an experience replay strategy
to enable efficient online adaptation. We implement the adaptation approach into a bio-
logically inspired stochastic recurrent neural network for motion planning [11, 125]. This
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Figure 4.1.: Conceptual sketch of the framework. A shows the online planning and adaptation
concept of using short segments. On the upper part the idea of cognitive dissonance is
illustrated with a planned and executed trajectory. The steps sampling and post-processing
for a segment are timed such that they are performed during the end of the execution of
the previous segment, whereas model adaptation is performed at the beginning of the
segment execution. B shows the process with two segments in detail, including sampling
of movements, decoding and averaging for creating the mental plan and the model update.
The executed segment provides feedback for planning the next segment and the matching
mental and executed trajectory pairs are used for updating the model based on their
cognitive dissonance.
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work builds on recent prior studies where a global learning signal was investigated [12, 13].
These global and local learning signals enable efficient task-independent online adaptation
without an explicit specified objective or learning task. In robotic experiments we evaluate
and compare these global and local learning signals and discuss their properties. This
study shows that our framework is suitable for model based robot control tasks where
adaptation of the state transition model to dynamically changing environmental conditions
is necessary.

The task-independent online adaptation is done by updating the recurrent synaptic weights
encoding the state transition model. The proposed learning principle, therefore, can be
applied to model-based (control) approaches with internal (transition) models, like, for
example, (stochastic) optimal control [126–128] and model-predictive control [102–105].
Furthermore, the method is embedded into a novel framework for continuous online
motion planning and learning that combines the scheduling concept of model-predictive
control with the adaptation idea of iterative learning control.

The online model adaptation mechanism uses a supervised learning approach and is
modulated by intrinsic motivation signals that are inspired by cognitive dissonance [129,
130]. We use a knowledge-based model of intrinsic motivation [131] that describes the
divergence of the expectation to the observation. This intrinsic motivation signal tells
the agent where its model is incorrect and guides the adaptation of the model with this
mismatch. In our experiments, this dissonance signal relates to a tracking error, however,
the proposed method is more general and can be used with various modalities like vision or
touch. We derive two different mechanisms to compute the dissonance, a global learning
signal that captures the distance between mental and executed trajectory, and a local
learning signal that takes the neurons responsibilities for encoding these trajectories into
account. These learning signals trigger the online adaptation when necessary and guide
the strength of the update.

Additionally, to intensify the effect of the experience, we use a mental replay mechanism,
what has been proposed to be a fundamental concept in human learning [132]. This mental
replay is implemented by exploiting the stochastic nature of the spiking neural network
model and its spike encodings of trajectories to generate multiple sample encodings for
every experienced situation.

We will show that the stochastic recurrent network can adapt efficiently to novel environ-
ments without specifying a learning task within seconds from few interactions by using
the proposed intrinsic motivation signals and a mental replay strategy on a simulated and
real robotic system (shown in Figure 4.2).
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4.1.1. Related Work on Intrinsically Motivated Learning

In this subsection we discuss the related work for intrinsically motivated learning from
practical and theoretical perspectives.

Early work on intrinsically motivated learning not using the typically reinforcement learn-
ing framework used the prediction error of sensory inputs for self-localization tasks [133].
In an online setup, the system explored novel and interesting stimuli to learn a represen-
tation of the environment. By using this intrinsic motivation signal, the system developed
structures for perception, representation and actions in a neural network model. Actions
were chosen such that the expected increase of knowledge was maximized. The approach
was evaluated in a gridworld domain and on a simple mobile robot platform.

Intrinsic motivation signals prediction, familiarity (in terms of frequency of state transi-
tions) and stability (in terms of sensor signals to its average) were investigated in [134] in
task-independent online visual exploration problems in simulation and on a simple robot.

By using the hierarchical reinforcement learning framework and utilizing the intrinsic
motivation signal novelty, autonomous learning of a hierarchical skill collection in a
playroom simulation was shown in [114]. The novelty signal directed the agent to novel
situations when it got bored. As already learned skills can be used as actions in new
policies, the approach implements an incremental learning setup.

A similar approach was investigated in [124], were a framework for lifelong-learning
was proposed. This framework learns hierarchical polices and has similarities to the
options framework. By implementing a motivation signal based on affordance discovery1,
a repertoire of movement primitives for object detection and manipulation was learned
on a platform with two robotic arms. The authors also showed that these primitives can
be sequenced and generalized to enable more complex and robust behavior.

Another approach for lifelong-learning based on hierarchical reinforcement learning and
the options framework is shown in [135]. The authors learn incrementally a collection of
reusable skills in simulations, by implementing the motivation signals novelty for learning
new skills and prediction error for updating existing skills.

A different approach based on competence improvement with hierarchical reinforcement
learning is discussed in [136]. The agent is given a set of skills, or options as in the
options framework, and needs to choose which skill to improve. The used motivation
signal competence is implemented as the expected return of a skill to achieve a certain

1Affordance refers to the possibility of applying actions to objects or the environment.
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goal. Rewards are generated based on this competence progress and the approach is
evaluated in a gridworld domain.

In [123], the intelligent adaptive curiosity system is introduced and used to lead a robot
to maximize its learning progress, i.e., guiding the robot to situations, that are neither
too predictable nor too unpredictable. The reinforcement learning problem is simplified
to only trying to maximize the expected reward at the next timestep and a positive
reward is generated when the error of an internal predictive model decreases. Thus, the
agent focuses on exploring situations whose complexity matches its current abilities. The
mechanism is used on a robot that learns to manipulate objects. The idea is to equip agents
with mechanisms computing the degree of novelty, surprise, complexity or challenge from
the robots point of view and use these signals for guiding the learning.

In [120] different prediction based signals are investigated within a reinforcement learning
framework on a simulated robot arm learning reaching movements. The framework uses
multiple expert neural networks, one for each task, and a selection mechanism that
determines which expert to train. The motivation signals are implemented with learned
predictors with varying input that learn to predict the achievement of the selected task.
Predicting the achievement of the task once in the beginning of a trial produced the best
results.

Recently, open-ended learning systems based on intrinsic motivation increasingly give
importance to explicit goals – known from the idea of goal babbling for learning inverse
kinematics [137] – for autonomous learning of skills to manipulate the robots environ-
ment [138].

Beside the aforementioned more practical research, also work on theoretical aspects of
intrinsic motivated learning exists. For example, a coherent theory and fundamental in-
vestigation of using intrinsic motivation in machine learning over two decades is discussed
in [139]. The authors state that the improvement of prediction errors can be used as an
intrinsic reinforcement for efficient learning.

Another comprehensive overview of intrinsically motivated learning systems is given
in [116]. The authors introduce three classes for clustering intrinsic motivation mecha-
nisms. In particular, they divide these mechanisms into prediction based, novelty based
and competence based approaches, and discuss their features in detail. Furthermore, that
prediction based and novelty based intrinsic motivations are subject to distinct mechanisms
was shown in [140].

In [131] a psychological view on intrinsic motivation is discussed and a formal typology
of computational approaches for studying such learning systems is presented.
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A B

Figure 4.2.: Experimental setup. A shows the KUKA LWR arm (left) and its realistic dynamic
simulation (right). B shows the setup for online learning on the real robot. The model
was initialized with one trial from the simulation of the robot (1st trial in Figure 4.4)
and the new obstacle is learned additionally online on the real system. The overlay shows
the mental plan over one trial of about 5:30 minutes. See Figure 4.5 for more details.

Typically intrinsic motivation signals have been used for incremental task learning, acquir-
ing skill libraries, learning perceptual patterns and for object manipulation. For the goal
of fully autonomous robots however, the ability to focus and guide learning independently
from tasks, specified rewards and human input is crucial. The robot should be able to
learn without knowing what it is supposed to learn in the beginning. Furthermore, the
robot should detect on its own if it needs to learn something new or adapt an existing
ability if its internal model differs from the perceived reality. To achieve this, we equip
the robot with a mechanism for task-independent online adaptation utilizing intrinsic
motivation signals inspired by cognitive dissonance. For rapid online adaptation within
seconds, we additionally employ a mental replay strategy to intensify experienced sit-
uations. Adaptation is done by updating the synaptic weights in the recurrent layer of
the network that encodes the state transition model, and this learning is guided by the
cognitive dissonance inspired signals.
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4.2. Materials and Methods

In this section, we first summarize the challenge and goal we want to address with this
paper. Afterwards, we describe the functionality and principles of the underlying bio-
inspired stochastic recurrent neural network model, that samples movement trajectories
by simulating its inherent dynamics. Next we introduce our novel framework, which
enables this model to plan movements online and show how the model can adapt online
utilizing intrinsic motivation signals within a supervised learning rule and a mental replay
strategy.

4.2.1. The Challenge of (Efficient) Online Adaptation in Stochastic Recurrent
Networks

The main goal of the paper is to show that efficient online adaptation of stochastic recurrent
networks can be achieved by using intrinsic motivation signals andmental replay. Efficiency
is measured as the number of updates triggered, which is equal to the number of required
samples, e.g., here the number of physical interactions of the robot with the environment.
Additionally, we will show that using adaptive learning signals and only trigger learning
when necessary are crucial mechanisms for updating such sensitive stochastic networks.

4.2.2. Motion Planning with Stochastic Recurrent Neural Networks

The proposed framework builds on the model recently presented in [125], where it
was shown that stochastic spiking networks can solve motion planning tasks optimally.
Furthermore, in [11] an approach to scale these models to higher dimensional spaces
by introducing a factorized population coding and that the model can be trained from
demonstrations was shown.

Inspired by neuroscientific findings on the mental path planning of rodents [141], the
model mimics the behavior of hippocampal place cells. It was shown that the neural
activity of these cells is correlated not only with actual movements, but also with future
mental plans. This bio-inspired motion planner consists of stochastic spiking neurons
forming a multi-layer recurrent neural network. It was shown that spiking networks
can encode arbitrary complex distributions [142] and learn temporal sequences [143,
144]. We utilize these properties for motion planning and learning as well as to encode

4. Efficient Online Adaptation in Stochastic Recurrent Networks 60



multi-modal trajectory distributions that can represent multiple solutions to planning
problems.

The basis model consists of two different types of neuron populations: a layer of K state
neurons and a layer of N context neurons. The state neurons form a fully connected
recurrent layer with synaptic weights wi,k, while the context neurons provide feedforward
input via synaptic weights θj,k, with j ∈ N and k, i ∈ K with N ≪ K. There are no lateral
connections between context neurons. Each constraint or any task-related information
is modeled by a population of context neurons. While the state neurons are uniformly
spaced within the modeled state space, the task-dependent context neurons are Gaussian
distributed locally around the corresponding location they encode, i.e., there are only
context neurons around the specific constraint they encode.

The state neurons can be seen as an abstract and simplified version of place cells and
encode a cognitive map of the environment [145]. They are modeled by stochastic neurons
which build up a membrane potential based on the weighted neural input. Context neurons
have no afferent connections and spike with a fixed time-dependent probability. Operating
in discrete time and using a fixed refractory period of τ timesteps that decays linearly, the
neurons spike in each time step with a probability based on their membrane potential.
All spikes from presynaptic neurons get weighted by the corresponding synaptic weight
and are integrated to an overall postsynaptic potential (PSP). Assuming linear dendritic
dynamics, the membrane potential of the state neurons is given by

ut,k =
K∑︂

i=1
wi,kṽi(t) +

N∑︂
j=1

θj,kỹj(t) , (4.1)

where ṽi(t) and ỹj(t) denote the presynaptic input injected from neurons i ∈ K and j ∈ N
at time t respectively. Depending on the used PSP kernel for integrating over time, this
injected input can include spikes from multiple previous timesteps. This definition imple-
ments a simple stochastic spike response model [146]. Using this membrane potential, the
probability to spike for the state neurons can be defined by ρt,k = p(vt,k = 1) = f(ut,k),
where f(·) denotes the activation function, that is required to be differentiable. The binary
activity of the state neurons is denoted by vt = (vt,1, .., vt,K), where vt,k = 1 if neuron
k spikes at time t and vt,k = 0 otherwise. Analogously, yt describes the activity of the
context neurons. The synaptic weights θ which connect context neurons to state neurons
provide task related information. By injecting this task related information, the context
neurons modulate the random walk behavior of the state neurons towards goal directed
movements. This input from the context neurons can also be learned [125] or can be used
to, for example, include known dynamic constraints in the planning process [11].
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We compared setting the feedfoward context neuron input weights θ as in [11] – propor-
tional to the euclidean distance – to using Student’s t-distributions and generalized error
distributions, where the latter produced the best results and was used in the experiments.
At each context neuron position such a distribution is located and the weights to the
state neurons are drawn from this distribution using the distance between the connected
neurons as input. For way points, these context neurons install a gradient towards the
associated position such that the random walk samples are biased towards the active
locations.

For planning, the stochastic network encodes a distribution

q(v1:T |θ) = p(v0)
T∏︂

t=1
T (vt|vt−1)ϕt(vt|θ)

over state sequences (v1:T ) of T timesteps, where T (vt|vt−1) denotes the transition model
and ϕt(vt|θ) the task related input provided by the context neurons. Using the definition
of the membrane potential from Equation (4.1), the state transition model is given by

T (vt,i|vt−1) = f

(︄
K∑︂

k=1
wk,iṽk(t)vt,i

)︄
, (4.2)

where a PSP kernel that covers multiple time steps includes information provided by spikes
from multiple previous time steps. In particular, we use a rectangular PSP kernel of τ
timesteps, given by

ṽk(t) =
{︄

1 if ∃l ∈ [t− τ, t− 1] : vl,k = 1
0 otherwise

,

such that, if neuron k has spiked within the last τ timesteps, the presynaptic input ṽk(t)
is set to 1. Movement trajectories can be sampled by simulating the dynamics of the
stochastic recurrent network [142] where multiple samples are used to generate smooth
trajectories.

Encoding continuous domains with binary neurons All neurons have a preferred posi-
tion in a specified coordinate system and encode binary random variables (spike = 1/no
spike = 0). Thus, the solution sampled from the model for a planning problem is the
spiketrain of the state neurons, i.e., a sequence of binary activity vectors. These binary
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neural activities encode the continuous system state xt, e.g., end-effector position or joint
angle values, using the decoding scheme

xt = 1
|v̂t|

K∑︂
k=1

v̂t,kpk with |v̂t| =
K∑︂

k=1
v̂t,k ,

where pk denotes the preferred position of neuron k and v̂t,k is the continuous activity of
neuron k at time t calculated by filtering the binary activity vt,k with a Gaussian window
filter. Together with the dynamics of the network, that allows multiple state neurons being
active at each timestep, this encoding enables the model to work in continuous domains.
To find a movement trajectory from position a to a target position b, the model generates
a sequence of states encoding a task fulfilling trajectory.

4.2.3. Online Motion Planning Framework

For efficient online adaptation, the model should be able to react during the execution
of a planned trajectory. Therefore, we consider a short time horizon instead of planning
complete movement trajectories over a long time horizon. This short time horizon sub-
trajectory is called a segment. A trajectory κ from position a to position b can thus
consist of multiple segments. This movement planning segmentation has two major
advantages. First, it enables the network to consider feedback of the movement execution
in the planning process and, second, the network can react to changing contexts, e.g.,
a changing target position. Furthermore, it allows the network to update itself during
planning, providing a mechanism for online model learning and adaptation to changing
environments or constraints. The general idea of how we enable the model to plan and
adapt online is illustrated in Figure 4.1.

To ensure a continuous execution of segments, the planning phase of the next segment
needs to be finished before the execution of the current segment finished. On the other
hand, planning of the next segment should be started as late as possible to incorporate
the most up-to-date feedback into the process. Thus, for estimating the starting point for
planning the next segment, we calculate a running average over the required planning
time and use the three sigma confidence interval compared to the expected execution
time. The expected execution time is calculated from the distance the planned trajectory
covers and a manually set velocity. The learning part can be done right after a segment
execution is finished. The alignment of these processes are visualized in Figure 4.1A.
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As the recurrent network consists of stochastic spiking neurons, the network models a
distribution over movement trajectories rather than a single solution. In order to create a
smooth movement trajectory, we average over multiple samples drawn from the model
when planning each segment. Before the final mental movement trajectory is created by
averaging over the drawn samples, we added a sample rejection mechanism. As spiking
networks can encode arbitrary complex functions, the model can encode multi-modal
movement distributions. Imagine that the model faces a known obstacle that can be
avoided by going around either left or right. Drawn movement samples can contain both
solutions and when averaging over the samples, the robot would crash into the obstacle.
Thus, only samples that encode the same solution should be considered for averaging.

Clustering of samples could solve this problem, but as our framework has to run online,
this approach is too expensive. Therefore, we implemented a heuristic based approach
that uses the angle between approximated movement directions as distance. First a
reference movement sample is chosen such that its average distance to the majority of
the population is minimal, i.e., the sample that has the minimal mean distance to 90%
of the population is chosen as the reference. Subsequently only movement samples with
an approximated movement direction close to the reference sample are considered for
averaging. As threshold for rejecting a sample, the three-sigma interval of the average
distances of the reference sample to the closest 90% of the population is chosen.

The feedback provided by the executed movement is incorporated before planning the
next segment in two steps. First, the actual position of the robot is used to initialize the
sampling of the next segment such that planning starts from where the robot actually
is, not where the previous mental plan indicates, i.e., the refractory state of the state
neurons is set accordingly. Second, the executed movement is used for updating the model
based on the cognitive dissonance signal it generated. In Figure 4.1B this planning and
adaptation process is sketched.

4.2.4. Online Adaptation of the Recurrent Layer

The online update of the spiking network model is based on the contrastive divergence
(CD) [147] based learning rules derived recently in [11]. CD draws multiple samples from
the current model and uses them to approximate the likelihood gradient. The general CD
update rule for learning parameters Θ of some function f(x; Θ) is given by

∆Θ =
⟨︃

∂ log f(x; Θ)
∂Θ

⟩︃
X0
−
⟨︃

∂ log f(x; Θ)
∂Θ

⟩︃
X1

, (4.3)
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where X0 and X1 denote the state of the Markov chain after 0 and 1 cycles respectively,
i.e., the data and the model distribution. We want to update the state transition function
T (vt|vt−1), which is encoded in the synaptic weights w between the state neurons (see
Equation (4.2)). Thus, learning or adapting the transition model means to change these
synaptic connections. The update rule for the synaptic connection wk,i between neuron k
and i is therefore given by

wk,i ← wk,i + α∆wk,i (4.4)
with ∆wk,i = ṽt−1,kṽt,i − ṽt−1,kvt,i ,

where ṽ denotes the spike encoding of the training data, v the sampled spiking activity, t
the discrete timestep and α is the learning rate. Here, we consider a resetting rectangular
PSP kernel of one time step (ṽt−1,k), a PSP kernel of τ time steps follows the same
derivation and is used in the experiments. In summary, this learning rules changes the
model distribution slowly towards the presented training data distribution. For a more
detailed description of this spiking contrastive divergence learning rule, we refer to [11].
This learning scheme works for offline model learning when the previously gathered
training data is replayed to an inhibitory initialized model.

For using the derived model learning rule in the online scenario, we need to make several
changes. In the original work, the model was initialized with inhibitory connections. Thus,
no movement can be sampled from the model for exploration until the learning process
has converged. This is not suitable in the online learning scenario, as a working model for
exploration is required, i.e., the model needs to be able to generate movements at any time.
Therefore, we initialize the synaptic weights between the state neurons using Gaussian
distributions [148], i.e., a Gaussian is placed at the preferred position of each state neuron
and the synaptic weights are drawn from these distributions with an additional additive
negative offset term that enables inhibitory connections. The synaptic weights are limited
within [−1, 1].

This process initializes the transition model with an uniform prior, where for each position,
transitions in all directions are equally likely. The variance of these basis functions and the
offset term are chosen such that only close neighbors get excitatory connections, while
distant neighbors get inhibitory connections, ensuring only small state changes within
one timestep. i.e, a movement cannot jump to the target immediately.

Furthermore, the learning rule has to be adapted as we do not learn with an empty
model from a given set of demonstrations but rather update a working model with online
feedback. Therefore, we treat the perceived feedback in form of the executed trajectory as
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a sample from the training data distribution and the mental trajectory as a sample from
the model distribution in the supervised learning scheme presented in Equation (4.3).

Spike Encoding of Trajectories For encoding the mental and executed trajectories
into spiketrains, Poisson processes with normalized Gaussian responsibilities of the state
neurons at each timestep as time-varying input are used as in [11]. These responsibilities
are calculated using the same Gaussian basis functions, centered at the state neurons
preferred positions, as used for initializing the synaptic weights. More details on these
responsibilities are given in Subsection 4.2.6 as they are also used for the local adaptation
signals. To transform these continuous responsibilities of the state neurons into binary
spiketrains, they are scaled by a factor of 100, limited into [0, 10] and used as mean input
to a Poisson distribution for each neuron. The drawn samples for each neuron from
these Poisson distributions for each timestep are compared to a threshold of 4 and the
neurons spike at time t if this threshold is reached and the neuron has not spiked within
its refractory period before. The used parameters were chosen as they produced similar
spiketrains as the ones sampled from the model.

4.2.5. Global Intrinsically Motivated Adaptation Signal

For online learning, the learning rate typically needs to be small to account for the noisy
updates, inducing a long learning horizon, and thus requires a large amount of samples.
Especially, for learning with robots this is a crucial limitation as the number of experiments
is limited. Furthermore, the model should only be updated if necessary. Therefore, we
introduce a time-varying learning rate αt that controls the update step. This dynamic
rate can for example encode uncertainty to update only reliable regions, can be used
to emphasize updates in certain workspace or joint space areas, or to encode intrinsic
motivation signals.

In this work, we use an intrinsic motivation signal for αt that is motivated by cognitive
dissonance [129, 130]. Concretely, the dissonance between the mental movement tra-
jectory generated by the stochastic network and the actual executed movement is used.
Thus, if the executed movement is similar to the generated mental movement, the update
is small, while a stronger dissonance leads to a larger update. In other words, learning is
guided by the mismatch between expectation and observation.

This cognitive dissonance signal is implemented by the timestep-wise distance between
the mental movement plan κ(m) and the executed movement κ(e). Thus, the resulting
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learning factor is generated globally and is the same for all neurons. As distance metric
we chose the squared L2 norm but other metrics could be used as well depending on, for
example, the modeled spaces or environment specific features. Thus, for updating the
synaptic connection wk,i at time t, we change Equation (4.4) to

wk,i ← wk,i + αt∆wk,i (4.5)

with αt = ∥κ(m)
t − κ

(e)
t ∥22

and ∆wk,i = ṽt−1,kṽt,i − ṽt−1,kvt,i ,

where ṽt is the spike encoding generated from the actual executed movement trajectory
κ

(e)
t and vt the encoding from the mental trajectory κ

(m)
t using the previously described

Poisson process approach.

To stabilize the learning progress and for safety on the real system, we limit αt in our
experiments to αt ∈ [0, 0.3] and use a learning threshold of 0.02. Thereby, themodel update
is only triggered when the cognitive dissonance is larger than this threshold, avoiding
unnecessary computational resources, being more robust against noisy observations. Note
that during the experiments, αt did not reach the safety limit and, therefore, the limit
had no influence on the learning. With this intrinsic motivated learning factor and the
threshold that triggers adaptation, the update is regulated according to the model error
and invalid parts of the model are updated accordingly.

4.2.6. Local Intrinsically Motivated Adaptation Signals

In the previous subsection we discussed a mechanism for determining the cognitive
dissonance signal that relies on the distance between the mental and the executed plan.
Thus, the resulting αt is the same for all neurons at each timestep t, i.e., resulting in a
global adaptation signal. Furthermore, the adaptation signal is calculated without taking
the model into account. To generate the adaptation signal incorporating the model, we
need a different mechanism which is already inherent to the model. Furthermore, we
want to have individual learning signals for each neuron leading to a more focused and
flexible adaptation mechanism. Thus, the resulting learning signal should be local and
generated using the model. To fulfill these properties, we utilize the mechanism that is
already used in the model to encode trajectories into spiketrains – the responsibilities of
each neuron for a trajectory. Inserting these individual learning signals into the update
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rule from Equation (4.5) alters the update rule to

wk,i ← wk,i + αt,i∆wk,i (4.6)

with αt,i = c(ω(m)
t,i − ω

(e)
t,i )2

and ∆wk,i = ṽt−1,kṽt,i − ṽt−1,kvt,i ,

with an additional constant scaling factor c. For each neuron i, αt,i encodes the time
dependent adaptation signal. These local adaptation signals are calculated as the squared
difference between the responsibilities ω

(m)
t,i and ω

(e)
t,i for each neuron i for the mental and

the executed trajectory respectively. These responsibilities emerge from the Gaussian basis
functions centered at the state neurons positions that are also used for initializing the state
transition model and the spike encoding of trajectories. Therefore, the responsibilities are
given by ω

(m)
t,i = bi(κ(m)

t ) and ω
(e)
t,i = bi(κ(e)

t ) with

bi(x) = exp
(︃1

2(x− pi)TΣ−1(x− pi)
)︃

,

where pi is the preferred position of neuron i. In the experiment we set c = 3, the learning
threshold for αt,i that triggers learning for each neuron to 0.05 and limit the signal like
in the global adaptation signal setting to αt,i ∈ [0, 0.3]. Note, as in the global adaptation
experiments, this limit was never reached in the local experiments and thus, had no
influence on the results.

4.2.7. Using Mental Replay Strategies to Intensify Experienced Situations

As the encoding of trajectories into spiketrains using Poisson processes is a stochastic oper-
ation, we can obtain a whole population of encodings from a single trajectory. Therefore,
populations of training and model data pairs can be generated from one experience and
used for learning. We utilize this feature to implement a mental replay strategy that inten-
sifies experienced situations to speed up adaptation. In particular, we draw 20 trajectory
encoding samples per observation in the adaptation experiments, where each sample is a
different spike encoding of the trajectory, i.e., a mental replay of the experienced situation.
Thus, by using such a mental replay approach, we can apply multiple updates from a
single interaction with the environment. The two mechanisms, using intrinsic motivation
signals for guiding the updates and mental replay strategies to intensify experiences,
lower the required number of experienced situations, which is a crucial requirement for
learning with real robotic systems.
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4.3. Results

We conducted four experiments to evaluate the proposed framework for online planning
and learning based on intrinsic motivation and mental replay. In all experiments the
framework had to follow a path given by way points that are activated successively one
after each other. Each way point remains active until it is reached by the robot. In the first
two experiments a realistic dynamic simulation of the KUKA LWR arm was used. First,
the proposed framework had to adapt to an unknown obstacle that blocks the direct path
between two way points using the global adaptation signal and, second, by using the
local adaptation signals and, third, by using constant learning rates (in combination with
the global adaptation signal for triggering learning). In the fourth experiment, we used
a pre-trained model from the simulation in a real robot experiment to show that it is
possible to transfer knowledge from simulation to the real system. Additionally, the model
had to adapt online to a new unknown obstacle, again using the local adaptation signals,
to highlight online learning on the real system.

4.3.1. Experimental Setup

For the simulation experiments, we used a realistic dynamic simulation of the KUKA LWR
arm with a cartesian tracking controller to follow the reference trajectories generated
by our model. The tracking controller is equipped with a safety controller that stops
the tracking when an obstacle is hit. The task was to follow a given sequence of way
points, where obstacles block the direct path between two way points in the adaptation
experiments. In the real robot experiment, the same tracking and safety controllers were
used. Figure 4.2 shows the simulated and real robot as well as the experimental setup.

By activating the way points successively one after each other as target positions using
appropriate context neurons, the model generates online a trajectory tracking the given
shape. The model has no knowledge about the task or the constraint, i.e., the target
way points, their activation pattern and the obstacle. We considered a two-dimensional
workspace that spans [−1, 1] for both dimensions – the neuron’s coordinate system –
encoding the 60× 60 cm operational space of the robot. Each dimension is encoded by 15
state neurons, which results in 225 state neurons using full population coding as in [11].
The refractory period is set to τ = 10, mimicking biological realistic spiking behavior and
introducing additional noise in the sampling process. The transition model is initialized by
Gaussian basis functions centered at the preferred positions of the neurons (see Materials
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Figure 4.3.: Adaptation results for three trials with the global learning signal. Each column in
A shows one trial of the online adaptation with the global learning signal, where the
upper row shows the mental plan over time and the lower row depicts the adapted model.
This change in the model is depicted with the heatmap showing the average change of
synaptic input each neuron receives. Similarly the average change of synaptic output each
neuron sends is shown with the scaled neuron sizes. B and C show the global learning
signals αt for the three trials over the planned segments.
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and Methods for more details). For the mental replay we used 20 iterations, i.e., 20 pairs
of training data were generated for each executed movement. All adaptation experiments
were 300 segments long, where 40 trajectory samples were drawn for each segment and
10 trials were conducted for each experimental setting.

updates triggered (⇓) update time (⇓) planning time (⇓) exec. time (⇑) target reached (⇑)

global trigger

α = 0.001 7.3± 1.1 42.6± 4.2 ms 0.238± 0.047 s 0.898± 0.656 s 10.5± 0.5

α = 0.01 2.4± 0.5 43.7± 4.2 ms 0.237± 0.046 s 0.806± 0.652 s 8.5± 3.2

α = 0.1 2.0± 0.0 46.7± 5.7 ms 0.234± 0.043 s 0.771± 0.670 s 7.9± 4.1

global αt 2.8± 0.9 43.3± 4.1 ms 0.241± 0.044 s 0.928± 0.658 s 10.4± 0.8

local αt,i 8.6± 2.8 52.6± 7.5 ms 0.235± 0.042 s 1.11± 0.679 s 13.7± 1.4

Table 4.1.: Evaluation of the adaptation experiments for 10 trials with each the global, the local and
constant learning signals in simulation. The values denote the number of times learning
was triggered by a segment (updates triggered = required samples = physical interactions),
the time required per triggered update including the mental replay strategy (update time),
the planned execution time per segment (exec. time), the required time for planning a
segment including sampling and post-processing (planning time), and the number of times
the blocked target was reached within the budget of 300 segments (target reached), i.e.,
number of times all way points were visited. All values denote mean and standard deviation.
The ⇓ and ⇑ symbols denote if a lower or higher value is better respectively. Note that the
constant α settings use the global adaptation signal αt for triggering learning.

4.3.2. Rapid Online Model Adaptation using Global and Local Signals

In this experiment, we want to show the model’s ability to adapt continuously during the
execution of the planned trajectory. A direct path between two successively activated way
points is blocked by an unknown non-symmetric obstacle, which results in a discrepancy
between the planned and executed trajectory due to the interrupted movement.

Constant Learning Rates and the Importance of the Learning Threshold The main
and starting motivation of the project was to enable online adaptation in the proposed
stochastic recurrent network. Therefore, we first created the framework for online plan-
ning (and adaptation – see Figure 4.1). Afterwards we started experiments with online
adaptation using the original learning rule (see Equation (4.4)) and a constant learning
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rate α. We were not able to find a constant α for which the online learning was successful
and stable, i.e., learning to avoid the obstacles and generating valid movements through-
out the whole experiment. With small learning rates, learning to avoid obstacles was
successful, however, as the model is updated permanently and in areas that are not affected
by the environmental change, the model became unstable over time, resulting in a model,
that was not able to produce valid movements anymore. The effect on the transition model
using different constant learning rate is shown in Figure 4.8, which shows the unlearned
transition model that cannot produce valid movements (compare to Figures 4.3 & 4.4).

These insights gave rise to the idea of using adaptive learning signals in combination with
a learning threshold to trigger learning only when an unexpected change is perceived.
With these mechanisms, successful and stable online adaptation of the stochastic recurrent
network was possible.

Most closely related to our work are potential fields methods for motion planning and
extensions to dynamic obstacle avoidance (see [149–153] for example). All these ap-
proaches are deterministic models that consider obstacles through fixed heuristics of
repelling potential fields. In contrast, in our work we learn to avoid obstacles online
through interaction by using the unexpected perceived feedback. In addition to the gradi-
ent based method in [149], we can learn to avoid obstacles with unknown shapes through
the interactive online approach and static obstacles do not need to be known a priori. To
evaluate the benefit of the dynamic online adaptation signals, we additionally compare
to a baseline of our model using constant learning rates (with the adaptive global signal
as learning trigger). This model can be seen as an extension of [149] using stochastic
neurons with the ability to adapt the potential field whenever an obstacle is hit.

Online Adaptation Experimental Results The effect of the online learning process
using intrinsically motivated signals is shown in Figure 4.3 and Figure 4.4 for the global
and the local signals respectively, where the mental movement trajectories, the adapted
models and the adaptation signals αt and αt,i for three trials are shown. Additionally we
compare to using different constant learning rates α, which use the global adaptation
signal and its learning threshold to trigger learning (see the previous paragraph for why
this is important), but using the constant α for the update.

With the proposed intrinsically motivated online learning, the model initially tries to enter
the invalid area but recognizes, due to the perceived feedback of the interrupted movement
encoded in the cognitive dissonance signals, the unexpected obstacle. As a result the
model adapts successfully and avoids the obstacle. This adaptation happens efficiently
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Figure 4.4.: Adaptation results for three trials with the local learning signals. Each column in
A shows one trial of the online adaptation with the local learning signals, where the upper
row shows the mental plan over time and the lower row depicts the changed model. This
change in the model is depicted with the heatmap showing the average change of synaptic
input each neuron receives. Similarly the average change of synaptic output each neuron
sends is shown with the scaled neuron sizes. B and C show the local learning signals αt,i

for the three trials over the planned segments. Each color indicates the learning signal
for one neuron.
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from only 2.8± 0.9 physical interactions – planned segments that hit the obstacle, which
is equal to the number of samples required for learning – with the global learning signal,
where the planned execution time of one segment is 0.928± 0.658 seconds. Moreover, the
learning phase including the mental replay strategy takes only 43.3± 4.1 milliseconds per
triggered segment.

Update and planning time with the local learning signals are similar, but adaptation
is triggered 8.6 ± 2.8 times and the planned execution time is 1.11 ± 0.679 seconds.
The increase of triggered updates is induced by the higher variability and noise in the
individual learning signals, enabling more precise but also more costly adaptation. Still,
the required samples – triggered updates – for successful adaptation reflect a sample
efficient adaptation mechanism for a complex stochastic recurrent network. The longer
execution time indicates that the local learning signals generate more efficient solutions,
as every segment covers a larger part of the trajectory, i.e., less segments are required
resulting in a higher number for reaching the blocked target. The local adaptation signals
reached the blocked target 13.7 ± 1.4 times, which outperforms the other adaptation
signals. These results are summarized in Table 4.1. Thus, during the adaptation the global
learning signals need fewer interactions, but the resulting solutions afterwards are less
efficient. The different effects of the global and local learning signals are discussed in
more detail in Section 4.4.

The results when using constant learning rates are summarized in Table 4.1 as well. The
best result was achieved with a learning rate of α = 0.001, resulting in similar number of
reached targets like the global adaptation signal (see also Figure 4.6), but required almost
as much updates – i.e., samples – as the local adaptation signals. In addition to tuning
this additional parameter, i.e., the constant learning rate, an adaptive signal for triggering
learning is still required for successful and robust adaptation. Moreover, when using
the higher constant learning rates, the learning was unstable in some trials even with
the adaptive trigger signals, i.e., after adaptation no valid movements could be sampled
anymore.

By adapting online to the perceived cognitive dissonances, the model generates new valid
solutions avoiding the obstacle within seconds from few physical interactions (samples)
with both learning signals.
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Figure 4.5.: Adaptation results on the real robot. Online adaptation with the real KUKA LWR arm
using the local learning signals initialized with simulation results, i.e., the right obstacles
are already learned. The left obstacle is added to the real environment (see Figure 4.2B).
Each column in A shows the mental plan and the model for the indicated time. The
change in the model is depicted with the heatmap showing the average change of synaptic
input each neuron receives compared to the pre-trained model. Similarly the average
change of synaptic output each neuron sends is shown with the scaled neuron sizes. The
mental plan demonstrates the rapid adaptation, as only a few interactions of the robot
are necessary to adapt to the new environment. This efficiency is further highlighted in
B and C, where the local learning signals αt,i are shown over the execution time. Each
color indicates the learning signal for one neuron.
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4.3.3. Transfer to and Learning on the Real Robot

With this experiment we show that the models learned in simulation can be transferred
directly onto the real system and, furthermore, that the efficient online adaptation can
be done on a real robotic system. Therefore, we adapted the simulated task of following
the four given way points. Additionally to the obstacles that were already present in
simulation, we added a new unknown obstacle to the real environment. The setup is
shown in Figure 4.2B. The framework parameters were the same as in the simulation
experiment, except that the recurrent weights of the neural network were initialized with
one trial of the simulation. For updating the model the local learning signals were used
and therefore the model was initialized with the 1st trial of the local signals simulation
experiments (1st column in Figure 4.4A). On average, an experimental trial on the real
robot took about 5:30 minutes (same as in simulation) and Figure 4.5 shows the execution
and adaptation over time.

As we started with the network trained in simulation, the robot successfully avoids the first
obstacles right away and no adaptation is triggered before approaching the new obstacle
(Fig. 4.5 first column).

After 15 segments, the robot collides with the new obstacle and adapts to it within 7
interactions (Figure 4.5 second and third column). The mismatch between the mental
plan and the executed trajectory is above the learning threshold and the online adaptation
is triggered and scaled with αt,i (Figure 4.5B).

To highlight the efficient adaptation on the real system, we depicted the mental plan after
15, 18 and 300 segments in Figure 4.5A. For the corresponding segments, the cognitive
dissonance signals show a significant mismatch that leads to the fast adaptation, illustrated
in Figure 4.5B-C. After the successful avoidance of the new obstacle, the robot performs
the following task while avoiding both obstacles and no further updates are triggered.

4.4. Discussion

In this section we evaluate and compare the learning signals, the resulting models after
the adaptation process, and the generated movements of the local and the global learning
signals.
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Figure 4.6.: Efficiency of the learned solutions. A shows the mean and standard deviation of the
number of required segments to reach the blocked target over all 10 trials for each setting.
B shows the cumulated required segments for reaching the blocked target for each trial
and setting together with the mean and standard deviation of the trials of one setting.
Note that due to the limit of planning 300 segments in each trial, the number of times
the blocked target is reached differs across trials. The constant learning rate (α = 0.001)
still uses the global adaptation signal for triggering learning.
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4.4.1. Efficiency of the Learned Solutions

Comparing the generated movements in Figure 4.4A to the movements generated with
the global adaptation signal in Figure 4.3A, the model using the local learning signals
anticipates the learned obstacle earlier resulting in more natural evasive movements, i.e.,
more efficient solutions. Here we define efficiency as the number of segments required to
reach the blocked target. As shown in Figure 4.4B-C, each neuron has a different learning
signal αt,i and therefore a different timing and scale for the adaptation, i.e., the neurons
adapt independently in contrast to the global signal. These individual updates enable a
more flexible and finer adaptation, resulting in more efficient solutions. As a result, when
using the local adaptation signals, the model favors the more efficient solution on the
right and chooses the left solution only in some trials at all after adaptation. In contrast,
this behavior never occurred in all ten trials with the global signal.

This efficiency can also be seen in Figure 4.6, where the required segments to reach the
blocked target are shown for the local signals, the global signal, a constant learning rate
α = 0.001, and without any adaptation. Note that due to the stochasticity in the movement
generation, the model can reach the block target without adaptation as well. However,
without adaption the obstacle is only avoided occasionally through the stochasticity in
sampling the movements.

In Figure 4.6A the mean and standard deviation of the required segments for reaching the
blocked target are shown for 10 trials with each setting over the complete 300 segments in
each trial. All adaptation mechanisms outperform the model without adaptation, whereas
the local signals perform better than the global signal and the constant learning rate.
Similar, in Figure 4.6B the cumulated required segments for reaching the blocked target
consecutively are shown for each trial together with the mean and standard deviation
over the trials. Note that, as all trials were limited to 300 segments, the number of times
the blocked target was reached differs in the different settings and trials (see Table 4.1),
depending on the efficiency of the generated movements, i.e., the amount of segments
used.

4.4.2. Comparison of the Learning Signals

To investigate the difference in the generated movements when using the global or local
signals, we analyzed the corresponding learning signals αt and αt,i. This evaluation is
shown in Figure 4.7, where the magnitudes of the generated learning signals are plotted
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with their occurring frequency. When looking at the right half of the histograms – the αt

and αt,i with lower magnitude –, both learning mechanisms produce similar distributions
of the learning signals magnitude. The main difference is the range of the generated
signals, i.e., the local mechanism is able to generate stronger learning signals. Even though
the frequency of these bigger updates is low – about 15% of the total updates –, they
cover 30% of the total update mass, where update mass is calculated as the sum over all
generated learning signals weighted by their frequencies. In contrast, the biggest 15%
of the global learning signals cover 34% of the update mass and are all smaller than the
biggest 15% of the local signals.

The ability to generate stronger learning signals in addition to the flexibility of individual
signals, enables the local adaptation mechanism to learn models which generate more
efficient solutions. The importance of the flexibility enabled by the individual learning
signals is further discussed in the subsequent section.

4.4.3. Spatial Adaptation

Investigating the structure of the changes induced by the different learning signals, reveals
a difference in the spatial adaptation and especially in the strength of the changes. In the
lower rows of Figure 4.3A and Figure 4.4A the changes in the models are visualized with
heatmaps showing the average change of synaptic input each state neuron receives, e.g., a
value of −0.03 indicates that the corresponding neuron receives more inhibitory signals
after adaptation. Additionally, the average change of synaptic output of each state neuron
is depicted by the scaled neuron sizes.

When the model adapts with the global signal (Figure 4.3), the incoming synaptic weights
of neurons with preferred positions around the blocked area are decreased – the model only
adapts in these areas. The neurons around the constraint are inhibited after adaptation
and, therefore, state transitions to these neurons get less likely. This inhibition hinders
the network to sample mental movements in affected areas, i.e., the model has learned to
avoid these areas. Due to the global signal, the learning is coarse and the affected area is
spread larger than the actual obstacle.

In contrast, when adapting using the local signals (Figure 4.4), the structure of the changes
in the model are more focused. The strongest inhibition is still around the obstacle – and
stronger than with the global signal –, but much less changes can be found in front of
the obstacle. This concentration of the adaptation can also be seen when comparing the
changes in the synaptic input and output. Both learning mechanisms produce a similar
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change in the output, but very different changes in the input, i.e., the neurons adapted
with the local signals learned to focus their output more precisely.

These stronger and more focused adaptations seem to enable the models updated with
the local learning signals to generate more efficient solutions and favor the simpler path.

4.4.4. Learning Multiple Solutions

Even though during the adaptation phase the model only experienced one successful
strategy to avoid the obstacle, it is able to generate different solutions, i.e., bypassing the
obstacle left or right, with both adaptation mechanisms. Depending on the individual
adaptation in each trial, however, the ratio between the generation of the different solutions
differs. Especially when using the local signals, the frequency of the more efficient solution
is higher, reflecting the efficiency comparison in Figure 4.6.

The feature of generating different solutions is enabled by the model’s intrinsic stochasticity,
the ability of spiking neural networks to encode arbitrary complex functions, the planning
as inference approach and the task-independent adaptation of the state transition model.

4.5. Conclusion

In this work, we introduced a novel framework for probabilistic online motion planning
with an efficient online adaptation mechanism. This framework is based on a recent
bio-inspired stochastic recurrent neural network that mimics the behavior of hippocampal
place cells [11, 125]. The online adaptation is modulated by intrinsic motivation signals
inspired by cognitive dissonance which encode the mismatch between mental expectation
and observation. Based on our prior work on the global intrinsic motivation signal [12, 13],
we developed in this work a more flexible local intrinsic motivation signal for guiding the
online adaptation. Additionally we compared and discussed the properties of these two
intrinsically motivated learning signals. By combining these learning signals with a mental
replay strategy to intensify experienced situations, sample-efficient online adaptation
within seconds is achieved. This rapid adaptation is highlighted in simulated and real
robotic experiments, where the model adapts to an unknown environment within seconds
from few interactions with unknown obstacles without a specified learning task or other
human input. Although requiring a few interactions more, the local learning signals learn
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more focused and are able to generate more efficient solutions – less segments to reach
the blocked target – due to the high flexibility of individual learning signals.

In contrast to [125], where the task-dependent context neuron input was learned in a
reinforcement learning setup, we update the state transition model, encoded in the
recurrent state neurons connections, to adapt task-independentlywith a supervised learning
approach. This sample-efficient and task-independent adaptation lowers the required
expert knowledge and makes the approach promising for learning on robotic systems, for
reusability and for adding online adaptation to (motion) planning methods.

Learning to avoid unknown obstacles by updating the state transition model encoded in
the recurrent synaptic weights is a step towards the goal of recovering from failures. One
limitation to overcome before that, is the curse of dimensionality of the full population
coding used by the uniformly distributed state neurons to scale the model to higher
dimensional spaces. In future work therefore, we want to combine this approach with
the factorized population coding from [11] – where the model’s ability to scale to higher
dimensional spaces and settings with different modalities was shown – and learning the
state neuron population [150], in order to apply the framework to recover from failure
tasks with broken joints [154, 155], investigating an intrinsic motivation signal mimicking
the avoidance of arthritic pain [156, 157].

With the presented intrinsic motivation signals, the agent can adapt to novel environments
by reacting to the perceived feedback. For active exploration, and thereby forgetting or
finding novel solutions after failures, we plan to investigate intrinsic motivation signals
mimicking curiosity [158] in addition.

As robots should not be limited in their development by the learning tasks specified by
the human experts, equipping robots with such task-independent adaptation mechanisms
is an important step towards autonomously developing and lifelong-learning systems.
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Figure 4.8.: Adaptation results with constant learning rates. Each column shows one trial of the
online adaptation with different constant learning rates α, where the upper row shows
the mental plan over time and the lower row depicts the adapted model. This change in
the model is depicted with the heatmap showing the average change of synaptic input each
neuron receives. Similarly the average change of synaptic output each neuron sends is
shown with the scaled neuron sizes. With constant learning rates and no adaptive signal
for triggering learning, the model is updated constantly, by what the state transition
model gets destroyed and no correct movement can be sampled anymore.
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5. Conclusion

For integrating intelligent agents into real world scenarios and our daily lives, we identified
two main limitations of current AI systems: the usually restricted targeted applications
with specialized solutions, and the seemingly intelligent behaviour caged in software
agents without physical interaction. To contribute in overcoming these limitations, we
investigated the learning of cognitive and physical abilities which were summarized in the
tackled research questions:

1) How can tasks and their structure be taught to a robot in a natural way?

2) How can neural networks learn abstract solution strategies that are independent of
the task complexity, data representation and task domain?

3) How can a robot efficiently adapt its movement during execution with a bio-inspired
stochastic neural network?

These questions resulted in the three investigated topics arranged in our Understand-
Compute-Adapt framework, in which we proposed novel approaches for natural skill
teaching and task understanding, for learning of transferable abstract strategies, and for
the ability of efficient online adaptation during physical interaction.

5.1. Summary

Understand - Unsupervised Skill Discovery Chapter 2 tackled the first question, for
which we proposed SKID, a probabilistic framework that can be used as a natural interface
for demonstrating new tasks to a robot. The framework learns simultaneously to segment
trajectories into reoccurring patterns and a skill library to reproduce those patterns without
supervision from unlabelled raw trajectories. In addition to these features which enable
a natural teaching interface, the framework also learns the structure of the tasks as
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relations between skills, i.e., it learns for each skill how likely it follows another skill.
This structural knowledge can be used, for example, to reduce the search space of a
planning algorithm that uses the learned skills to solve a new task. By equipping a robot
with such an understanding mechanism, not only teaching the robot becomes feasible
for non-experts, but the robot can leverage the learned task structure for predicting, for
example, the human behaviour and hence, can incorporate this knowledge in a more
intelligent adaptive behaviour.

Compute - Learning Algorithmic Solutions In Chapter 3 the second question has been
investigated, which deals with the challenge of learning abstract solutions. To characterize
abstract strategies, we introduced three requirements for such algorithmic solutions:
generalization to novel task instantiations and complexities, the independence from the
data representation, and the independence of the task domain. For representing and
learning algorithmic solutions fulfilling these criteria, we proposed the Neural Harvard
Computer architecture, a modular framework based on memory-augmented networks.
This architecture learns abstract solutions in form of algorithmic solutions, that generalize
to task complexities far beyond seen during training, and that can be transferred to novel
data representations and task domains. Such mechanisms enable robots and intelligent
agents to transfer learned strategies to compute solutions for unfamiliar situations.

Adapt - Efficient Online Adaptation After the mainly cognitive related skills investi-
gated before, Chapter 4 focused on the physical interaction of the robot in the real world.
Even with perfectly learned skills and a computed abstract strategy out of those, during
execution in the dynamic and complex physical environment, the world, unforeseen
situations may occur. To cope with such situations, the robot needs to be able to adapt its
motion during the execution and integrate the freshly gained knowledge into its model.
For this purpose, we proposed a task-independent efficient online adaptation mechanism
based on intrinsic motivation and mental replay, that enables a bio-inspired stochastic
neural network to incorporate new knowledge gained during motion execution. With
such an adaptation mechanism, the robot can deal with unforeseen circumstances like
new obstacles, by updating its motion planning model during motion execution, a crucial
step towards employing intelligent physical agents into our daily lives.

Altogether, the presented approaches provide potential stepping stones towards intelligent
agents operating among us to improve our daily lives. From a natural interface to teach
the robot how to tidy up a workshop, to learning transferable strategies to clean up the
living room as well, up to efficient online motion adaptation to incorporate the newly
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arranged kitchen, the proposed mechanisms show the potential and need of modular and
diverse learning approaches to provide human-supporting robots.

5.2. Future Work

The presented approaches tackled crucial features of AI systems that are required for
their employment in everyday life, to support humans either in workplaces or at home.
Each approach investigated one of three key aspects: the natural teaching of robots, the
computation of efficient solutions, and the flexibility through motion adaptation. Yet these
challenges are not fully solved and interesting and necessary future research questions
arise from the presented results.

The natural teaching interface provided by SKID allows to discover individual skills and
their relations from observations of full task executions. While it was evaluated on different
datasets including demonstrations recorded from humans, one major challenge is to scale
the approach to more complex and realistic scenarios. For example, using vision as input
to the system in order to eliminate the need of a tracking system, as vision would be a
much more flexible data source in non laboratory environments. Such a vision module
inside of SKID could either preprocess the image input into trajectories, or SKID could be
extended to handle vision input directly. Another point of potential extension is the choice
of the skill (library) representation. The VAE based approach of SKID offers a very general
and flexible representation of the skills, other movement primitives may be beneficial
for certain tasks. For example, a library consisting of skill encoded as dynamic [159]
or probabilistic [160] movement primitives may allow more adaptive individual skills.
The challenge is to integrate such representations into the probabilistic model of SKID to
allow the simultaneous end-to-end learning. Another possible and interesting extension
of SKID could be to change from an offline to an online setting, i.e., instead of presenting
a full trajectory for segmentation and skill learning, the trajectory could be presented
iteratively to the model. This could be enabled by integrating online change point detection
algorithms and may allow to process longer tasks. As SKID is not restricted to robot (or
human) motion data, it is an interesting direction to apply the framework to other data
that consists of reoccurring patterns within time series data like, for example, network
traffic or audio signals.

Representing and learning of algorithmic solution, i.e., strategies that generalize to any
problem instantiation and complexity, and that are transferable to novel data represen-
tation and task domains due to their abstraction features, was investigated and realized
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by the proposed Neural Harvard Computer (NHC) architecture. The potentially most
interesting and promising next step with the NHC could be to investigate the learning
of such algorithmic solution from less feedback. By providing only sparse signals on the
final output of the learned strategy without constraining intermediate computation steps,
the NHC may be able to discover new algorithms. To explore the space of algorithmic
solutions in the model with such sparse rewards, intrinsic motivation based exploration
may play a key role [161, 162]. Besides investigating the exploration of algorithmic
solutions, the structure of the NHC itself is a potential starting point for future research.
Instead of fixing the structures of the neural networks encoding the algorithmic modules,
these could be learned in addition, minimizing the model complexity by learning the best
suited structure for each algorithm and may be incorporated by adding ideas from neural
architecture search [163, 164].

Learning to detect and incorporate unforeseen environmental changes like obstacles
during motion planning and execution is a key requirement for robots operating among us
and was investigated with a bio-inspired stochastic neural network. The neural network
that plans the motion was extended with an intrinsic motivation based update mechanism
that guides the network to alter its world model according to the perceived feedback,
while the efficiency of this update was realized through a mental replay strategy. While
the proposed approach is able to adapt the model and the planned motions to incorporate
new obstacles in the environment, the currently used signal that guides this update is
limited to adapt to the perceived feedback. This means that it can learn to avoid an
obstacle, but if the obstacle is removed again, the model is not able to forget it. For this
purpose, exploration is necessary to actively check the environment for changes and may
be achieved by additional exploration focused intrinsic motivation signals [81, 165]. Such
active exploration may also be an important step towards online adaptation to failures of
the robotic system like broken joints. Another open challenge is to scale the online motion
planning and adaptation to higher dimensional spaces by incorporating insights from the
model used in higher dimensional spaces in an offline setting without adaptation [11].
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