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Nature is the source of all true
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Abstract

Autonomous systems, including robots, are increasingly in demand to progressively take
over tasks of everyday life, such as mowing the lawn or vacuuming. To make such systems
a�ordable for the end user and at the same time intelligent, cost-e�cient sensors and
smart navigation and planning strategies are required. While developing such systems, the
special characteristics of the working environment as well as the intended task have to be
considered.
Currently, household robots, e.g., lawn mowers, often apply simple, random planning

strategies, as they can only rely on in-/outside area measurements for navigation. Inspired
by probabilistic approaches for mapping, navigation and planning, in the �rst part of this
thesis a mapping and a complete coverage path planning approach for domestic robots
under high pose uncertainty is developed. In particular, it is shown that accurate map
estimates of enclosed environments can be generated with only in-/outside area detectors.
Further, given a map of the enclosed environment, intelligent path planning strategies
are developed that far exceed the performance of standard random walk behavior. Here,
probabilistic models are key to enable an estimation of the coverage of the workspace.
The second part of this thesis discusses the development of a low-cost sensor for autonom-

ous lawn mowers. This addresses the rising expectations in solving complex everyday tasks
with new smart sensor technologies. In particular, the focus there is on developing a low-
cost sensor that can replace the currently used perimeter wire to avoid high setup and
maintenance costs. The sensor development follows the basic idea of optimally exploiting
the characteristic features of the working environment. In this case, by exploiting chloro-
phyll �uorescence which is one of the main characteristics of plants in general. Therefore,
chlorophyll �uorescence is actively stimulated by the proposed sensor concept and the
chlorophyll �uorescence response is measured. This allows for e�ciently detecting the
working area for autonomous lawn mowers.
The last part of this thesis deals with the control and monitoring of autonomous robots,

especially in outdoor scenarios. For this purpose, an application for the Robot Operating
System (ROS) for mobile devices is developed. The leading idea for the development is
to facilitate robot control and monitoring for the end-user while o�ering various modules.
Especially the use of mobile devices as intuitive control panels allows for simple operational
control.
Together, the methodological, sensor and software developments of this thesis provide

the basis for building novel, cost-e�cient autonomous systems which support humans in
everyday tasks such as lawn care in particular or gardening in general.
Keywords. Mobile Robots, Sensors, Mapping, Navigation, Planning, Chlorophyll

Fluorescence, Plant Classi�cation, Reinforcement Learning
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Kurzfassung

Autonome Systeme, darunter auch Roboter, sind zunehmend gefragt um, nach und nach
Aufgaben des täglichen Lebens zu übernehmen, wie zum Beispiel das Rasenmähen oder
Staubsaugen. Um solche Systeme für den Endanwender erschwinglich und gleichzeitig in-
telligent zu machen, sind kostene�ziente Sensoren und intelligente Navigations- und Pla-
nungsstrategien erforderlich. Bei der Entwicklung solcher Systeme müssen die besonderen
Eigenschaften der Arbeitsumgebung sowie die vorgesehene Aufgabe berücksichtigt werden.
Derzeit verwenden Haushaltsroboter, z. B. Rasenmäher oft einfache, zufällige Planungs-

strategien, da sie sich nur auf Innen-/Auÿenbereichsmessungen zur Navigation verlassen
können. Inspiriert von probabilistischen Ansätzen für Kartierung, Navigation und Pla-
nung wird im ersten Teil dieser Arbeit ein Kartierungs- und ein �ächendeckender Pfadpla-
nungsansatz für Haushaltsroboter unter hoher Posenunsicherheit entwickelt. Insbesondere
wird gezeigt, dass genaue Kartenschätzungen von umschlossenen Umgebungen nur mit
Innen-/Auÿenbereichsdetektoren erzeugt werden können. Darüber hinaus werden intelli-
gente Bahnplanungsstrategien entwickelt, die die Leistung von Standard-Random-Walk-
Verhalten weit übertre�en. Hier sind probabilistische Modelle der Schlüssel, um eine Schät-
zung der Abdeckung des Arbeitsraums zu ermöglichen.
Der zweite Teil dieser Arbeit befasst sich mit der Entwicklung eines Low-Cost-Sensors für

autonome Rasenmäher. Damit wird den steigenden Erwartungen an die Lösung komplexer
Alltagsaufgaben mit neuen intelligenten Sensortechnologien Rechnung getragen. Insbeson-
dere liegt der Fokus hier auf der Entwicklung eines Low-Cost-Sensors, der den derzeit
verwendeten Begrenzungsdraht ersetzen kann, um hohe Einrichtungs- und Wartungskos-
ten zu vermeiden. Die Sensorentwicklung folgt dem Grundgedanken, die charakteristischen
Merkmale der Arbeitsumgebung optimal auszunutzen. In diesem Fall durch Ausnutzung
der Chlorophyll-Fluoreszenz, die eine der Haupteigenschaften von P�anzen im Allgemei-
nen ist. Dabei wird die Chlorophyll-Fluoreszenz durch das vorgeschlagene Sensorkonzept
aktiv angeregt und die Reaktion der Chlorophyll-Fluoreszenz gemessen. Dies ermöglicht
eine e�ziente Erkennung des Arbeitsbereichs für autonome Rasenmäher.
Der letzte Teil dieser Arbeit beschäftigt sich mit der Steuerung und Überwachung von

autonomen Robotern, insbesondere in Outdoor-Szenarien. Zu diesem Zweck wird eine An-
wendung für das Robot Operating System (ROS) für mobile Geräte entwickelt. Der Leit-
gedanke bei der Entwicklung ist es, die Steuerung und Überwachung von Robotern für
den Endanwender zu erleichtern und dabei verschiedene Module anzubieten. Insbesonde-
re die Nutzung von mobilen Geräten als intuitives Bedienpanel ermöglicht eine einfache
Betriebssteuerung.
Zusammengenommen bilden die methodischen, sensorischen und softwaretechnischen

Entwicklungen dieser Arbeit die Grundlage für den Aufbau neuartiger, kostengünstiger
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autonomer Systeme, die den Menschen bei alltäglichen Aufgaben wie der Rasenp�ege im
Speziellen oder der Gartenarbeit im Allgemeinen unterstützen.
Schlüsselwörter. Mobile Roboter, Sensoren, Kartierung, Navigation, Planung, Chloro-

phyll-Fluoreszenz, P�anzenklassi�kation, Reinforcement Learning
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Mathematical Notation

In this thesis, standard mathematical notation is used such that scalars are represented
as single letters, i.e., a ∈ R1, vectors as bold letters, i.e., w ∈ R10, and matrices as bold
capital letters, i.e.,M ∈ R{10 × 10}. Subscripts are used to denote elements in vectors, i.e.,
wi is part of w = [w1, w2, . . . , wi]. Functions are written as single letters, i.e., x = f(y)
which implements the transformation f(y) : R1 → R1. Sets are written as capital letters,
i.e., X = {x1,x2, . . . ,xn}. For better understanding, subscripts for variables or functions
might be used, i.e., fChl(λ) which implements the emission spectrum for chlorophyll �uor-
escence.

Standard notation for commonly used variables is used throughout this thesis. This
includes for example p for the robot's pose, x for the robot's position or R for the rotation
matrix. Other variables, especially which represent quantity information must be read ac-
cording to the respective context. For example, N can be number of odometric constraints
for pose graph optimization or the number of particles for a particle �lter. Important
non-commonly used variables and parameters appearing within this thesis are summarized
in the nomenclature, partitioned into the three main chapters. Thereby, variables and
parameters are designated for each chapter individually.
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1 Introduction

In this chapter, a brief introduction to robotics in industrial and domestic contexts is given.
On this basis, the research questions related to household robots that lead through this
thesis are presented. Finally, the overall structure of this thesis introduced.

Contents

1.1 A short History of industrial and domestic Robots . . . . . . 1

1.2 Domestic Robots - Guiding Research Questions . . . . . . . . 3

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . 5

1.1 A short History of industrial and domestic Robots

Robots, or autonomous systems in general, were invented during the 20th century and
became increasingly popular. Nowadays, robots, e.g., industrial robots, are indispensable
in many areas, such as car manufacturing. The history of robots began with the 1920
published drama �R.U.R. � Rossum's Universal Robots� by the czech writer Karel �apek
[1], where for the �rst time the word �robot� was introduced. Then, in 1942, another
science-�ction author, Isaac Asimov, postulated the three laws of �robotics� in his short
story �Runaround� [2]:

1. A robot may not injure a human being or, through inaction, allow a human being to
come to harm.

2. A robot must obey orders given it by human beings except where such orders would
con�ict with the First Law.

3. A robot must protect its own existence as long as such protection does not con�ict
with the First or Second Law.

Asimov's work, especially the laws of �robotics�, became the basis for several modern
science-�ction stories, e.g., the in 2004 released movie �I, Robot�.
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Figure 1.1: Growth of robot stocks and sales in the industrial and domestic area. Data from the

IFR Press Conference, 2020, https://ifr.org/downloads/press2018/Presentation_WR_

2020.pdf.

Industrial Robots Industrial robots �rst made their appearance in 1954 with the inven-
tion of the �Unimate�, the �rst industrial robot of the world. In the following decades,
industrial robots experienced a rapid development, where four �generations� of robots can
be identi�ed [3]:
First Manipulators (1950-1967), Sensorized Robots (1968-1977), Industrial Robots (1978-
1999) and Intelligent Robots (2000-now).
A detailed survey of the development of industrial robots in the early decades is given by
Gasparetto and Scalera in [4]. Nowadays, the use of industrial robots continues to grow
exponentially, Figure 1.1a. This is based on the ever-increasing automation of industrial
production. Moreover, through recent advances in arti�cial intelligence, robots become
more and more �exible in their �elds of application. This allows for a wide range of ap-
plication scenarios, e.g., co-working, which might increase the use of industrial robots even
further.

Domestic Robots A more recent history than industrial robots have domestic robots,
e.g., vacuum cleaners or lawn mowers. A detailed overview for this �eld can be found
in [5]. The development of such domestic robots, beginning mainly with cleaning robots,
started in the early 1990's. However, in the early days such robots were way too expensive
for private households, such that it took until 2002 before a small and cheap vacuum
cleaner, the �Roomba� from iRobot, was successful on the market. This was the start of
the rapidly growing spread of such autonomous domestic robots throughout society which
lasts until today and will probably go on in the future, Figure 1.1b.

https://ifr.org/downloads/press2018/Presentation_WR_2020.pdf
https://ifr.org/downloads/press2018/Presentation_WR_2020.pdf
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(a) Autonomous vacuum cleaner. (b) Autonomous lawn mower.

Figure 1.2: Examples for domestic robot types.

1.2 Domestic Robots - Guiding Research Questions

Vacuum cleaners and lawn mowers are certainly the most prominent representatives in the
�eld of domestic robots, Figure 1.2. However, due to their low-cost design those domestic
robots often only have limited sensing capabilities, e.g., lawn mowers where in most cases a
perimeter wire sensor is used to signal the robot if it is on the lawn or not. Because of these
limiting sensing capabilities, domestic robots often behave �stupid�, e.g., by performing a
random walk, instead of acting �intelligent�, e.g., following a complete coverage path plan.
These incapabilities of domestic robots lead to di�erent research questions concerning
e�cient navigation and planning algorithms as well as smart sensor development. Finding
e�cient solutions to these research questions is of great interest to the general public,
as it allows household robots to be improved so that they can take on more and di�erent
tasks. Moreover, such systems can lay the foundation for the development of more complex
systems which further increase the automation of everyday tasks. In the following, the
research questions guiding through this thesis are introduced.

Q1.a: Is it possible to develop planning and navigation strategies for

autonomous systems with only limited sensing capabilities?

In order to optimally plan and navigate, a mobile robot �rst requires an intuition of the
environments in which it acts, thus a map. Hence, the �rst part of the answer to this
question must deal with e�cient and accurate map estimation for those types of robots.
This can be based on already existing methods, such as Pose Graph Optimization, where
su�cient adjustments can be made. The second part of the answer must address the
planning and navigation based on a known map of the environment. The main di�culty
here is to deal with the inaccuracy of the position estimate and still perform an e�cient
complete coverage path planning procedure. Therefore, probabilistic coverage maps can
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be generated to allow the robot, in combination with localization techniques, e.g., particle
�lter, to optimally cover its working area. Most of the mentioned techniques require users
to tune hyper-parameters to adjust the algorithms to di�erent environments, e.g., small
versus large lawns. However, it would be preferable if robots would be able to act truly
autonomously. This leads to the next, directly related research question.

Q1.b: Can reinforcement learning be used for hyper-parameter learning to

enable true autonomy for lawn mowers?

In order to allow the robot to adjust to any appropriate environment, it has to learn
required hyper-parameter by itself, simply by exploring the environment. Therefore, rein-
forcement learning can be used where a cost function is required which changes dependent
on the choice of hyper-parameters. E�cient optimization techniques can then be used,
e.g., Bayesian Optimization, to �nd the optimal hyper-parameter setting for the given en-
vironment. Such a work�ow allows then for truly autonomous systems. Being able now
to cope with the limited sensing capabilities of domestic robots, the next step can be to
adjust the sensing itself, which raises the next question.

Q2.a: How to e�ciently exploit characteristics of the working environment

for navigation and planning for autonomous lawn mowers?

The most of the current autonomous lawn mowers use a perimeter wire for detecting the
boundary lines of the lawn environment. This method neither exploits characteristics of
the environments nor is it cost e�cient, since a perimeter wire has to be buried alongside
the boundary and constantly energized. A possible solution to replace this perimeter
wire technique is to detect the chlorophyll �uorescence of the lawn. Therefore, an active,
cost-sensitive chlorophyll sensor can be developed. Such sensors can then be used to
e�ciently determine the working area for autonomous lawn mowers. However, chlorophyll
�uorescence is not a unique feature for lawn but for plants in general. This raises the
question if we can also use the chlorophyll �uorescence detection to distinguish between
di�erent plant species.

Q2.b: Can machine learning approaches be used to learn to distinguish

di�erent plant species based on their chlorophyll �uorescence response?

Distinguishing between di�erent plant species can be crucial for real smart gardening,
e.g., the detection of moss or weed in the lawn. Recent advances in deep learning methods
allow to evaluate the complete chlorophyll emission spectrum for di�erent plant species and
learn an e�cient classi�cation approach. This shows if plant classi�cation based on the
plant emission spectra can work and how accurate such a classi�cation can be. However,
recording the complete spectra requires an expensive spectrometer. Thus, in a next step
cost e�cient approaches can be evaluated which are applicable to autonomous lawn mowers.
Given all the above introduced concepts, e.g., map estimation, complete coverage path
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planning, plant detection and classi�cation, the question arises how autonomous robots
applying these concepts can e�ciently be monitored and controlled.

Q3: What are intuitive controlling and monitoring techniques for

autonomous robots in outdoor environments?

In order to e�ciently control and monitor robots in outdoor environments it is favorable
to use mobile devices. Nowadays, many robots are running with the Robot Operating
System (ROS) as middleware, which provides hardware abstraction, extensive libraries,
package management and many more. However, for ROS there are no su�cient good mo-
bile applications available which ful�ll all requirements. Those requirements are, beneath
other, a general applicability to all ROS operated systems, a high customizability and
extensibility, a user-friendly interface and a consistent integration into the mobile device
work�ow. Thus, in this thesis a new mobile application based on the Model View View-
Model (MVVM) architecture is created which enables the user to intuitively interact with
any robotic system. Here, the MVVM architecture allows a separation between the UI and
the model logic and thus enables for a consistent mobile device work�ow.

1.3 Organization of the Thesis

The structure of this thesis is orientated on the above presented guiding research questions
and divided into three chapters. Thereby, each chapter can be read on its own but is part
of an overall narrative. Each chapter starts with discussing relevant related work followed
by pointing out the scienti�c contributions and ends with a conclusion.
In Chapter 2, the research questions Q1.a and Q1.b are addressed. Therefore, a map gener-
ation procedure as well as a complete coverage path planning method for robots with only
in-/outside area detectors are developed. Furthermore, methods for learning the hyper-
parameters of the proposed algorithms are introduced.
Chapter 3 then deals with research questions Q2.a and Q2.b, where a low-cost sensor is
developed which e�ciently exploits the characteristics of the working environment, namely
the chlorophyll �uorescence. This sensor allows then for e�ciently in-/outside area detec-
tion of the lawn environment. Moreover, plant classi�cation based on chlorophyll �uor-
escence is investigated to provide enhanced information, e.g., for better navigation and
planning.
The last research question Q3 is addressed in Chapter 4. There, a mobile application is
introduced to easily and e�ciently control robots in outdoor environments with mobile
devices, e.g., smartphones or tablets. In Chapter 5, the thesis is concluded.
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2 Navigation & Planning

In this chapter, map generation and path planning methods for low-cost robots with only
limited sensing capabilities are discussed. These methods use statistical evaluation and
optimization techniques to generate reliable map estimates and motion plans. Application
domains here include autonomous lawn mower or vacuum cleaner.
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2.1 Introduction

As discussed in Chapter 1, domestic robots, such as lawn mowers, are becoming increasingly
popular. However, most of these robots employ thereby simplistic navigation strategies,
e.g., random walk, due to the lack of suitable maps and accurate sensors required for
successful path planning. While most existing work for mapping and localization utilizes
long-range sensors, such as Light Detection And Ranging (LiDAR) sensors, RGB-D cam-
eras or time of �ight sensors, domestic robots lack such sensor-richness. This is due to the
cost-e�ective design of domestic robots, aiming for low acquisition and maintenance costs,
or because certain sensors are not suitable for outdoor environments, e.g., due to re�ections
or direct sunlight. However, intelligent navigation and planning with low cost hardware is
essential for domestic robots to realize their full potential. For example, autonomous lawn
mowers employed with random walk policies are limited to simple environments, e.g., they
cannot enter small corridors.

In this chapter, it is discussed to what extent optimal planning and navigation strategies
can be found for domestic robots with limited sensing capabilities, especially with only in-
/outside area sensing (Q1.a in Subsection 1.2). Furthermore, methods are highlighted to
enable true autonomy for domestic robots by learning required hyper-parameters (Q1.b in
Subsection 1.2).
The chapter begins with an overview of related work and a list of contributions, Section 2.2
and Section 2.3. In Section 2.4, the fundamentals required for the in this chapter proposed
methods are introduced. This includes the general setup of the investigated robot as
well as the required motion models. The actual method part starts with introducing a
map generation method for closed environments, Section 2.5. Given such a map of the
environment, a smart navigation and path planning strategy is proposed in Section 2.6.
There, a probabilistic approach for e�cient complete coverage path planning under high
uncertainties is introduced. In Section 2.7, application limitations and implications for the
proposed methods are discussed and in Section 2.8 the chapter concludes.

2.2 Related Work

In this section, di�erent approaches for navigation, e.g., Simultaneous Localization and
Mapping (SLAM), and di�erent complete coverage path planning strategies, e.g., cellular
decomposition methods such as the �Seed Spreader� algorithm, are discussed. Additionally,
hyper-parameter learning techniques are reviewed.
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2.2.1 Mapping & Navigation

Most of the existing work in the �eld of localization and mapping deals with the SLAM
problem, for example FastSLAM [6], which is a SLAM approach based on particle �ltering,
or graph-based SLAM [7] which utilizes pose graphs. In general, these methods rely on
long-range sensors, such as LiDAR sensors or cameras [8, 9, 10, 11], by using sensor fusion
and probabilistic reasoning, e.g., particle �lter [6] or extended kalman �lter [12]. Neverthe-
less, there are some approaches which try to handle the SLAM problem using only sparse
sensor data to avoid expensive sensing, e.g., [13] where the SLAM approach is modi�ed by
grouping multiple sparse scans for identifying features, which results in higher data density
but comes with larger measurement uncertainty. For this approach, however, long-range
sensor were used, even if only sparse data were provided. In comparison, existing work for
low-range sensors, such as sonars or infrared sensors, require linear features, e.g., straight
walls. Thus, they are mostly designed only for indoor robots and lay their focus on map
generation. For example, in [14] and [15] mapping methods for low-cost robots equipped
with low-range sensors utilizing those linear features are introduced. Both approaches rely
on the Extended Kalman Filter (EKF), where the former requires more strict conditions,
such that the environment must be indoor and rectangular. In [16], the sensing capability
of the mobile robot is even further restricted utilizing only bumpers or wall sensors for
applying wall following behavior for indoor mapping. Again, a rectangular environment
is assumed for recti�cation of the recorded path data. Those conditions, linear features
and/or a rectangular environment, are not necessarily present, especially not in outdoor
environments. Hence, a mapping approach with more relaxed conditions is required. In
[17], a map generation approach based the loop closure detected by returning to the home
station is introduced. Thereby, the lawn mower was driving along the boundary wire while
measuring movements with the wheel odometry. However, using only a single loop closure
requires to distribute the error along all estimated positions equally.

For navigation, existing work can also bee categorized into the above implied two extreme
cases. Either computational and monetary expensive sensors like cameras or LiDAR sensors
are installed [18, 19, 20] or simplistic navigation strategies such as a random walk are used,
as in current household robots available for purchase [21]. When using limited sensing, only
few navigation strategies have been proposed. In [22], a minimalist approach with contact
sensors, a compass, angular and linear odometers in three di�erent sensor con�gurations
is used in order to determine how complex a sensor system of a robot really has to be
in order to localize itself. An entropy based approach in order to determine uncertainty-
reducing motions for active localization is proposed in [23]. Here, the localization problem is
addressed for a blind robot with only a clock and a contact sensor. Probabilistic techniques
are used to discretize the boundary of the environment into small cells. A probability Pk,i
of the robot being in the cell i at the time step k is allocated to each cell and updated in
every iteration. In [24], a localization method based on Monte Carlo Localization (MCL)
[25] using only a single short-range sensor in a �xed position is introduced. The open
challenge however that remains is how to e�ciently localize a robot equipped only with
binary sensors, for example for lawn mowers equipped with perimeter wire systems. Those
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sensors only return the information whether the sensor is in the �eld or outside. The
aforementioned approaches can either not be applied to such localization tasks because
they require low-range sensors [24] or they are trying to solve the problem with even less
sensor information [23].

2.2.2 Complete Coverage Path Planing

In the past, many Complete Coverage Path Planning (CCPP) strategies have been pro-
posed. Those strategies can be partitioned into cellular decomposition, landmark-based
or grid-based methods. For cellular decomposition methods, the free-space of the working
area is divided into individual, non-overlapping cells such that the free-space is completely
�lled. Those cells are then covered by generating an e�cient path through all cells, e.g.,
a �mowing the lawn� pattern. Two prominent examples are given with [26] and [27]. In
the former, the problem of complete terrain acquisition with arbitrary shaped obstacles is
addressed which produced the �Seed Spreader� algorithm. In the latter, the Boustrophedon
Cell Decomposition (BCD) was developed which allows for non-polygonal obstacles within
the operation space.
Landmark-based approaches use topological maps detecting natural landmarks for nav-
igation and planning. Those methods are still utilizing the BCD. Such an algorithm is
introduced in [28], where cellular decomposition is used for coverage path planning by
generating a planar graph G with a set of nodes N and edges E. The overall algorithm
is then designed as a �nite state machine given the three states �boundary�, �normal� and
�travel�. The method shows coverage accuracies of 99 % in simulation and 85 % for real
robots.
The most famous class of CCPP algorithms utilizes grid maps which were �rstly introduced
in [29]. Those grid maps are simple to create and to maintain but su�er from exponential
growth. One of the �rst methods applying CCPP on grid maps has been given in [30] where
a complete coverage path is planned o�ine. For a detailed overview of CCPP algorithms,
it is referred to [31].

Other approaches for CCPP focus on certain areas of application. For example, in [32]
the authors proposed a CCPP method for agricultural machines, where trajectories are
selected which guarantee complete coverage while minimizing overlapping. The best stud-
ied robots for CCPP are vacuum cleaners since they are widely used nowadays and they
operate in a simplistic indoor setting. A complete setup for this type of robots, including
a simple CCPP method, is presented in [33]. More studies covering e�cient probabilistic
robot cleaning strategies are presented in [34] and [35]. In the former, dirt grid maps are
introduced which are modeled by Poisson Processes. Based on the modeled dirt distribu-
tion, a Traveling Salesman Problem (TSP) is solved for optimally cleaning the working
space. In the latter, high-con�dence cleaning guarantees under uncertainties are studied.
Therefore, a particle �lter is used to estimate the dirt distribution assigning a particle to
each grid cell of the map. These particles are then updated based on random samples from
the robots motion model. The robots path is then updated solving again a TSP.
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For autonomous lawn mowers, little research considering e�cient path planning meth-
ods has been done. In [36], this problem is addressed designing di�erent planning methods
with respect to minimal time or energy consumption. However, the proposed method
requires an exact pose estimate for the robot utilizing real-time positioning system and
self-navigation. Such precise positioning is not available for consumer lawn mowers, as
these are only equipped with in-/outside area detection and odometry sensors. Also, most
of the previously mentioned methods are not applicable to lawn mowers, since they mostly
require remote sensing such as sonar. An approach for CCPP considering only contact
sensors is presented in [37]. However, it requires a rectilinear structure of the working
environment. Those limitations, either that remote sensing techniques are needed or as-
sumptions of the structure of the environment have to be made, require new probabilistic
approaches for CCPP to be applicable on autonomous lawn mowers.

2.2.3 Hyper-Parameter Learning

Mapping or SLAM methods, such as GMapping [38, 39], RTabMap [40, 41] or the in
Subsection 2.2.1 mentioned approaches, e.g., FastSLAM [6], require the tuning of a large
number of hyper-parameters. A correct setting of these parameters is crucial for the per-
formance of these algorithms [42]. Usually, most of the mapping and navigation methods
require the accurate setting of hyper-parameters, which might account for, e.g., the in-
accuracies of the individual sensors. In general, �nding convenient hyper-parameters for
a certain mapping or navigation task requires a-prior knowledge on the structure of the
environment and the robot itself. However, truly autonomous systems are expected to be
able to adapt themselves to any environment and thus, being able to learn the required
parameters autonomously. A well-known method for such meta-parameter learning prob-
lems is classical Reinforcement Learning (RL) [43], more speci�cally Bayesian Optimization
(BO) [44, 45]. BO is a black box optimizer that only requires a de�nition of a cost function
for e�ciently learning required hyper-parameters. However, �nding a proper de�nition of
such a cost function is critical for the success of the parameter learning procedure. For
mapping algorithms, a natural choice would be to de�ne the cost as the di�erence between
the estimated map and the respective ground truth. However, since ground truth is not
known a priori other cost measures have to be developed for hyper-parameter learning.

2.3 Scienti�c Contributions

In the following, the novel scienti�c contributions presented within this chapter are sum-
marized.

Mapping & Navigation A simple but e�cient method for loop closure detection using
only odometry sensors and in-/outside area detectors is proposed. Based on the detected
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loop closures a map estimate can be generated using pose graph optimization techniques.
The approach is tested in various realistic simulation environments as well as in di�erent
real garden settings. The proposed approach enables robots with limiting sensing cap-
abilities, e.g., in-/outside area detection sensors, to operate intelligently by considering a
generated map estimate for both path planning and localization.

Complete Coverage Path Planning A probabilistic CCPP approach for closed envir-
onments applicable to autonomous lawn mowers and other low-cost systems is proposed
which can cope with high uncertainties regarding the pose estimates. For this purpose, the
neural network based CCPP approach from [46, 47] is adapted and combined with ideas
for high-con�dence cleaning guarantees for vacuum cleaners from [35]. The contributions
thereby are three-fold: (1) Adaptation of a neural net planning method for highly uncertain
pose estimates, (2) a de�nition of a probabilistic coverage map and (3) a demonstration of
the proposed method in di�erent realistic simulation scenarios.

Hyper-Parameter Learning A RL scheme for learning the hyper-parameters for the intro-
duced mapping approach is proposed. Therefore, a cost function is de�ned which utilizes
the fact that the robot is operating in a closed environment.

2.4 Robot Motion Models

As the basis for the development and evaluation of the di�erent methods for mapping,
navigation and planning, a di�erential drive robot is used. In this section, �rst the general
robot setup is de�ned, e.g., the sensing capabilities and the actuators, followed by the
velocity and odometry motion models [48]. The velocity motion model requires thereby
that the robot is controllable through a translational and an angular velocity whereby the
odometry motion model relies on wheel encoder information. Thus, the velocity motion
model, while in general less accurate than the odometry motion model, can be used for
path planning whereas information from the odometry motion model is only available
after the robots movement and can be used for �ltering algorithms. Here, the velocity
motion model is used for simulating the di�erential drive robot and the odometry motion
model for pose estimation methods, e.g., the particle �lter. At the end of this section, the
model parameters are determined based on recorded real data using Maximum Likelihood
Estimation (MLE) [49].

2.4.1 Robot Setup

The di�erential drive robot used throughout this thesis, an adjusted Viking MI 422P, has
two actuators which drive the wheels. Position encoders (Hall-sensors) provide the number
of ticks nr and nl counted during one iteration. Given the number of ticks per complete
rotation nHall and the diameters of the wheels dr and dl, the unrolled distance by each
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Figure 2.1: A di�erential drive robot presented in the world frame W with the body frame B.

wheel is

lr =
drπnr
nHall

, ll =
dlπnl
nHall

. (2.1)

The actuators are velocity controlled via Serial Peripheral Interface (SPI) by the main
processor, where a motor driver provides the conversion into the required motor signals.
Sensors, e.g., chlorophyll �uorescence sensors or boundary wire sensors, are placed right
and left at the front of the robot and are directly connected via Universal Serial Bus (USB)
with the main processor, which is a Raspberry Pi 3B+. The operating system running
on the Raspberry Pi is Raspberry Pi OS (previously called Raspbian). The robot control
is realized by means of the Robot Operating System (ROS). A right-handed coordinate
system with the x-axis pointing forward, the y-axis left and the z-axis up is de�ned for the
di�erential drive robot, Figure 2.1.

2.4.2 Velocity Motion Model

For the velocity controlled di�erential drive robot the input signals to the system are the
translational velocity in body frame x-direction, v, as well as the angular velocity around
the z-axis, ω. Given the velocities for the right and left wheel, vr and vl,

v =
vr + vl

2
, ω =

vr − vl
2L

. (2.2)

Performing a backward calculation leads to

vr = Lω + v, vl = Lω − v. (2.3)

Here, 2L is the wheelbase of the di�erential drive robot. Given the velocities v and ω, a
�rst order system of di�erential equations can be drawn to represent the kinematic of the
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di�erential drive robot

ẋ = v cos(ϕ),

ẏ = v sin(ϕ),

ϕ̇ = ω.

(2.4)

Discretizing this �rst order system with time step ∆t = ti− ti−1 and under the assumption
of constant v and ω during a time period ∆t, yields

xi = xi−1 +
v

ω
[sin(ϕi)− sin(ϕi−1)] ,

yi = yi−1 +
v

ω
[cos(ϕi−1)− cos(ϕi)] ,

ϕi = ϕi−1 + ω∆t.

(2.5)

To ensure correct approximation for non-constant velocities, ∆t should be chosen small.
Also, notice that Equation (2.5) has a singularity at ω → 0. Here, the robot does not turn,
thus moves in a straight line and the circle radius of the robot motion r = ‖ vω‖ goes to
in�nity. In order to avoid this singularity, Equation (2.4) can be solved for ω = 0 which
leads to

xi = xi−1 + v cos(ϕi−1)∆t,

yi = yi−1 + v sin(ϕi−1)∆t,

ϕi = ϕi−1.

(2.6)

Equation (2.5) and Equation (2.6) are derived for an ideal robot. However, robot motion
is in general subject to noise. Here, the noise for the translational and angular velocities
are modeled as zero-mean Gaussian variables as proposed by [48]

v̂ = v + εv

ω̂ = ω + εω

εv ∼ N (0, α1|v|+ α2|ω|)
εω ∼ N (0, α3|v|+ α4|ω|).

(2.7)

Inserting these noisy velocities to the motion model from Equation (2.5) leads to

xi = xi−1 +
v̂

ω̂
[sin(ϕi−1 + ω̂∆t)− sin(ϕi−1)] ,

yi = yi−1 +
v̂

ω̂
[cos(ϕi−1)− cos(ϕi−1 + ω̂∆t)] ,

ϕi = ϕi−1 + ω̂∆t.

(2.8)

The noise parameters α1, . . . , α4 are robot speci�c and have to be determined, for example
using maximum likelihood estimation.

2.4.3 Odometry Motion Model

A di�erent approach to estimate the pose of a di�erential drive model is to use an odometry
model. Here, the wheel movement data, lr and ll, provided by the odometers of the wheels
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are used to estimate the current pose

pi =

xiyi
ϕi

 =

xi−1

yi−1

ϕi−1

+

cos(ϕ) 0
sin(ϕ) 0

0 1

[∆s
∆ϕ

]
(2.9)

given the previous pose pi−1 = [xi−1, yi−1, ϕi−1]>. The translational and angular move-
ments are calculated as ∆s = lr+ll

2 and ∆ϕ = lr−ll
2L . A convenient noise model, as proposed

by [48], requires the division of the robot's movement into an initial rotation δR1, a straight
translatorial movement δT and a concluding rotation δR2 as depicted in Figure 2.2. With
∆pi = pi − pi−1, the individual movement components can be derived as

δR1 = atan2(∆pi,y,∆pi,x)− pi−1,ϕ

δT =
√

∆p2
i,x + ∆p2

i,y

δR2 = ∆pi,ϕ − δR1.

(2.10)

Note, that if δT is close to zero, it may come to instabilities calculating δR1 which may lead
to unrealistic high rotations. A practical solution is to catch any case where δT → 0 and
set δR1 = δR2 =

∆pi,ϕ
2 . Another case which has to be addressed is the backward motion of

the robot where ∆s < 0. Equation (2.10) turns then into

δR1 = atan2(−∆pi,y,−∆pi,x)− pi−1,ϕ

δT = −
√

∆p2
i,x + ∆p2

i,y

δR2 = ∆pi,ϕ − δR1.

(2.11)

In order to account for noise in the odometry data, random Gaussian samples with zero
mean are added to the motion components δR1, δT and δR1 as proposed in [48]:

δ̂R1 = δR1 + εR1

δ̂T = δT + εT

δ̂R2 = δR2 + εR2

εR1 ∼ N (0, a1|δR1|+ a2|δT |)
εT ∼ N (0, a3|δT |+ a4(|δR1|+ |δR2|))
εR2 ∼ N (0, a1|δR2|+ a2|δT |).

(2.12)

The noise parameters a1, . . . , a4 are robot speci�c and have to be determined, for example
using maximum likelihood estimation.

2.4.4 Model Parameter Determination

The velocity as well as the odometry motion model require accurate estimates for the noise
parameters α1, . . . , α4 and a1, . . . , a4 respectively in order to allow for realistic motion
estimation. Therefore, MLE can be used for determining those parameters and the results
can be validated utilizing the Kolmogorow-Smirnow-Test [50].
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δR1

δT

δR2

Figure 2.2: Odometry model where the movement of the robot is divided into two rotations δR1,

δR2 and a straight translatorial movement δT . This sketch has been redrawn from [48].

Maximum Likelihood Estimation Let there be N measurements with y1:N being the
true values and ŷ1:N being the estimated values given by a certain motion model, e.g.,
[δR1, δT , δR2]1:N and [δ̂R1, δ̂T , δ̂R2]1:N . Let further the error between the estimate and the
true value be normally distributed with zero mean and variance Σ = diag[σ2

1, . . . , σ
2
M ]

ε = ŷ − y ∼ N (0,Σ). (2.13)

The variances σ2
j = σ2

j (y,θ) are functions of the measurements y and the model parameters
θ, e.g., θ = [a1, . . . , a4], σ2

R1 = a1|δR1| + a2|δT |. The probability density distribution for
the error ε is the product

f =
M∏
j=1

fj with fj(εj |σ2
j ) =

1√
2πσ2

j

exp

(
−1

2

[
εj
σj

]2
)
. (2.14)

The likelihood given the N measurements is the product of their marginal densities

L =
N∏
i=1

M∏
j=1

fj,i
(
εj,i|σ2

j (yi,θ)
)

=
M∏
j=1

N∏
i=1

fj,i
(
εj,i|σ2

j (yi,θ)
)
. (2.15)

Taking the logarithm of the likelihood results in

lnL =

M∑
j=1

N∑
i=1

lj,i +M
N

2
ln(2π) with lj,i = − ln

(
σ2
j (yi,θ)

)
− 1

2

[
εj,i

σj(yi,θ)

]2

. (2.16)

In order to generate estimates for the model parameters θ, Equation (2.16) has to be
maximized with respect to those parameters. Therefore, global optimization methods such
as pattern search [51] can be used.

Kolmogorow-Smirnow-Test In order to validate the parameter estimation results, a Kol-
mogorow-Smirnow-Test can be used to check if an unseen data set [y∗1:K , ŷ

∗
1:K ] leads to the



2.4. ROBOT MOTION MODELS | 17
Table 2.1: Estimated motion model parameters and measured robot parameters.

Kinematic Model Odometry Model Robot

α1/a1 0.011230 0.002361 dr 0.215

α2/a2 0.003417 0.000346 dl 0.215

α3/a3 0.193604 0.000223 L 0.1825

α4/a4 0.180664 0.000069 nHall 703

desired normal distribution. Therefore, the empirical data �rst has to be adjusted based
on the assumed variance σ2

j (y
∗
k,θ),

ε̄j =
ŷ∗j − y∗j
σ2
j (y
∗
k,θ)

. (2.17)

Let ε̄1 ≤ ε̄2 ≤ ... ≤ ε̄K without loss of generality, Femp(ε̄k) be an empirical distribution
function

Femp(ε̄) =
1

K

K∑
k=1

I−∞,ε̄(ε̄k) with I−∞,ε̄(ε̄k) =

{
1 ε̄k ≤ ε̄
0 ε̄k > ε̄

(2.18)

and F0(ε̄k) the cumulative probability distribution of the null hypothesis, N (0, 1),

F0(ε̄k) =
1√
2π

∫ ε̄

−∞
exp

(
− t

2

2

)
dt. (2.19)

Then the upper and lower di�erences

du,k = |Femp(ε̄k)− F0(ε̄k)| and dl,k = |Femp(ε̄k−1)− F0(ε̄k)| (2.20)

are calculated for all data point k = 1, ...,K and compared to the critical value dα. If dmax,
thus the maximum value for all du,k and dl,k is larger than dα, the null hypothesis will be
rejected. The critical value can be approximately calculated using the signi�cance level α
and the size of the data set K as

dα =

√
−0.5 ln

(
α
2

)
√
K

. (2.21)

Motion Model Parameters In order to generate training and test data for the MLE and
the Kolmogorow-Smirnow-Test, the lawn mower was driven in hand steering mode over a
test lawn. Thereby, the exact pose of the lawn mower was tracked using a motion capture
system1. The motion capture data were recorded and freed of measurement errors in [52].
Based on these data, the errors [εv, εω] for the velocity motion model and [εR1, εT , εR2] for

1OptiTrack
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Figure 2.3: Cumulative distribution functions Femp for the empirical error data [ε̄v, ε̄ω] and

[ε̄R1, ε̄T , ε̄R2], normalized with respect to the expected variances. All tests did not reject the

null hypothesis of a standard normal distribution, N (0, 1), with the cumulative distribution

function F0.

the odometry motion model can be determined. A MLE leads then to the in Table 2.1
noted model parameter values. Thereby, the data set was divided into a training set for
the MLE with 95 % of the data and a test set for the Kolmogorow-Smirnow-Test with the
rest 5 % of the data. The Kolmogorow-Smirnow-Test con�rmed for all parameter settings
a match with the desired normal distribution. In Figure 2.3, comparisons between the
empirical cumulative distribution functions for the �ve di�erent error measures and the
cumulative distribution function of the standard normal distribution are shown.

2.5 Map Generation for closed Environments

The �rst step towards development of optimal planning and navigation strategies requires
an e�cient and accurate map estimate generation. In this section, an intelligent mapping
method for closed environments for low cost systems with limited sensing capabilities
is introduced. The proposed method utilizes the well known Pose Graph Optimization
(PGO) technique by providing an e�cient loop closure detection scheme. Therefore, the
robot cycles along the boundary line of the closed environment utilizing a wall following
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Figure 2.4: Pose graph with �ve vertices connected with �ve edges. Four of the edges are odometric

constraints and one is a loop closing constraint. On the right, the incidence matrix is shown

divided into the parts containing the odometric constraints and the loop closing constraints.

approach (Appendix, Section A) to generate odometry data which are then used for the
PGO and for the loop closure detection. The section starts with introducing the pose
graph representation and optimization in general, followed by the proposed approach for
loop closure detection.

2.5.1 Pose Graph Representation

The pose graph representation was �rstly introduced by Lu and Milios 1997, [53]. Let
p = {p0, . . . ,pN} be a set of N + 1 poses representing the position and orientation of a
mobile robot in a two dimensional space, hence pi = [x>i , ϕi]

>. Here, xi ∈ R2 is the
cartesian position of the robot and ϕi ∈ [−π, π] the corresponding orientation as an Euler
angle with the integer i = 0:N . The relative measurement between two poses i and j is
then given as

ξij =

[
R>i (xj − xi)
ϕj − ϕi

]
= pj � pi, (2.22)

where Ri = Ri(ϕi) is a planar rotation matrix and � the pose compounding operator
which was introduced in [53]. These relative measurements are, in general, a�ected by
noise. Thus, including a zero mean Gaussian noise εij ∼ N (0,P ij) leads to the noisy
relative measurements

ξ̂ij = ξij + εij . (2.23)

In general, there are two di�erent types of relative pose measurements: Odometric con-
straints and loop closing constraints. Here, the �rst constraints are generated by the wheel
odometry of the di�erential drive robot. The second type of constraints are provided by
the robot recognizing a match between actual measurements and past measurements by
revisiting places. Subsection 2.5.2 introduces how to e�ciently identify and add those loop
closing constraints to the pose graph for robots with limited sensing in closed environments.
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The pose graph is thereby represented as a directed graph G(V, E) with N+1 vertices and
N +M edges, where N is the number of odometric constraints and M the number of loop
closing constraints. The connection between the vertices by the edges can be compactly
written using an incident matrix A. There, every column represents an edge connecting
two vertices with each other. The row number thereby represents the vertex from which
the edge starts, denoted by −1, and the vertex where the edge leads to, denoted by 1. In
Figure 2.4 a pose graph is exemplarily shown in combination with the according incidence
matrix A.

Path Segmentation/Data Pruning During the mapping procedure, a vast amount of
odometry data is collected which results into a path with many data points. For example,
a robot sampling with 20 Hz generates 1200 path points per minute. This makes PGO
intractable such that path segmentation/data pruning strategies are required to reduce
the number of data points. Therefore, path points are clustered into straight line segments
similarly as in [16].

Assume the position estimates based on the odometry are given as X = {x0, . . . ,xn}. A
set of dominant points is initialized as DP = {x0} and a temporarily subset as S = {x0}.
The set of dominant points DP represents the pruned data whereas the subset S contains
the data points that are currently being pruned. Successively, all odometry data points
are included to the temporary subset S ← {S,x} whereby with each integration of a new
data point x the following conditions are checked:

Lmin > ||DPend − Send|| (2.24)

and

emax >
1

|S| − 2

|S|−1∑
i=2

ei (2.25)

with DPend and Send being the last items in the respective sets, ei the shortest distance
between the point Si and the vector v = Send − S1 and |S| the cardinality of the set S.
The adjustable parameters Lmin and emax re�ect the minimum pruning length and the
maximum pruning error respectively. If both conditions are true, thus the minimum prun-
ing length is reached and the maximum pruning error is exceeded, Send−1 is added to the
set DP ← {DP,Send−1} and the temporary subset S is set back to S = {Send,x}. An
example data set with original odometry and pruned data is shown in Figure 2.5.

Based on the pruned data set DP , the poses for the pose graph are generated as

p = {[DP>1 , ϕ1]>, . . . , [DP>|DP |−1, ϕ|DP |−1]>}, (2.26)

where |DP | is the cardinality of the set of dominant points and

ϕi = atan2(vi,y, vi,x) with vi = DPi+1 −DPi. (2.27)
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Figure 2.5: Path Segmentation: In the left panel the original odometry data with 37687 data points

is shown. In the right panel the path segmentation with 137 dominant points, marked as red

dots, is presented.

For the pose graph, N = |DP | − 2 and the relative measurements ξ̂ can be calculated
using Equation (2.22). An example for the generation of the pose graph based on the set
of dominant points is shown in Figure 2.6.

Pose Graph Optimization Given the pose graph with N + 1 poses, N odometric and
M loop closing constraints, the overall optimization problem is to minimize the sum of
weighted residual errors rij(p) with respect to the pose estimates p

min
p

∑
(i,j)∈E

||rij(p)||2P ij (2.28)

with
||rij(p)||2P ij = [(pj � pi)− ξ̂ij ]>P−1

ij [(pj � pi)− ξ̂ij ]. (2.29)

The covariance matrix corresponding to the relative measurements ξ̂ij is thereby given as
P ij . Rewriting Equation (2.28) with eij(pi,pj) = (pj � pi)− ξ̂ij and Ωij = P−1

ij as the
information matrix leads to the more compact form

min
p

∑
(i,j)∈E

e>ijΩijeij . (2.30)

Here, covariance matrices for the odometric constraints and covariance matrices for the loop
closing constraints must be distinguished. Where the former can be modeled as demon-
strated in Section 2.4.3, the determination of the latter covariance matrices is method
speci�c and will be addressed in the following sections.
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Figure 2.6: The �gure shows how the dominant points are transformed to a set of poses. Thereby,

the procedure starts with the �rst dominant point as the initial pose given by p0 = [x>
0 , ϕ0]>

with x0 = DP1 and ϕ0 = atan2(v1,y,v1,x), v1 = DP2 −DP1.

The pose graph optimization problem, Equation (2.30), has been addressed in several
studies, e.g., TORO [54], g2o [55], iSAM2 [56] and LAGO [57]. Thereby, TORO is based
on gradient descent and is an extension of Olson's algorithm [58]. It applies a tree-based
parameterization to distribute residual errors across the graph that improves the perform-
ance. The �general graph optimization� framework, g2o, has been designed to perform
the optimization of di�erent least squares problems, which can be represented as a graph.
It thereby relies on the Gauss-Newton method. The iSAM2 method applies Bayes trees
using incremental variable re-ordering and �uid relinearization to solve sparse nonlinear
incremental optimization problems. LAGO addresses the pose graph optimization problem
by decoupling the orientation and translation. Here, the simpler Levenberg-Marquardt al-
gorithm is used, which works reasonably well for the addressed pose graph optimization
problem. The Levenberg-Marquardt algorithm approximates the function by its �rst order
Taylor expansion around the current initial guess p̂ in order to then �nd the solution to
the optimization problem iteratively. A detailed description how to apply the Levenberg-
Marquardt algorithm for the given PGO problem is given in [7].

2.5.2 Loop Closure Detection

The idea for e�ciently detecting loop closures with only limited sensing capabilities is to
cycle along the boundary line of the closed environment. Based on the so generated pose
graph, loop closing constraints are detected by comparing the shape of the neighborhood
regions of each vertex with another. Therefore, a piecewise linear function

θ(x) = φi for li−1 ≤ x < li, i = 0, 1, . . . , N (2.31)
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Figure 2.7: Example for the piecewise linear orientation function θ(x). The green circled regions

show similar path segments. The vertices or dominant points (DPs) of the pose graph are

pictured as red dots. The estimated circumference U for the closed environment is exemplarily

depicted for a possible loop closing pair.

representing the shape of the pose graph is constructed by accumulating the orientation
and distance di�erences between the poses

φi = φi−1 + ∆φi

li = li−1 + ||vi||.
(2.32)

Here, vi = xi − xi−1, ∆φi = ϕi − ϕi−1 with pi = [x>i , ϕi]
> and the procedure starts with

φ0 = ϕ0 and l0 = 0. An example for such a piecewise orientation function based on the
data depicted in Figure 2.5 is shown in Figure 2.7.

By de�ning the neighborhood of a vertex i as [li − LNH, li + LNH], a comparison error
between two vertices i and j is given as

Cij =

∫ +LNH

−LNH
| [θ(li + x)− φi]− [θ(lj + x)− φj ] |dx. (2.33)

Rewriting Equation (2.33) as a sum over m linearly distributed evaluation points xk leads
to

Cij =
1

m

m∑
k=1

| [θ(li + xk)− φi]− [θ(lj + xk)− φj ] | (2.34)

with x1 = −LNH, xm = +LNH. An example error matrix representing the comparison
errors for the in Figure 2.7 introduced orientation function is shown in Figure 2.8. Based
on the Comparison error Cij , a loop closing pair SPk = {pi,pj} for i 6= j is de�ned as a
local minimum of Cij for which holds Cij,min < cmax. A local minimum represents thereby
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Figure 2.8: Comparison error of the shapes of the neighborhood between the vertices of the pose

graph. For better reading the error is plotted in the form log(Cij +1) and only a section of the

matrix is shown. The variables xi and xj are representing the position l of the vertices i and

j in meter along the pose graph. The estimated circumference U for the closed environment

can be read directly from the graphic.

the best possible loop closure in a certain region of the error matrix and the threshold cmax

ensures that not every local minimum is selected as loop closing pair, but only su�cient
accurate ones. The hyper-parameters LNH and cmax are problem speci�c and have to be
thoroughly adapted.

After detecting a loop closure between the vertices i and j of the pose graph, the re-
lative measurement ξ̂ij has to be added to the graph. Therefore, the neighborhood re-
gions for both vertices i and j are discretized as distinct points, represented by the sets
Xi = {xi,1, . . . ,xi,K} and Xj = {xj,1, . . . ,xj,K}, and transformed such that both poses i
and j are equal with p̂i = p̂j = [0, 0, 0]>. By using an adapted ICP approach [59], which
minimizes the distance error

min
Rφ,t

Edist(Rφ, t) = min
Rφ,t

K∑
k=1

||Rφxi,k + t− x∗i,k|| (2.35)

a planar rotation Rφ with φ being the rotation angle and a translation vector t = [tx, ty]
>

can be calculated. Here, x∗i,k is the point of Xj closest to xi,k. The loop closing constraint
can then be derived using Equation (2.22) by transforming p̂j given the calculated rotation
φ and translation t which leads to

ξ̂ij =
[
tx ty φ

]>
. (2.36)
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Figure 2.9: Exemplary optimization procedure for �nding an optimal map representation for closed

loop environments utilizing only odometry data.

The corresponding covariance matrix can be calculated using the correlation error Cij and
hyper-parameters γ1 and γ2

P lc,ij = diag
([
γ1 γ1 γ2

])
Cij . (2.37)

The parameters γ1 and γ2 are problem speci�c and have to be thoroughly adjusted. In
Figure 2.9, the optimization procedure for an exemplary pose graph is shown.

2.5.3 Hyper-Parameter Learning

In order to learn unknown hyper-parameters (e.g. LNH) for the above in Subsection 2.5.2
introduced loop closure detection method, an optimization problem can be de�ned as

min
θ
c(θ). (2.38)

Here, c(θ) is a speci�c cost function and θ are the hyper-parameters which have to be
optimized. A natural choice for c(θ) would be a �mapping error� between a groundtruth
and the map estimate. However, since the groundtruth is not known a priori (otherwise
the mapping would be obsolete), di�erent cost measures utilizing probabilistic hypotheses
are used in this subsection. The most important assumption for the derivation of the
cost function is that the odometry error has zero mean with some covariance matrix P ,
ε ∼ N (0,P ). This holds for the here investigated di�erential drive robot as has been
shown in Subsection 2.4.3.

To optimize the hyper-parameters, a two-stage optimization process is proposed. In
the �rst stage, a cost function c1(θ) is de�ned for tuning the parameters for loop closure
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detection, LNH and cmax. A resulting by-product, the circumference of the closed environ-
ment, is then used for de�ning the second cost function c2(θ), with which the pose graph
parameters γ1, γ2 are tuned.

Stage 1 � Optimization of Loop Closing Parameters Let the odometry error between
two poses i and j be on average zero, thus ε ∼ N (0,P ) with P being the covariance
matrix. Let u then denote the traveled path distance along the pose graph between a loop
closing pair i, j

u =

j−1∑
k=i

||xk+1 − xk||. (2.39)

Given the assumption of zero mean odometry error, the traveled path distances for all loop
closing pairs u = [u1, u2, . . . , uM ], identi�ed by cycling around a closed environment, are
on average multiples of the circumference of the closed environment, nU . Here, n ∈ N+ is a
positive integer, representing the number of cycles before loop closure detection. Hence, if
the loop closures are detected properly, a histogram of the path distances u shows distinct
peaks at positions nU . In Figure 2.10 such histograms are shown for ill-detected loop
closures, Figure 2.10b, and well-detected loop closures, Figure 2.10d. To transform this
idea into a cost function, a Gaussian Mixture Model (GMM) [60] can be learned from
observed path distances u given the probability distribution

p(u) =

K∑
k=1

πkN (u|µk,Σk) . (2.40)

Here, K is the number of mixture components and πk, µk, Σk the mixture weight, the
mean and the variance of the k-th component, respectively. For �tting the GMM, the
iterative Expectation-Maximization (EM) algorithm is used [61], [62]. The EM algorithm
starts with a randomly selected model and then alternately optimizes the allocation of the
data u, i.e., the weighting πk, to the individual parts of the model and the parameters
of the model µk and Σk. If there is no signi�cant improvement, the procedure is terminated.

For the cost function, the negative log likelihood of the GMM,

− L = − ln p(u|π,µ,Σ) = −
M∑
i=1

ln

[
K∑
k=1

πkN (ui|µk,Σk)

]
(2.41)

over the data set u = [u1, u2, . . . , uM ], is used. The log likelihood decreases if the dataset
u meets the above assumption of evenly distributed peaks at positions nU . A common
strategy for training GMMs is to iteratively increase K until the log likelihood does not
improve further. In Figure 2.10, the evolution of the negative log likelihood with respect
to the number of components K is shown for ill-detected loop closures, Figure 2.10a, and
well-detected loop closures, Figure 2.10c.
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Figure 2.10: Examples for ill- and well-chosen hyper-parameters for loop closure detection.

The cost function for optimizing the hyper-parameters for loop closure detection is then

min
θ
c1(θ) = min

θ

(
−L
M
− ln(M)

)
, (2.42)

with the unknown hyper-parameters θ = [LNH, cmin], the length of the neighborhood and
the minimum comparison error, and M being the number of loop closures found. After
�nding accurate hyper-parameters, the circumference of the closed environment U can be
estimated using the best GMM �t. The estimated closed environment circumference U is
then used in stage 2.

Stage 2 � Optimization of Pose Graph Parameters Given the circumference estimate of
the closed environment U from stage 1, the hyper-parameters for the loop closing covariance
for pose graph optimization, γ = [γ1, γ2], can be learned. Therefore, the cost function is
de�ned as

min
γ
c2(γ) = min

γ
|U − Û |, (2.43)

where Û represents the circumference estimate after pose graph optimization. The idea
is to punish deviations between the estimated circumference based on the original pose
graph and the optimized one. The underlying assumption here is that the determined
circumference U already represents closely the true circumference of the environment and
should therefore be changed as little as possible. In order to determine the circumference
after pose graph optimization, a �t onto GMMs is performed.

Global Optimization - Bayesian Optimization In order to �nd optimal parameters,
Equation (2.42) and Equation (2.43) have to be minimized. Since there are no derivat-
ives for both, Equation (2.42) and Equation (2.43), derivative free optimization techniques
are required. Moreover, both optimization problems are highly cluttered, as examplarily
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Figure 2.11: An example of the above introduced cost function, Equation (2.42). The structure

is highly cluttered such that local optimization procedures could get stuck in local minima.

Hence, global optimization techniques have to be used.

shown in Figure 2.11. Hence, global optimization techniques are required. Here, episodic
BO [45] with Expected Improvement (EI) [63] is used to iteratively �nd a su�ciently good
approximation of the global minimum. A brief summary concerning BO can be found in
the appendix, Section B.

2.5.4 Evaluation

The above proposed mapping approach is �rst tested on real data collected in di�erent
garden environments using the Viking MI 422P lawn mower. The approach generates
accurate map estimates for the di�erent closed garden environments. Additionally, simu-
lations were performed to evaluate the approach in various challenging environments and
for di�erent odometry parameters. In order to compare the mapping results, an intuitive
error measure, which calculates the deviation between a ground truth map and the map
estimate, is used.

Error Determination In order to compare the optimized pose graph data with a ground-
truth map, the pose graph has to be transformed into a closed map representation. There-
fore, the pre�x and the su�x of the pose graph are cut o�, because these parts have not
been optimized due to missing loop closing constraints. Thereby, the pre�x is the part
of the pose graph before the �rst loop closing constraint and the su�x is the part of the
pose graph after the last loop closing constraint. In order to generate a closed map repres-
entation, the �rst loop closing pair is taken which represents a complete turn around the
borderline. Setting the points of this loop closing pair onto each other leads to a closed
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Figure 2.12: Exemplary map comparison procedure. The �gure shows the di�erent processing steps

to compare an optimized pose graph with a groundtruth map.

trajectory as presented in Figure 2.12b.

To compare di�erent map estimates with each other the deviation of area between the
estimated closed map and the true shape of the environment is calculated. Therefore, the
true shape of the environment is represented as a polygon de�ned by the points Xtrue. The
idea is to determine a rotation matrix R and a translation vector t which transforms the
set of points X, representing the closed map estimate, onto the set of points Xtrue

X ← R ·X + t, (2.44)

such that
∆A = 1− Atrue ∩Aestimate

Atrue ∪Aestimate
(2.45)

is minimized. Here, ∆A represents the di�erence between the areas of the map estimate and
the true shape of the environment. To �nd a convenient rotation matrix and translation
vector for Equation (2.44), optimization techniques such as gradient descent can be used.
However, local optimization procedures require a su�cient accurate initial guess to not
get stuck in local minima. In Figure 2.12c, a transformed map estimate together with the
groundtruth and the deviation area between both is plotted.

Real Garden Examples For generating real data, the lawn mower was driven along the
boundary line of two di�erent lawn areas, the university courtyard and a private garden
environment. The velocity of the lawn mower was set to 0.3 m s−1. The odometry data
was sampled with a frequency of 20 Hz.

In Figure 2.13, the university courtyard, the respective measured odometry data and a
resulting map estimate are shown. The ground truth is available as CAD data, such that
a comparison between the map estimate and the true closed environment can be made
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Figure 2.13: The real courtyard depicted (a), the collected odometry data (b) and the map es-

timate (c). The comparison error between the map estimate and the groundtruth map is

∆A = 8.24%

according to Equation (2.45). In a �rst step, the mapping parameters were set manually
based on the known circumference U = 106.8m and the complexity of the environment
with LNH = 30, cmax = 0.3, γ1 = 1, γ2 = 0.001. The resulting mapping error between the
map estimate and the groundtruth map is then ∆A = 8.24%. In a second step, the hyper-
parameter estimation procedure was evaluated. Therefore, 20 runs were performed from
which all led to good loop closing detection with LNH = 36.16±1.81 and cmax = 0.56±0.03.
However, the hyper-parameters for the pose graph optimization, γ1, γ2 di�er largely within
the searching range of γ1 = 0.01 . . . 10 and γ2 = 0.0001 . . . 1. The overall mapping di�er-
ence over the 20 runs, according to Equation (2.45), is ∆A = 0.1668± 0.0797. There are
outliers which re�ect that in some cases the optimization procedure did not �nd suitable
hyper-parameters. Here, 8 out of the 20 runs imply with mapping di�erences ∆A > 20
that non-optimal hyper-parameters are found. Neglecting these outliers and consider-
ing only the remaining 12 successful runs, the mapping di�erence can be calculated as
∆A = 0.1045± 0.0126.

Additionally, the mapping approach was evaluated in a second real environment, a rep-
resentative of a typical private lawn. In Figure 2.14 from left to right, a part of the private
lawn, the measured odometry data and the map estimate are shown. Since no ground
truth data is available for this lawn, the map results are compared qualitatively with the
image of the real garden. As demonstrated, the approach is capable of mapping large
closed environments with narrow corridors based on severely distorted odometry data.
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Figure 2.14: A typical lawn (a), the collected odometry data (b) and the map estimate with learned

parameters (c).

Simulated Data The proposed mapping approach was tested on 6 di�erent maps with
increasing degree of complexity (Figure 2.22) and with di�erent levels of odometry error.
For every map-odometry error pair, 20 runs were performed where the hyper-parameters
were learned according to the in Equation (2.42) and Equation (2.43) proposed cost func-
tions. For path segmentation, the parameters were set to Lmin = 0.1, emax = 0.001 and
for the BO procedure a number of 30 iterations was chosen.

Figure 2.15a shows the averaged mapping results whereas Figure 2.15b shows the number
of failed trials, thus the number of runs for each map-odometry error where no convenient
loop closing pairs where found by the algorithm. Additionally, the averaged results are
also listed in Table 2.2. The results show that the mapping results get more accurate for
more simplistic maps but the failed trials increase for those simplistic maps, even if only
small numbers of cases occur. Also, the mapping results strongly increase with decreasing

Table 2.2: Mapping method performance based on Equation (2.45).

Odometry Error Level

0.0 0.2 0.4 0.6 0.8 1.0

M
ap
s

1 0.047 0.084 0.073 0.092 0.105 0.150

2 0.058 0.079 0.081 0.087 0.115 0.115

3 0.085 0.102 0.117 0.124 0.134 0.158

4 0.087 0.100 0.115 0.127 0.150 0.152

5 0.106 0.107 0.137 0.167 0.137 0.130

6 0.107 0.142 0.167 0.159 0.161 0.167
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(a) Comparison results between estimated map and

groundtruth data.

(b) Failed trials where the algorithm did not �nd

convenient loop closing pairs.

Figure 2.15: Comparison of the here proposed map estimation method. The algorithms have been

tested in di�erent maps shown in Figure 2.22, and with di�erent odometry error levels.

odometry error and approach to the optimal solution (∆A = 0) but never reach it. This
is mainly caused by errors from the data segmentation.

Additionally, in Figure 2.16 map estimation examples for the 6 di�erent map environ-
ments are shown. In Figure 2.16a, the paths measured by the odometry of the robot are
shown and in Figure 2.16b the generated map estimates (red) and the groundtruth map
data (blue). It illustrates that the proposed method in general is able to generate a fair
map estimate even with only highly distorted odometry data available.

2.6 Path Planning under high Pose Uncertainty

Assume a map of the closed environment is given as a binary occupancy gridM. Such a
map can be generated utilizing only the given in-/outside area detectors by following the
map generation procedure introduced in Section 2.5. Given the map of the environmentM,
a probability occupancy grid map C is used to model the coverage of the closed environment.
Therefore, a similar dynamical system model as proposed in [34, 35] for high-con�dence
cleaning guarantees is used. To account for the high uncertainty of the pose estimate
given only the odometry and the in-/outside area measurements, a particle �lter is used to
estimate the pose and the coverage, respectively. The CCPP approach then uses a neural
network where each cell of the coverage map represents a neuron, as introduced in [46,
47]. Based on the neural activity of the neurons and the current pose, the planner chooses
the neighboring cell to move to. This, in combination with the probabilistic coverage
information, leads to e�cient CCPP under high uncertainties.
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(a) Example simulated path data from the robot traversing along the boundary line.

3 m

2
 m

(b) Examplary mapping results with the groundtruth given in blue and the map estimate in red.

Figure 2.16: Examplary map estimation results for di�erent test maps as shown in Figure 2.22.

2.6.1 Probabilistic Coverage Map and Dynamical System

Given the map of the environment M, a probability occupancy grid map C is generated
with ci ∈ [0, 1] being the probability of the cell i to be covered by the robot initialized as
ci = 0, ∀i. Let pt be the pose of robot at time step t, ut the input signals to the robot, zt
the sensor measurements and ct the coverage states of all cells, then the path of the robot
and the coverage can be de�ned as joint posterior distribution

prob(p0:t, c0:t|u1:t, z1:t) = η prob(zt|pt)︸ ︷︷ ︸
sensor model

prob(ct|ct−1,pt−1,pt)︸ ︷︷ ︸
coverage model

prob(pt|pt−1,ut)︸ ︷︷ ︸
motion model

prob(p0:t−1, c0:t−1|u1:t−1, z1:t−1)︸ ︷︷ ︸
prior distribution

.
(2.46)

In comparison to [35], there is no coverage sensor model which gives additional inform-
ation for pose estimation. By considering the Markov property

prob(at|at−1:0) = prob(at|at−1), (2.47)

Equation (2.46) turns into

prob(pt, ct|ut, zt) = η prob(zt|pt) prob(ct|ct−1,pt−1,pt)

prob(pt|pt−1,ut) prob(pt−1, ct−1|ut−1, zt−1)
(2.48)

which results into an iterative update rule for the pose estimate and the coverage based
on the current inputs and sensor measurements. In the following, the models introduced
in Equation (2.46) are shortly summarized.
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zt−2 zt−1 zt

ut−2 ut−1 ut

ct−2 ct−1 ct

pt−2 pt−1 pt

Figure 2.17: The dynamical system, Equation (2.46), illustrated as graph.

Sensor Model The robot, as introduced in Section 2.4.1, is equipped with two in-/outside
area detectors, e.g., chlorophyll �uorescence sensors or boundary wire sensors, which give
the information whether the sensors are over grass (inside) or not (outside). The sensors
are placed at the left and right front of the robot. Based on the current pose p, an estimate
of the measurements can be made given the information from the mapM.

Coverage Model The coverage model re�ects the change in coverage based on the move-
ments of the robot. A general probabilistic model for the coverage of a certain grid cell i
can be de�ned as

ci,t = ci,t−1 + Pi(pt−1,pt) · (1− ci,t−1) , (2.49)

where Pi(pt−1,pt) is the probability of the robot covering a certain grid cell i by moving
from pose pt−1 to pt. In comparison to [35], where unweighted area sampling is used to
determine Pi(pt−1,pt) (Figure 2.18b), here a more conservative yet computationally faster
approach is used in order to lower the computational burden onto the system (Figure 2.18a).
The approach is based on simple line drawing algorithms where a cell is marked as covered
if the robot passed it. Therefore, the resolution of the coverage grid has to be chosen as

Resolution ≥ 2
√

2

de�ector
, (2.50)

where de�ector is the diameter of the robot's e�ector. This ensures the coverage of the whole
cell if visited. The coverage probability is then P (pt−1,pt) = 1 if the robot traversed the
certain grid cell and P (pt−1,pt) = 0 otherwise.

Motion Model For the motion model, the odometry model proposed in [48] is used as
presented in Section 2.4.3.
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pt

pt−1

(a) Line drawing approach.

pt

pt−1

(b) Unweighted area sampling.

Figure 2.18: Di�erent coverage models where the circles represent the robot's e�ector, e.g., the

cutter. The �rst approach is conservative and computationally fast but underestimates the

true coverage whereas the latter is more accurate but comes with higher computational costs

and might slightly overestimate the coverage.

2.6.2 Particle Filter

To e�ciently generate a pose estimate for the robot by fusing the odometry and sensor
data, a standard particle �lter algorithm [48] is used to handle the binary in-/outside area
measurements. The general idea of the particle �lter is to represent the probability distri-
bution of the posterior by a set of samples, called particles, instead of using a parametric
form as the Kalman Filter does. Here, each particle

Pt = p
[1]
t ,p

[2]
t , . . . ,p

[N ]
t (2.51)

represents a concrete instantiation of the state at time t, where N denotes the number
of particles used. The belief bel(pt) is then approximated by the set of particles Pt. The
pose estimate of the robot can be calculated by taking the mean over all N particles. The
Bayes �lter posterior is used to include the likelihood of a state hypothesis pt

p
[i]
t ∼ prob(pt|z1:t,u1:t). (2.52)

Here, z1:t and u1:t represent the measurement history and the input signal history respect-
ively.

Given the positions of the N particles, the coverage map is updated when the robot
traversed from one cell to another. According to the coverage model proposed in Equa-
tion (2.49) and Figure 2.18a the update rule can be de�ned as

ci,t = ci,t−1 +
ni,t
N

(1− ci,t−1), (2.53)

where ci,t is the coverage probability of cell i at time t and ni,t the number of particles in
cell i at time t.

2.6.3 Complete Coverage Path Planning

Given the estimation of the robots trajectory and the estimation of the coverage, an e�-
cient path planning scheme is left to de�ne. Due to the high uncertainty of the robot's pose
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wij

j

i

Figure 2.19: A schematic of the neural network with the neighborhood of a cell and the cell con-

nections.

and the associated uncertainties in map coverage, such a path planning scheme requires
rapid adaptability. Hence, solving a TSP on the fully connected graph over all cells of
the map as in [35] is not feasible. Instead, the neural network approach introduced in [46,
47] is adapted to cope with uncertain pose and coverage estimates. The neural network
approach is thereby derived from the shunting equation [64] which was inspired by a model
for a patch of a membrane introduced in [65]. In this approach, neurons are generated
which each have a neural activity. These neural activities then provide an attraction on
the basis of which the robot plans its next steps.

Let each cell of the coverage map represent a neuron and qi the neural activity of the
neuron i, then the change of neuronal activity can be described according to [46] as

dqi
dt

= −Aqi + (B − qi)

[Ii]
+ +

k∑
j=1

wij [qj ]
+

− (D + qi)[Ii]
−. (2.54)

Here, A, B and D are non-negative parameters representing the passive decay rate, the
upper and the lower bound of the neural activity. The function operators [a]+ and [a]− are
de�ned as [a]+ = max{a, 0} and [a]− = max{−a, 0}. The neuronal activities are initialized
as qi = 0, ∀i but receive an external input Ii. Following the suggestion from [46] and
considering the coverage probabilities ci, the external input is proposed to be

Ii =

{
(1− ci)E if cell i is inside the working area

−E if cell i is outside the working area
. (2.55)

Here, the external input accelerator E should be chosen such that E � B. The neurons
are each connected to their neighboring cells, as illustrated in Figure 2.19. The connections
weights can be de�ned as

wij = f(||xi − xj ||), (2.56)
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Figure 2.20: Neural activities qi for di�erent coverage values. The left panel shows the neural

activities after 10 % coverage is reached and the right panel the neural activities after 95 %

coverage is reached.

where xi represents the location of the i-th neuron. For example, [46] proposes the weight-
ing function

f(a) =

{
µ
a if 0 < a < r

0 if a ≥ r
(2.57)

with µ and r being positive constants. Here, the neurons are ordered in a regular grid such
that a constant symmetric weighting matrix can be proposed

W =


1√
2

1 1√
2

1 0 1
1√
2

1 1√
2

 (2.58)

for e�ciently using image �ltering techniques to determine the input from the neighboring
cells. Since Equation (2.54) only allows for positive neural activities to propagate between
neighboring neurons, negative neural activities stay local. In other words, uncovered areas
inside the working area attract the robot globally while areas outside the working space
only locally push the robot away. Samples of neural activity distributions over the cells
are shown in Figure 2.20 for two di�erent coverage states.

Following [46], the robot's path is planned based on the neural activity landscape. More
precisely, let xi be the robot's current position and qi the corresponding neural activity,
then the next position xnext the robot is sent to can be de�ned as the position of the
neighboring cell with the largest neural activity. Thus,

qxnext = max (qj , j = 1, . . . , k) (2.59)

with k being the number of neighboring cells of qi. Considering the robot's motion model,
it is advantageous to avoid unnecessary turns with the robot since turning movements are
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Figure 2.21: Example path after reaching 90 % coverage.

much more prone to odometry errors. Thus, an additional term to Equation (2.59) is added
which takes the current orientation ϕi of the robot into account

qxnext = max (qj − γgj , j = 1, . . . , k) (2.60)

with
gj = |ϕi − atan2 (xj − xi) | (2.61)

and γ being a parameter which has to be set appropriately. This modi�cation ensures a
preferred next cell allocation based on the robots current pose. In Figure 2.21, an example
path after reaching 90 % coverage is shown.

Relocalization Since the robot has a large odometry error but only in-/outside area
detection sensors, the robot receives only few valuable measurement data during path
execution. Thus, it is required that the robot stops path execution and starts to relocalize
itself when the pose estimate becomes quite uncertain, thus exceeds a certain variance
value σmax. For the relocalization, the robot drives along the boundary to get di�erent
measurement signals for improving the accuracy of the pose estimate by the particle �lter
until the pose estimates variance is below another threshold σmin after which the robot
continues with path execution. The method for applying a wall following behavior to the
robot is summarized in the appendix, Section A.

2.6.4 Evaluation

The proposed CCPP approach is evaluated in di�erent challenging simulation scenarios
based on the odometry and velocity motion model from Section 2.4. This enables realistic
simulation studies for analyzing the performance of the proposed method in detail.
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Figure 2.22: Di�erent arti�cially created maps with increasing number of complexity but with the

same enclosed area of A = 50m2. The maps are numbered from left to right, beginning with

Map 1 and ending with Map 6.

Evaluation Criteria As measurement of the performance, the traveled distance required
to reach a certain total coverage percentage is used which here is a coverage value of 95 %.
In total, the proposed method was evaluated on 6 di�erent maps with di�erent degrees of
complexity but same size of coverage space A = 50m2, see Figure 2.22, and for di�erent
levels of odometry errors. Here, an odometry level error of one signals a full odometry
error as represented by the odometry model parameters from Table 2.1 and an odometry
level error of zero signals no odometry error at all.
The optimal traveled distance traversing over the centers of the grid map cells to reach
95 % coverage for a coverage space of A = 50m2 can be determined as Topt = 237.4m
(Appendix, Section C). Based on this optimal distance, an optimality criterion for the
method can be de�ned as

Opt = 1− T − Topt
Trand − Topt

, (2.62)

where T is the average traveled distance the method requires and Trand the average traveled
distance a random walk pattern requires. Here, a value close to one signals a performance
close to the optimal pattern where a value close to zero signals a performance close to
a random walk pattern. A negative value therefore shows a worse performance than a
random walk pattern.

Statistical Evaluation For the simulation study, 20 runs were performed for each pair
of map�odometry error level. In total, 6 × 6 di�erent combination pairs were evaluated
with respect to their traveled distance after reaching the 95 % total coverage level. Since
the approach is probabilistic, the 20 runs recorded for each map�odometry error level pair
were averaged. The method parameters used for the evaluation are tabulated in Table 2.3.

In Figure 2.23a, the calculated average traveled distances are shown together with the
optimal traveled distances and the average traveled distances reached with a random walk
pattern. Additionally, in Table 2.4 the performance of the method according to Equa-
tion (2.62) is presented. The evaluation shows, that the method in general outperforms
the commonly used random walk pattern except for the most simplistic maps under high
odometry error. A strong correlation between the performance of the method and the odo-
metry error level can be found such that with lower odometry error the approach performs
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(a) Comparison between optimal, random walk and

the here proposed path planning algorithms.

(b) Trials where the particle �lter has lost track of

the robots pose estimate during path execution.

Figure 2.23: Comparison of the here proposed complete coverage method with the commonly used

random walk approach and the optimal approach. For the optimal approach the exact pose

of the robot is assumed to be known. For the evaluation, the algorithms have been tested in

di�erent maps shown in Figure 2.22, and with di�erent odometry error levels.

better and approaches the optimal performance. This is to be expected, since less odo-
metry error allows for better path performance and requires less relocalization. In addition,
the complexity of the map favors the proposed approach, as the random walk pattern has
trouble covering narrow areas of the map.

Coverage Tracking The robot should be able to estimate the current coverage of the
workspace as e�ciently as possible. Thus, the correlation between the true coverage and
the estimated coverage by the proposed approach is of importance. In Figure 2.24, a com-
parison between both values is shown for map 4 and an odometry error level of 1.0. The
estimated coverage always slightly underestimates the true coverage and thus can be used
to conservatively estimate the true coverage.

Table 2.3: CCPP method parameters

M
e
th
o
d

Particle Filter Path Planner & Map

N 500 Resolution 5 m−1 E 100

Nthr 0.7N A 10 γ 0.1

B 1 σmax 0.09

D 1 σmin 0.03
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Figure 2.24: Comparison between the true and the estimated coverage with respect to the traveled

distance of the robot for an odometry level of 1.0 and map 4.

Particle Filter Performance Analysis One disadvantage of the proposed approach is the
use of the particle �lter, as it sometimes looses track of the pose estimate, Figure 2.23b,
which leads to an abort of the path planning execution. This happens especially with
increasing odometry error. Possible error sources, according to [48], are:
(1) The approximation error of the probability distribution due to the �nite number of
particles used, (2) the approximation error induced by the randomness of the resampling
phase, (3) the divergence of the proposal and target distribution if only deterministic meas-
urements are available and (4) the particle deprivation problem, where no particles might
be in the vicinity of the correct state.

In general, a larger number of particles is bene�cial for reducing most of the mentioned
error sources but comes with a higher computational burden. Nevertheless, an increasing
number of particles reduces the number of lost tracks signi�cantly, as shown in Figure 2.25a.
Other measures to be taken are the use of additional sensors to either improve the odometry
error, e.g., IMU and odometry sensor fusion, or the external sensory information. Also,
a boundary transition zone can be de�ned to reduce the deterministic character of the
in-/outside measurements. Additionally, the parameters for relocalization, σmax, σmin, can
be adjusted, such that the robot more often relocalizes itself. This reduces the number of
lost tracks but also reduces the performance of the method, as shown in Figure 2.25b.

Table 2.4: CCPP method performance based on Equation (2.62).

Odometry Error Level

0.0 0.2 0.4 0.6 0.8 1.0

M
ap
s

1 1.00 0.54 0.26 0.07 -0.12 -0.26

2 1.00 0.60 0.34 0.17 0.10 -0.08

3 0.99 0.82 0.70 0.66 0.60 0.49

4 0.97 0.74 0.65 0.51 0.41 0.38

5 0.99 0.79 0.69 0.57 0.54 0.44

6 0.96 0.76 0.62 0.51 0.47 0.42
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(a) E�ect of the number of particles on the method
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(b) E�ect of the relocalization on the method per-

formance.

Figure 2.25: Method performance (traveled distance, lost tracks) with respect to the number of

particles and the relocalization parameter σmax.

2.7 Discussion

In the previous sections, Section 2.5 and Section 2.6, methods for map estimation and
complete coverage path planning for autonomous lawn mowers with only limited sensing
capabilities were proposed. In the following, application limitations and implications for
the proposed methods are discussed in detail.

2.7.1 Map Generation

The proposed loop closure detection and map generation method is able to reliably generate
an accurate map estimate for closed environments. However, there are three main issues
which should be discussed here: The e�ects of the odometry error and map complexity,
the here proposed map evaluation strategy and the in�uence of the hyper-parameters.

Odometry Error & Map Complexity As demonstrated in Section 2.5.4, the accuracy
and reliability of the proposed mapping approach depend highly on the underlying odo-
metry data and the complexity of the environment which should be mapped. Whereas
the former might be quite obvious, since with more accurate odometry measurements less
optimization is required, the latter can be explained by the di�erent amount of character-
istic features between complex and less complex environments. Here, those features are
basically structures of the boundary line of the enclosed environment, e.g., corners, which
allows for e�cient loop closure detection. Many and more complex features stabilize the
loop closure detection process but reduce odometry accuracy due to additional required
turns by the robot following the boundary line. Thus, complex environments may be more
robust for the mapping approach but might result into slightly worse mapping results.

Map Evaluation The in Equation (2.45) introduced error measurement shall serve as a
reference to test the quality of the here proposed mapping algorithm. It allows the reader
to estimate the performance of the mapping algorithm in an intuitive manner. However,
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the error measurement is highly tailored to the here presented mapping problem of an
enclosed environment. A di�erent error metric for example is proposed in [66], where the
relative displacements between poses are measured. However, for this error metric the true
poses are required which are not known for the robot in real outdoor environments.

Hyper-Parameters The correct choice of hyper-parameters is crucial for the performance
of the here proposed mapping algorithm. On the basis of preliminary information about
the environment, it is possible to adjust those hyper-parameters properly, e.g., the neigh-
borhood length LNH based on preliminary information of the circumference of the enclosed
environment. In general, however, this prior information is not available in advance, so
the hyper-parameters must be either guessed or learned by the robot.

2.7.2 Hyper-Parameter Learning

Learning the hyper-parameters for the proposed mapping algorithm requires convenient
cost functions as presented in Equation (2.42) and Equation (2.43). However, these cost
functions face two main issues: (1) They are highly tailored to the given problem and make
strong assumptions about the odometry error and (2) they are highly non-linear.
In general, cost functions for learning hyper-parameters are tailored to the speci�c problem.
However, the assumption of a zero mean odometry error might not hold due to irregular
errors, e.g., slippage, even if for the robot model this assumption holds. Nevertheless, it is
a good approximation and allows to speci�cally design a cost function for hyper-parameter
learning without knowledge of the true environment.
As demonstrated in Figure 2.11, the cost functions are highly non-linear which makes it
hard for any optimization algorithm to �nd the global optimum. This is especially true
for gradient-based methods. Hence, a non-gradient based method (BO) is used to �nd
the global optimum. However, the number of iterations are limited and thus the global is
merely approximated.

2.7.3 Complete Coverage Path Planning

The proposed CCPP method works well, especially with decreasing odometry error and
increasing map complexity. However, it requires continuous relocalization by applying a
simple wall following method since within the working space no useful sensory information
can be collected. If the odometry error gets too large and the map complexity drops down,
the algorithm requires frequent relocalization whereas a random walk pattern increases its
performance due to the lower map complexity. This leads to a point where the proposed
method no longer outperforms a random walk pattern as shown in Figure 2.23a. However,
in general the CCPP method outperforms the random walk pattern even under large
odometry errors.
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2.8 Conclusion

In this chapter, a mapping approach as well as complete coverage path planning approach
for robots with limited sensing capabilities operating in closed environments are introduced.
These approaches allow robots to e�ciently plan and navigate even if only in-/outside area
detectors are available.

Mapping Generation The proposed mapping method for enclosed environments does not
require any additional assumptions like for example a rectilinear structured environment
[16] or linear features [15], [14]. Thus, it enables robots equipped with only simplistic
sensors, e.g., lawn mowers, to generate an accurate map estimate of any closed working
environment. Therefore, required odometry data is collected using a wall following scheme
for which low range sensors or binary sensors are su�cient. As demonstrated, the approach
performed well in real as well as in simulated environments. Such an accurate map estimate
can then be used for e�cient navigation, key to complex path planning strategies.

Path Planning The proposed CCPP method outperforms the commonly used random
walk pattern while coping with high pose uncertainties due to only limited sensing capab-
ilities, e.g., only in-/outside area detectors. The performance of the method was thereby
analyzed in di�erent challenging scenarios and with di�erent odometry accuracy levels.
Thereby, the method proved to be e�cient, especially for complex environments.

2.8.1 Detailed Future Work

In future work, the proposed mapping and planning strategies can be tested on a variety of
di�erent mobile robots, e.g., di�erent lawn mowers or vacuum cleaners, in order to evaluate
in more detail the stability and performance of these methods. Also, the hyper-parameters
for the planning method could be learned with the required traveled distance as cost factor.
In addition, the hyper-parameter learning could be adopted for other mapping or SLAM
algorithms.
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3 Sensor Development for Working Area

Detection and Classi�cation

In this chapter, novel chlorophyll �uorescence based approaches for mowing area detec-
tion and plant classi�cation are introduced. These approaches rely on active chlorophyll
�uorescence stimulation and allow the robot to e�ciently detect and classify its working
space.
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3.1 Introduction

In the previous chapter, intelligent navigation and planning strategies for robots in closed
environments with focus on autonomous lawn mowers have been discussed. These strategies
require a cost-e�ective and accurate detection method for the working area. At present,
this is realized by means of perimeter wire, which leads to high setup and maintenance
costs. Therefore, in the �rst part of this chapter, an active low-cost sensor approach for
detecting chlorophyll �uorescence is proposed. The novel and innovative sensing concept
allows for a robust working area detection. The lawn detection is thereby based on the
averaging of multiple measurements using LED pulses and sensed �uorescence responses.
Selecting only low-cost consumer components for the sensor design allows for high-volume
production under low-cost aspects. The sensor system thereby is evaluated by analyzing
theoretically the signal path, including among other the sampling frequency, the sensed
surface area and environmental in�uences. In real world experiments, the performance of
the sensor in an exemplary garden and on collected grass samples was evaluated. The
theoretical and practical evaluations show that the sensor's classi�cation result is robust
under di�erent environmental conditions, such as changes in lawn quality.

The second part of this chapter discusses possibilities for e�cient working area classi�c-
ation, more precisely plant classi�cation by chlorophyll �uorescence analysis. This enables
further automation for gardening, e.g., e�cient weed removal or scari�cation, and can help
to improve the navigation accuracy due to additional available features. Furthermore, ef-
�cient plant classi�cation methods can be used in many other areas, such as monitoring
of species diversity for environmental protection or crop harvesting in agriculture. Here,
plant classi�cation utilizing the chlorophyll �uorescence responses is analyzed. These re-
sponses di�er between the individual plant species because of the di�erent composition of
chlorophyll a, chlorophyll b, carotenes or carotinoids. The classi�cation approach is �rst
tested using deep learning techniques, more precisely convolutional neural networks, for
classifying �ve di�erent plant species. Therefore, a large data set of spectral responses by
stimulating the chlorophyll �uorescence with light of di�erent wavelengths and recording
the re-emission using a spectrometer was collected. The results show that using a convo-
lutional neural network leads to promising classi�cation results with a mean accuracy of
more than 95%. In a second step, a low-cost approach substituting the spectrometer by
commercial consumer phototransistors is evaluated. This reduces available input data and
thus classi�cation accuracy but allows for plant classi�cation in the gardening area.
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Figure 3.1: Plants species used for testing the proposed plant classi�cation approach.

Initially, the related work is discussed (Section 3.2) and the contributions of this chapter
are highlighted (Section 3.3). Afterwards, a summary of the most important aspects of
chlorophyll �uorescence is given (Section 3.4). In the following, it is further discussed how
to e�ciently exploit these characteristics of the working environment for navigation and
planning (Q2.a in Subsection 1.2) which results into the development of an active chloro-
phyll �uorescence sensor (Section 3.5). In the second half of this chapter, in Section 3.6,
the possibility of accurate plant classi�cation based on the chlorophyll �uorescence emis-
sions of the plants is discussed (Q2.b in Subsection 1.2). Therefore, the data acquisition
and preprocessing procedures, a deep learning classi�cation approach as well as a low-cost
classi�cation approach are studied. The chapter ends with a discussion in Section 3.7 and
a conclusion in Section 3.8.

3.2 Related Work

Related work for the working area detection and for the plant classi�cation is discussed.
This includes reviewing existing methods for lawn area detection in general and for chloro-
phyll �uorescence detection speci�cally. In the second part, state-of-the-art plant classi-
�cation strategies are summarized and grouped according to their individual classi�cation
techniques.

3.2.1 Working Area Detection

Many strategies were proposed to detect the boundaries of the working area for autonom-
ous lawn mowers, for example vision based localization and mapping strategies [70, 71] or
capacity based sensor technology for detecting humidity [72]. However, since for autonom-
ous mowers the safety impact on leaving the mowing area is high, the sensory systems
have to be reliable. Vision based systems use color and texture identi�ers to detect grass-
containing regions using statistical methods, e.g., Bayes classi�er [73] and reach accuracies
of 90 %, shaded grass, and 95 %, illuminated grass [74]. Capacity based systems have to be
calibrated and are sensitive with respect to change in air conditions, such as rain or fog.
In addition, there are local positioning systems which rely on active beacons using trian-
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Figure 3.2: The remote chlorophyll �uorescence sensor and the classi�cation accuracy with respect

to di�erent lawn types, Figure 3.11.

gulation [75]. However, such local positioning systems require a-priori an exact map of the
environment. The only working electronics in consumer markets nowadays use bounding
wire, electro-magnetic �eld measurement technology which safely detects wire crossing and
in-/outside area estimation. Such technique was �rstly introduced in lawn mowers in [76].
However, it requires the installation of a perimeter wire surrounding the lawn which res-
ults in additional time and maintenance costs. In order to overcome these problems, here
a cost-e�cient grass detection system based on remote chlorophyll �uorescence sensing,
Figure 3.2, is introduced.

Current remote chlorophyll �uorescence sensing systems can be grouped into ground
based measurement and long distance systems [77]. The ground based measurement sys-
tems can be further partitioned into active and passive ones. The most popular group
of sensors for active chlorophyll �uorescence sensing are FLiDAR (Fluorescence Light De-
tection and Ranging) [78], where brief periodic excitation pulses (< 1µs) with de�ned
wavelength (e.g. 355nm) are used for excitation. Current FLiDARs are using multiple ex-
citation wavelengths, e.g., for identifying plant species [79] or the stress level [80]. Passive
remote sensing, in comparison, relies on the �uorescence induced by the natural sunlight.
Since the �uorescence represents only a very small fraction of the recorded spectrum,
Fraunhofer Lines are used in order to measure the �uorescence signal, for example using
FLD (Fraunhofer Line Discrimination) [81], which was extended in [82],[83]. In general,
passive remote sensing techniques can be partitioned into radiance-based (including FLD)
and re�ectance-based methods, e.g., using the physiological re�ectance index (PRI) [84],
where re�ectance at 531nm and 570nm is used for indexing. For a more detailed descrip-
tion about passive remote sensing techniques the reader is referred to a more comprehensive
review [85]. Lastly, there are long distance chlorophyll �uorescence sensing techniques, e.g.,
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using satellite images to detect chlorophyll in cyanobacterial blooms [86] or globally identi-
fying the functional status of vegetation [87].

Long distance sensing techniques are considered as not applicable for autonomous mowers.
FLiDARs on the other hand can be used for accurately identifying the mowing area. How-
ever, since autonomous mowers are designed for low purchase and maintenance costs,
FLiDARs in general are too expensive. Passive sensing might be a cost e�ective solution
but requires sunlight which limits its applicability, for example when the mowing time
should be over night. The same argument holds for vision based systems which are in
addition unreliable due to their statistical nature. To overcome these problems, i.e., low
maintenance and acquisition costs, reliable detection of the mowing area and constant
operational readiness, here a novel active chlorophyll sensor is introduced

3.2.2 Plant Classi�cation

Many plant classi�cation approaches are using visual properties such as texture-based and
morphological features, for example the leaf shape, the size or the aspect ratio [88, 89].
Such features are often prede�ned by botanists or chosen arbitrarily. A solution for avoid-
ing prede�ned features is autonomous feature extraction using for example the principal
component analysis (PCA), which leads to high classi�cation accuracies as shown in [89]
and [90]. However, in order to achieve such high classi�cation accuracies certain prerequis-
ites have to be ful�lled, for example leaves should not overlap and light conditions should
not change drastically. With the rising popularity of deep neural networks, plant classi�ca-
tion based on image analysis can nowadays even overcome the above prerequisites [91] and
reach similar or better results as with hand-crafted features. A large data base for training
such deep neural nets is given in [92]. However, overlapping or clutter may drastically
reduce the classi�cation accuracy.

Another procedure for plant classi�cation relies on the recording of re�ectance spectra,
where overlapping leaves or clutter barely interfere with the classi�cation procedure. How-
ever, ambient light, plant age, growth condition and plant health may a�ect the spectra
and hence, complicate classi�cation. Also, a large number of species proved to be di�cult
to distinguish [93]. However, recently there have been advances in machine learning tech-
niques regarding classi�cation of di�erent weed species using hyperspectral sensing [94]. In
[95], a classi�cation accuracy of 97 % was achieved exploiting attained re�ectance spectra
of corn and silver beet. Here, the authors used support vector machines for classi�cation.

Other methods are using active or passive broad- and narrowband spectrometers. They
have been e�ectively used detecting diseases, stress or metabolic de�ciencies [96, 97]. In
order to extract features from the spectral data, feature extraction techniques such as the
principal component analysis are employed. An alternative is chlorophyll �uorescence �n-
gerprinting [98, 99]. However, generating the chlorophyll �uorescence �ngerprints requires
a certain experimental setup and cannot be easily extended for outdoor applications.
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Figure 3.3: Example diagram for chlorophyll �uorescence inspired by [100]. About 78 % of the

incident radiation is absorbed, while the rest is either transmitted or re�ected. About 20 %

is dissipated through heat and only 2 % emitted as �uorescence.

3.3 Scienti�c Contributions

In the following, the novel scienti�c contributions presented within this chapter are sum-
marized according to the content structure from above.

Working Area Detection A novel chlorophyll �uorescence sensor for working area detec-
tion is proposed which (1) stimulates the chlorophyll �uorescence by emitting blue light
with a standard 432nm light emitting diode (LED), (2) detects the chlorophyll �uorescence
response using a standard infrared phototransistor and (3) �lters the sunlight response by
using high stimulation frequencies.

Plant Classi�cation The contribution for plant classi�cation based on chlorophyll �uor-
escence emission spectra is threefold. First, a vast dataset is presented which serves as a
comparison standard for chlorophyll �uorescence based plant classi�cation. Second, the
general feasibility of distinguishing plant species based on their individual �uorescence
spectra is shown. Therefore, a deep learning approach is used for classifying �ve di�erent
plants including a profound analysis of the network hyper-parameters and the generaliz-
ation performance. Third, a cost-e�cient yet accurate approach for plant classi�cation
based on chlorophyll �uorescence is proposed which utilizes only standard LEDs and pho-
totransistors along with computationally e�cient machine learning methods.

3.4 Chlorophyll Fluorescence

In this section, chlorophyll �uorescence as a unique feature of plants and grass is intro-
duced. Therefore, the main concepts of chlorophyll �uorescence such as the absorption
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Figure 3.4: Chlorophyll a,b absorption and emission spectra, left panel, and Photosystem I (PSI),

Photosystem II (PSII) emission spectra, right panel.

and emission �uorescence spectra, the �Kautsky-E�ect� and the chlorophyll �uorescence
life time are brie�y summarized. A more detailed survey can be found in [101] and [102].

3.4.1 General Principle

Light energy absorbed by plants, more speci�cally by the chlorophyll molecules, can either
drive photosynthesis reaction, it can be dissipated as heat or re-emitted as light which is
called chlorophyll �uorescence, Figure 3.3. These three processes are in competition to each
other, thus a decrease in e�ciency at one process will increase the e�ciency at another. In
general, the light energy re-emitted by the chlorophyll �uorescence is of a magnitude much
lower than the absorbed light, between 1 − 2 %. During the chlorophyll �uorescence pro-
cess, chlorophyll molecules turn into an excited state absorbing light energy and, by falling
back into a non-excited state, re-emitting light energy. Thereby, chlorophyll either ab-
sorbs high-energy blue (350− 500 nm) or low-energy red light (600− 680 nm) and re-emits
low-energy red/infrared light (650 nm - 800 nm), Figure 3.4a. Green light (500− 600 nm)
is re�ected, which gives plants the typical leafy green appearance. This e�ect can be
e�ciently exploited for sensory systems to detect the presence of plants by stimulating
chlorophyll �uorescence with high energy blue light and sensing the re-emitted low-energy
red/infrared light.

For the chlorophyll �uorescence two protein complexes, Photosystem I (PSI) and Pho-
tosystem II (PSII), are relevant. PSI consists of chlorophyll a, chlorophyll b and carotine
and PSII of chlorophyll a, chlorophyll b and xanthophyll. Both systems lead to character-
istics chlorophyll �uorescence emission spectra as shown in Figure 3.4b. In combination,
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Figure 3.5: The �Kautsky-E�ect�, left panel, and the chlorophyll lifetime, right panel.

they lead to the characteristic spectral response with the two distinct peaks at around
684 nm and around 738 nm. The proportions of PSI and PSII in the spectral response
vary depending on the molecule composition of chlorophyll a, chlorophyll b, carotine and
xanthophyll in the investigated plant species. This allows utilizing the chlorophyll �uores-
cence e�ect for plant classi�cation by comparing the spectral responses for di�erent plant
species.

3.4.2 Kautsky E�ect & Lifetime

An important characteristic for chlorophyll �uorescence is the so called �Kautsky-E�ect�
[106], where a plant's reaction to sudden light changes is investigated, e.g., the plant is
unveiled in the sunlight. This change of setting results in an increase in the yield of chloro-
phyll �uorescence. This holds for the �rst second after which the �uorescence level drops
down over a few minutes until it reaches a steady state. This drop down e�ect is known
as �uorescence quenching [107]. In Figure 3.5a, the �Kautsky-E�ect� is shown which is
induced by the PSII [108] reaction centers being in a �closed� state. This decreases the
photosynthesis process which on the other hand increases the chlorophyll �uorescence.
Based on the �Kautsky-E�ect�, certain e�ects such as plant stress can be measured by
recording the relative �uorescence yield from plants even under full sunlight [109].

An important characteristic for exploiting chlorophyll �uorescence for sensory systems is
the life time of the chlorophyll �uorescence. This induces a lower bound for the sampling
period of any sensor. The life time is thereby the time after stimulation in which chlorophyll
�uorescence can be measured and lies around one nanosecond. For example, Schmuck and
Moya [112] showed for spinach leaves that at steady state conditions the mean lifetime
is 0.415ns and when closing all reaction centers of the PSII, thus enhancing chlorophyll
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Rohm Semiconductor and the PT480 from SHARP.

�uorescence, the mean lifetime is around 2ns, shown also in Figure 3.5b. Similar results
have been achieved in [113] with maple and spinach leaves and in [114] with maize and
spruce leaves.

3.5 Chlorophyll Sensor

The basic idea behind the sensor design presented here is that chlorophyll �uorescence is
actively excited with blue high energy light and the red/infrared low energy light response
measured. Therefore, a consumer Light-Emitting Diode (LED) with a peak wavelength
of around 430 nm for the excitation and a consumer Phototransistor (PT) with spectral
sensitivity in the red/infrared area are used. Figure 3.6 illustrates the idea based on the
spectral curves of the chlorophyll �uorescence and the LED and PT. In the following, the
development and evaluation of the proposed chlorophyll sensor is described in detail. This
includes the core sensor design, a fundamental analysis of the signal path as well as an
examination of used hardware components.

3.5.1 Core Sensor Design

As illustrated in Figure 3.6 the absorption spectrum of chlorophyll is particularly strong
in the range around 430nm, whereas the emission spectrum is located in the area of
650− 750nm. Thus, a consumer LED with emission peak at around 430nm is required as
a stimulation source and a standard PT with a su�cient good spectral sensitivity between
650 − 750nm is required as an absorption sink. Moreover, the emission spectrum of the
chosen LED and the spectral sensitivity of the PT should not overlap. Otherwise it is not
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Figure 3.7: Spectral sensitivity and collector current of the RPT-37PB3F.

possible to distinguish between �uorescence response and LED radiation. Here, a problem
might be encountered since a preferred spectral response of a PT should have high yield in
the relevant area (650−750nm) and zero yield elsewhere. However, real PTs produced for
the consumer market have a spectral response either in the visible or infrared range where
the emission response of chlorophyll lies between these ranges. Hence, a trade-o� between
an optimal spectral response and cost-e�ciency has to be made. The emission spectrum
for the here chosen LED (yellow) together with the spectral sensitivities for two di�erent
consumer PTs (purple, green) are drawn in Figure 3.6. The RPT-37PB3F has just a low
spectral sensitivity in the desired area whereas the PT480 shows there high yield but in-
tersects with the emission spectrum of the LED. Here, we use the RPT-37PB3F1 since its
spectral sensitivity does not intersect with the LED emission spectrum. In Figure 3.7, a
detailed view of the spectral sensitivity and the resulting collector current with respect to
the received illuminance is given.

In order to distinguish between the excited chlorophyll �uorescence and the ambient
light (e.g. sunlight), the LED signal is modulated with a certain frequency fLED. The
current signal captured by the PT is transformed using a current-to-voltage converter
(transimpedance ampli�er), the output voltage is further ampli�ed and the resulting signal
band pass �ltered such that it is freed of ambient light in�uences. The control unit of
the sensor is a small microprocessor, the ATMEGA32U4 2, which generates the excitation
signal for the LED and receives the ampli�ed and �ltered chlorophyll �uorescence signal. To
achieve high excitation frequencies, the in- and output signals are generated and captured
by directly using interrupt routines. In addition, plastic lenses were used for emitting

1RPT-37PB3F Datasheet, ROHM Semiconductor, https://fscdn.rohm.com/en/products/databook/

datasheet/opto/optical_sensor/photo_transistor/rpt-37pb3f-e.pdf
2ATmega16U4/ATmega32U4 Datasheet, Atmel, http://ww1.microchip.com/downloads/en/

DeviceDoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf

https://fscdn.rohm.com/en/products/databook/datasheet/opto/optical_sensor/photo_transistor/rpt-37pb3f-e.pdf
https://fscdn.rohm.com/en/products/databook/datasheet/opto/optical_sensor/photo_transistor/rpt-37pb3f-e.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
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Figure 3.8: The signal path for the proposed low cost sensor. The microprocessor controls the LED

which emits a pulsed light for stimulating the chlorophyll process. The light radiated back is

then absorbed by the PT and the result further processed and sent back to the microprocessor

for evaluation.

and receiving optics to focus the light onto and from the measurement area. The whole
setting allows for high-volume lowest cost sensors. A detailed overview over the electronic
components and circuit diagrams can be found in the appendix, Section D.

3.5.2 Signal Path Analysis

In the following, the signal path as presented in Figure 3.8 is analyzed. Therefore, various
parameters have to be considered when designing the sensor in order to achieve robust
lawn classi�cation results, e.g., sensor apertures or electronic component characteristics.
Parameters which play essential roles in the analysis are listed in Table 3.1. While analyzing
the signal path, di�erent spectral functions f(λ) similar to those as shown in Figure 3.6
are required, where λ is the wavelength. If referred to function f(λ) as to be normalized,
then ∫

f(λ)dλ = 1, (3.1)

and if referred to function f(λ) as to be relative, then

f(λ) ∈ [0, 1] ∀λ. (3.2)
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apertures are aligned to the same focus point with ALED = APT.

Sensor Apertures & Chlorophyll Fluorescence In Figure 3.9, a sketch of the apertures
for the LED and PT of the designed sensor are shown. Let ΦLED be the luminous �ux of
the LED. First, the light of the LED is conically sent to the grass and illuminates a certain
area

ALED = π (tan(βLED)hLED)2 , (3.3)

where βLED is the lens angle and hLED the distance of the sensor to the ground. In order to
estimate the resulting luminous �ux response of the chlorophyll to the PT the normalized
emission spectrum fLED(λ) of the LED and the relative absorption spectrum gChl(λ) of
chlorophyll a are used. In combination with the re-emission magnitude for chlorophyll
�uorescence γ, this leads to

ΦChl = γ ΦLED

∫
fLED(λ) gChl(λ) dλ. (3.4)

The amount of luminous �ux from the chlorophyll �uorescence response received by the
PT varies depending on the lens aperture. Here, it is assumed that PT's lens aperture is
such positioned, that the complete illuminated area ALED can be detected, which leads to
a luminous �ux from the chlorophyll �uorescence response into the PT of

ΦPT,AC = ϕΦChl

∫
fChl(λ) gPT(λ) dλ. (3.5)

Here, fChl(λ) is the normalized emission spectrum for the chlorophyll �uorescence, gPT(λ)
the relative spectral sensitivity of the PT and ϕ the part of the scattered light from the
lawn surface which is received by the PT. For calculating ϕ, the re�ected scattered light is
assumed to be equally distributed in a half sphere from each point of the illuminated area.
The distance between the active measurement surface APT,act and the illuminated area is
hPT, where hPT di�ers with respect to the considered points of the active measurement
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surface and the illuminated area. To simplify the calculations, it is assumed that a mean
distance between the PT and the illuminated lawn area h̄PT can be de�ned. The part of
the hemisphere of the emitted �uorescence which is received by the active measurement
surface is then de�ned as

ϕ = APT,act/(2πh̄
2
PT). (3.6)

Sun Radiation In addition to the desired high frequency signal from the LED excitation,
the PT also registers a low frequency signal from an ambient light source, the sun, which
directly emits with ESun. To determine the amount of luminous �ux re�ected by grass
and received by the PT, the surface Albedo α ≈ 0.25 [115] and the normalized re�ectance
spectrum of grass fGrass(λ) [116] are used. With the same assumptions and simpli�cations
as before, this leads to

ΦPT,DC = αϕESunAPT

∫
fGrass(λ) gPT(λ) dλ (3.7)

for the luminous �ux to the PT based on emitted sun radiation. Consider here that ϕ is
not necessarily the same value as in Equation (3.5), since the mean distance between the
PT and the scanned area and the mean distance between the PT and illuminated lawn area
are not necessarily the same. However, for simpli�cation it is assumed that the apertures
are so aligned that the same ϕ holds for both settings.

Light Emission Acquisition The luminous �ux ΦPT = ΦPT,DC + ΦPT,AC induces a re-
sponse of the PT, resulting in a collector current IC based on the collector emitter voltage
VCE applied to the PT. For example, let VCE = 5V then

IC ≈
3mA

500 lx

ΦPT

APT,act
, (3.8)

where the active measurement surface of the PT is given with APT,act = 7.55mm2. The
Alternating Current (AC) part of the PT response generated by the pulsing LED is around
IC,AC ≈ 27µA whereas the the Direct Current (DC) part increases linearly with increasing
sun radiation, e.g., for ESun = 105 lx a value of IC,DC ≈ 3mA can be calculated. However,
the VSOP98260 3 can only resolve currents up to 400µA. Thus, the maximum sun radiation
with which the sensor works is around ESun = 104 lx. To solve this problem, the sensor can
be shaded or a resistance bridge can be included to discharge part of the current. These
options are discussed in more detail in Section 3.7. Finally, the VSOP98260 ampli�es and
�lters the signal and forwards it to the microprocessor.

Signal Generation & Classi�cation Autonomous lawn mowers in general move with a
maximum velocity of vmax ≈ 1 m/s. Given an area detection radius for the sensor of

3VSOP98260 Datasheet, Vishay Semiconductor, https://www.vishay.com/docs/82447/vsop98260.

pdf

https://www.vishay.com/docs/82447/vsop98260.pdf
https://www.vishay.com/docs/82447/vsop98260.pdf
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Table 3.1: Important parameters for the analysis of the signal path.

Symbol Value Unit Description

ALED 2.30× 10−3 m2 illuminated area by the LED

APT 3.40× 10−3 m2 scanned area by the PT

APT,act 7.55× 10−6 m2 active measurement surface of the PT

ESun 0− 105 lx illuminance of the sun with 105 in summer and by clear sky

fLED 38000 Hz pulsing frequency of the LED

fsensor 179 Hz classi�cation frequency of the sensor

hLED 0.1 m distance from the sensor to the ground

h̄PT 0.12 m mean distance between the PT and the illuminated area

IC,AC 2.7× 10−5 A collector current of the PT, AC signal

IC,DC 0− 3× 10−3 A collector current of the PT, DC signal

fLED(λ) see Figure 3.6 1 normalized emission spectrum of the LED

fChl(λ) see Figure 3.6 1 normalized emission spectrum of the chlorophyll �uorescence

fGrass(λ) see [116] 1 normalized re�ection spectrum of grass

gChl(λ) see Figure 3.6 1 relative absorption spectrum of chlorophyll a

gPT(λ) see Figure 3.6 1 relative spectral sensitivity of the PT

α 0.25 1 surface Albedo

βLED 15 ◦ lens angle of the LED

γ 0.02 1 re-emission magnitude for the chlorophyll �uorescence

ϕ 8.34× 10−5 1 part of scattered light from the lawn surface received by the PT

ΦLED 145 lm luminous �ux of the LED under full power

ΦChl 2.112 lm luminous �ux from chlorophyll �uorescence response of the grass

ΦPT,AC 3.39× 10−5 lm luminous �ux received by the PT, modulated AC signal

ΦPT,DC 0− 3.8× 10−3 lm luminous �ux received by the PT, sunlight DC signal

rLED ≈ 0.025 m and requiring an overlap between measurement areas of rLED, the sensor's
measurement frequency has to be at least

fsensor,min =
vmax

rLED
= 40 Hz. (3.9)

Given the Bode plot and cut o� frequency of the used LED, Figure 3.10b, a preampli�er
circuit (VSOP98260 ) with a carrier frequency of fVSOP = 38 KHz and a range for the pass
band of 20 KHz− 60 KHz is chosen. Thus, pulsing the LED with the carrier frequency
fVSOP exploits optimal the trade-o� between high sampling frequencies and sensor light
intensity. The chlorophyll �uorescence response speed lies around 2 ns, Subsection 3.4.2,
and thus is with approximately 500 MHz multiple orders of magnitude faster than the
proposed sensor. However, in order to ensure stability in the presence of measurement
noise which might result to false positives or false negatives, N = 200 measurements are
performed. The sensor frequency then becomes

fsensor =
1

N
fLED − ε ≈ 180Hz − ε, (3.10)

where ε re�ects the time required for sending the data over the serial connection dur-
ing which no measurements are processed. For the developed sensor a frequency of
fsensor ≈ 179Hz could be measured and thus ε ≈ 1Hz. The classi�cation output from
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Figure 3.10: Relative light emission and Bode plot for the used high-power LED.

the sensor is given by

c =
n

N
, (3.11)

where n is the number of measured chlorophyll �uorescence responses withinN LED pulses.

3.5.3 Hardware Component Analysis

In this part, the individual hardware components of the sensor are evaluated in order
to determine optimal settings with respect to range, ambient light tolerance and noise
suppression.

Light Emission For the light emission, a high-power LED is used with 1W maximum
power consumption and a resulting luminous �ux of approximately 145 lm. First, the LED
was examined for its behavior with increasing power supply under constant current �ow
using the CCS200 spectrometer from Thorlabs, Inc. In Figure 3.10a, the measured data
are depicted where the red curve shows the relative intensity at 430nm and the blue curve
the relative intensity at the peak of the measured spectrum. The emitted light intensity
increases nearly linear with a small decrease in the slope. Second, the frequency response of
the LED was evaluated measuring the light emission with a BPX 65 photodiode connected
to an oscilloscope (DSO6014A from Agilent Technologies). The photodiode has a rise and
fall time of tr, tf = 0.012µs. Thus, it can resolve a maximum frequency of 41, 6̄MHz. To
drive the LED with di�erent frequencies a programmable function generator (HM8131.2
from HAMEG) was used. In Figure 3.10b, a bode plot for the LED emission is shown.
The cuto� frequency here is approx. fc = 43 kHz.

Fluorescence Detection For the chlorophyll �uorescence signal detection a infrared, high-
sensitivity PT, the RPT-37PB3F, is used. First, the frequency response of the PT is eval-
uated utilizing an oscilloscope (DSO6014A from Agilent Technologies) and a OVP214VC
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Figure 3.11: Di�ferent lawn types, sorted and classi�ed based on the observable relative quality.

laser driven by the programmable function generator (HM8131.2 from HAMEG). The
PT can easily reach the in the data sheet speci�ed response (rise and fall) times of
tr = tf = 10µs. Hence, the PT is able to detect signals with a frequency up to f = 50 kHz
without loss of sensitivity. Second, the saturation illuminance of the sensor was evaluated.
This is mainly limited by the maximum input current to the VSOP98260. The maximum
utilization was achieved under direct light on the sensor at 3000 lx, which with a surface
Albedo of 0.25 corresponds to a solar radiation of about 12000 lx. This is consistent with
the previous calculations in Subsection 3.5.2.

3.5.4 Evaluation

The sensor was tested in 9 di�erent garden environments, which have been sorted according
to their visual grass quality, and on 3 di�erent non-grass environments, see Figure 3.11. In
total 280, 579 samples were collected. In addition, the sensor was tested on a mobile robot
where an exemplary garden was scanned.

Statistical Analysis in di�erent Garden Environments Classi�cation samples in 9 dif-
ferent lawn environments were collected by attaching the sensor onto an autonomous lawn
mower. For each lawn type approximately 23, 500 samples were collected. In addition,
data samples for 3 non-grass environments were recorded in order to analyze sensor noise.
The non-grass as well as the grass environments are shown in Figure 3.11, where they are
classi�ed according to their visual grass quality. Here, a grass quality of 1 represents the
lowest possible grass quality and 9 the highest.
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(a) The classi�cation results for the

non-lawn environments with a

mean and standard deviation of

µ = 0.177 and σ = 0.051. The

µ+ 3σ decision line for grass de-

tection is shown in red.

(b) The classi�cation results c for the 9 di�erent lawn environments,

where the environments are sorted based on their visual grass qual-

ity with 1 being the lowest and 9 the highest grass quality. Above

each lawn category the amount of correctly classi�ed measurements

is shown.

Figure 3.12: Statistical evaluation of the chlorophyll �uorescence sensor on 9 di�erent lawn and

3 di�erent non-lawn environments, Figure 3.11, given the classi�cation results c de�ned in

Equation (3.11). The sensor shows stable and reliable classi�cation results with approxim-

ately 100 % accuracy for di�erent lawn types, except for the lawn with the lowest quality,

whereas even for such grass an accuracy of approximately 75 % could be reached.

The sensor noise, analyzed by evaluating the sensor results collected on the non-lawn
environments, is approximated as a normal distribution. It has a mean classi�cation result
of µ ≈ 0.177 and a standard deviation of σ ≈ 0.051. De�ning a positive classi�cation
result (grass detected) as c > µ+ 3σ results in exclusion of nearly all false positive results,
since 99.73% of all errors are within the µ± 3σ region. In Figure 3.12a, a histogram of the
classi�cation values c for the non-grass measurements is shown with which the mean and
standard deviation for the sensor noise was calculated.

Based on the µ+3σ decision boundary, it can be decided whether grass has been detected
or not. In Figure 3.12b, the classi�cation results c for the di�erent lawn environments
are shown, where the grass-quality values are in�ated with some random noise for better
readability. Above each lawn type, the classi�cation accuracy is added, thus the amount of
correctly classi�ed samples, which were already shown in Figure 3.2a. All of the di�erent
lawn types reach approximately 100 % classi�cation accuracy except the lawn with the
lowest quality, which still reaches a classi�cation accuracy of approximately 75 %.

Mowing Area Detection The proposed chlorophyll �uorescence sensor was additionally
tested in a realistic garden environment deployed on an autonomous lawn mower. For
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Figure 3.13: Evaluation results for the chlorophyll �uorescence sensor under real garden conditions.

the localization of the lawn mower the real-time locating system (RTLS) MDEK1001 from
Decawave was used. In Figure 3.13, the relative classi�cation results c are shown. Fig-
ure 3.13a shows the evaluated section of the garden environment from the bird's eye per-
spective and Figure 3.13b the interpolated sensor measurements. The proposed chlorophyll
�uorescence sensor reliably detects grass and thus the working space for the autonomous
lawn mower.

3.6 Plant Classi�cation

In the previous section, it was shown how chlorophyll �uorescence can be exploited for
e�ciently detecting the mowing area for autonomous lawn mowers. Now, in a further
step, it is investigated whether the chlorophyll �uorescence response can also be used for
plant classi�cation. This could allow a more advanced automation of gardening tasks, e.g.,
through automated weed removal or scari�cation. For this, the �rst step is to acquire
and preprocess chlorophyll �uorescence spectral data for di�erent common plants using
a standard spectrometer. Based on the acquired data set, a deep learning classi�er is
introduced which proves the general feasibility and serves as a benchmark for a low-cost
design. This low-cost design utilizes consumer PTs instead of a spectrometer to record the
�uorescence response. This low-cost design then enables plant classi�cation for domestic
garden robots but reduces the classi�cation accuracy.
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Figure 3.14: Experimental setup for the data acquisition.

3.6.1 Data Acquisition & Preprocessing

The spectral data required for testing the plant classi�cation approach was recorded using
the CCS200 - Compact Spectrometer (Thorlabs, Inc.) which has a measurement range from
200 nm to 1000 nm. The recorded spectral data, consisting of 3648 measurement points
uniformly distributed from 194.64 nm to 1013.72 nm, represent the measured relative light
by the spectrometer. As shown in Figure 3.4a, the absorption spectra of chlorophyll a or
b are in the range of 350 nm to 500 nm. Hence, for excitation di�erent standard LEDs
with light emission peaks at {375, 385, 400, 415, 432, 445, 460} nm were used. For the data
acquisition, the spectrometers �ber was connected with an optical lens, which was placed
10 cm away from the analyzed plant. Around the optical lens, the excitation LEDs were
ordered in a cyclic pattern. Both, the optical lens and the excitation LEDs were focused
on the same reference point 10 cm away. The recordings were collected in the dark, thus
without external illumination. In Figure 3.14, the experimental setup is shown. A meas-
urement is de�ned as recording of the spectral data for each excitation LED separately
plus recording the emission spectrum without excitation. For the classi�cation data set,
four di�erent plant species and lawn grass were used as test objects. From each of the �ve
plant species, 100 leaves were taken and each leaf was measured 5 times which resulted
in a total number of 2500 measurements over the 5 plant species. The leaves taken have
been selected at random from di�erent healthy plants of the same species in order to get
a representation of a typical population. In Table 3.2, the species and the number of data
samples collected are summarized.

To ensure that the learning procedure does not inherit information such as light intensity,
the collected data is rescaled using the min-max normalization

y′ =
y −min(y)

max(y)−min(y)
. (3.12)
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Figure 3.15: Example measurements of the chlorophyll �uorescence response for the �ve di�erent

plants species. The spectral data are cropped and normalized, Equation (3.12), and, for

better readability, smoothed with a moving average �lter with a span of 5. However, sensor

noise is still visible due to a low signal-to-noise ratio.

Additionally, group numbers were assigned to the measurements such that measurements
taken from the same leaf are clustered. This allows to ensure that there are no measure-
ments from the same leaf in both the training and the test set. Examining preprocessed
example measurements of the chlorophyll �uorescence response for the �ve di�erent plant
species, Figure 3.15, di�erences especially strong between lawn, sage and the rest are dir-
ectly observable.

3.6.2 Deep Learning Classi�cation Approach - Benchmark

In order to distinguish the di�erent plant species based only on their individual �uores-
cence spectrum, deep learning [117] as a well-established but computationally expensive
method is applied to the classi�cation problem. In other research �elds, e.g., blood species
identi�cation [118] or classi�cation of di�erent bacteria based on Raman spectra [119],
convolutional neural networks recently showed promising performance on spectral data.

Table 3.2: Plant speci�es for classi�cation, where lawn consists of di�erent grass species depending

on the type of lawn.

Latin Name English Name Data

Viola odorata Fragrant violets 5× 100

Taraxacum Dandelion 5× 100

Gramina Lawn 5× 100

Salvia Sage 5× 100

Lamium Dead nettle 5× 100
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Table 3.3: Hyper-parameter values that were evaluated during architecture optimization using grid

search.

Parameter Examined values

# convolutional blocks 1, 2, 3, 4

# convolutional layers per block 1, 2, 3, 4, 5

# �lters in convolutional layers 8, 16, 32, 64

kernel size in convolutional layer 3, 5, 7

# fully connected layers 1, 2, 3

# neurons per fully connected layer 10, 50, 100, 200

The general idea is to learn su�cient features implicitly and completely data-driven from
the raw spectral input. Hence, a VGG-like architecture is utilized consisting of convolu-
tional blocks with pooling layers (2×2) in between, followed by fully connected layers [120].
The one-dimensional convolutions are applied on the spectral domain while the multiple
spectra that were acquired with di�erent LEDs are integrated as channels. As activation
functions, the Recti�ed Linear Unit (ReLU) function is used throughout the network ex-
cept for the last layer where softmax activation functions are used for the classi�cation.

The deep learning architecture was optimized by applying a grid search on speci�c val-
ues for the following hyper-parameters: the number of convolutional blocks, the number
of convolutional layers within each block, the number of �lters in each convolutional layer,
the kernel size in each convolutional layer, the number of fully connected layers as well
as the number of neurons in each fully connected layer. The hyper-parameter values that
were examined in this study can be found in Table 3.3. For each combination of paramet-
ers, the corresponding architecture was trained on 72% of the data with 8% for validation
and tested on the remaining 20%. To ensure a fair comparison, the split was the same
for all combinations. Furthermore class balancing was applied to the training set utilizing
oversampling of the minority classes. In total, 2, 880 di�erent architectures were evaluated.
For training, the adam optimizer [121] and a batch size of 32 were used. The maximum
number of epochs was 100, but training was stopped if the validation loss rose constantly
over ten epochs.

The generalization capability of the best architectures were evaluated by performing a
Monte-Carlo cross validation with N = 100 runs. In each run, the data set was randomly
divided into a training (72%), validation (8%) and test set (20%) and an evaluation was
performed. As the results of the �rst experiment might be due to the speci�c train-test-
split, the cross validation was not only applied to the best architecture, but to the �ve
most accurate ones (see Table 3.4).
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Figure 3.16: Feature extraction given two exemplary PTs. The generated features are based on the

integral given in Equation (3.13) and displayed as the areas beneath the curves.

3.6.3 Low-cost system

For the low-cost approach, a substitution of the spectrometer with consumer PTs is per-
formed in order to test whether su�cient accurate classi�cation results can be achieved. A
phototransistor uses the photoelectric e�ect to generate a photocurrent which is ampli�ed
in the transistor with an ampli�cation factor to the collector current. The strength of the
photoelectric e�ect depends on the strength and the spectrum of the incoming light with
respect to the relative sensitivity of the phototransistor. For this purpose, the response of
various di�erent PTs are simulated using the recorded spectral data set. This leads to a
generation of individual features, one for each PT, which can be used in computationally
e�cient machine learning techniques, e.g., Random Forest.

PT Simulation & Feature Generation In order to simulate the PTs for feature genera-
tion, the in the data sheets recorded relative sensitivities are used:
Let hi(λ) be the function for the spectral sensitivity for a certain PT i and gj(λ) the re-
lative spectrum generated through stimulation by the LED j, where λ is the wavelength.
A feature fij , which can be used for classi�cation, is then given by

fij =

∫
λ
hi

(
λ̂
)
· gj
(
λ̂
)
dλ̂. (3.13)

The feature fij simulates the analog signal of the PT i given the relative emission spec-
trum induced by the LED j. Since the spectral data consists of distinctive data points,
Equation (3.13) turns into the sum

fij =
1

N

N∑
k=1

hi (λk) · gj (λk) , (3.14)

where N is the total number of data points. In Figure 3.16, two di�erent spectral sensit-
ivities together with the PSI and PSII spectra from Figure 3.4b are shown. The generated
feature values are the marked areas beneath the curves.
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Table 3.4: Classi�cation results for the grid search over the in Table 3.3 noted hyper-parameters.

The table shows the �ve best and worst results, respectively.

ID Accuracy conv.Blocks conv.Layers Filters Kernel Size dLayer dLayerNodes

1 0.992 2 1 64 7 1 100

2 0.99 1 3 32 7 1 100

3 0.99 1 3 32 7 2 200

4 0.99 1 5 32 5 1 200

5 0.99 2 1 32 5 1 200

. . . . . . . . . . . . . . . . . . . . . . . .

2876 0.2 1 2 32 3 3 10

2877 0.2 1 2 8 5 1 10

2878 0.2 1 1 64 7 1 10

2879 0.2 1 1 64 5 1 10

2880 0.176 4 4 64 5 3 50

Classi�er Due to the small number of features, computationally e�cient machine learning
techniques can be used, which are applicable even on small microprocessors. Thus, a
random forest classi�er [122] is trained to estimate the right class labels based on the
feature values given by the simulated PTs. Therefore, 200 tree estimators are used to form
the random forest which are constructed using the gini-coe�cient. The implementation is
done using scikit-learn [123].

3.6.4 Evaluation

To evaluate the potential of plant classi�cation using active chlorophyll �uorescence sens-
ing, �rst a deep learning approach utilizing the complete re�ectance spectrum and second,
a low-cost approach based on consumer electronics are tested. The deep learning approach
thereby serves as benchmark for the low-cost approach to better classify the results. While
the benchmark approach showed accurate classi�cation results with up to 99.2 % classi�c-
ation accuracy, the low-cost approach su�ers from the reduced features by simulating the
PTs. Still, classi�cation accuracies of around 70 % for 5-plant-classi�cation and accuracies
of around 90 % for a grass-non grass classi�cation can be reached.

Deep Learning Approach As a �rst step, the classi�cation results for di�erent system
architectures were investigated by applying a grid search over the in Table 3.3 noted hyper-
parameters, hence in total 2, 880 di�erent net architectures were analyzed. In Table 3.4,
the results for the �ve best and worst architectures are shown, respectively. The �ve best
architectures provide very high accuracies of at least 99% right classi�cations. The results
indicate that a higher number of neurons in the fully connected layers has a positive impact
on the network's performance. However, such a direct relationship was not observed for
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Figure 3.17: Mean classi�cation result for the best architecture over 100 Monte-Carlo cross valid-

ation iterations. The architecture consisted of two convolutional blocks of one convolutional

layer with 32 �lters of size 5, followed by one fully connected layer with 200 neurons.

the other hyper-parameters, highlighting their complex interplay and the importance of a
vast hyper-parameter search as presented here.

Furthermore, the generalization performances of the �ve best networks were analyzed by
applying a Monte-Carlo cross validation to each of them. The best architecture after the
Monte-Carlo cross validation consisted of two convolutional blocks of one convolutional
layer with 32 �lters of size 5, followed by one fully connected layer with 200 neurons.
In Figure 3.17, the confusion matrix over all runs of the cross validation is shown for
the best performing architecture, given the mean and the variance over all 100 runs. The
approach allows for a very accurate classi�cation of fragrant violets, lawn and sage, whereas
dandelion and dead nettle are harder to distinguish. However, even for the harder to
distinguish plant species classi�cation accuracies over 90 % were reached. Over all plants,
the network achieves an accuracy of 95.38%. The architecture with the lowest accuracy (one
convolutional block, �ve convolutional layers with 32 �lters of size 5, one fully connected
layer with 200 neurons) achieved a mean accuracy over all plants of 89.32%. In this case,
the discrimination of dandelion and dead nettle provided insu�cient results and reduced
the mean accuracy signi�cantly.

Low-cost Approach For the concept of a low-cost plant classi�cation sensor system based
on simple consumer LEDs and PTs, di�erent combinations of LEDs for the chlorophyll
�uorescence excitation and di�erent combinations of PTs for the chlorophyll �uorescence
detection were tested. Therefore, the recorded spectral data were used to generate clas-
si�cation features given the spectral sensitivity of 11 di�erent consumer PTs. In total,
7LEDs× 11PTs = 77 features were generated using Equation (3.14) for each PT/LED
combination. The detailed spectral data for the PTs and LEDs can be found in the ap-
pendix, Section E. In order to determine the accuracy of a plant classi�cation algorithm
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Figure 3.18: Classi�cation accuracies with respect to the number of used PTs. Always the classi�c-

ation accuracy for the best combination of PTs found is shown. For the feature generation,

the data from the 432nm LED have been used. In the lower right corner, a sketch of the

PSI, the PSII spectra as well as the spectral sensitivities for the best combination of three

PTs (red dot) are shown. For this combination, the classi�cation accuracy is 68.16 %.

based on those features, di�erent feature combinations were tested. Therefore, for each
feature combination a random forest with 200 single decision trees, the gini-coe�cient for
split decisions and 5-fold cross validation were trained.

In order to �nd suitable combinations of PTs, all combinations starting with two PTs
and ending with all available PTs were tested using the spectral data recorded with the
432nm LED. In Figure 3.18, the classi�cation accuracies are shown together with the
spectral sensitivities for the best triple combination of PTs. The results show, that the
classi�cation accuracy increases rapidly from around 60 % using two PTs to around 68 %
using three PTs. Afterwards it stagnates and even decreases slightly as more PTs are used.

Using the best PT combinations for 3, 4, 5 PTs, the classi�cation accuracies with re-
spect to the number of used LEDs were investigated, Figure 3.19. As seen before, the
classi�cation accuracy using simply one LED already reaches approximately 68 % for each
of the PT combinations. Increasing the number of LEDs, thus the number of recorded
spectra used for feature extraction, only slightly increases classi�cation accuracy. The best
result, 71.52 %, is obtained for 3 PTs and 5 LEDs, where the 3 PTs have the spectral
sensitivities as shown in the lower right of Figure 3.18 and the LEDs the peek wavelengths
{375, 400, 415, 432, 445}nm.

Given the best combination from above, 3 PTs and 5 LEDs, a Monte-Carlo cross valid-
ation with a 80 %− 20 % train-test split and N = 100 iterations was evaluated in order to
test robustness of the low-cost classi�cation approach. The mean and standard deviation
for the classi�cation results presented as a confusion matrix are shown in Figure 3.20. The
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Figure 3.19: Classi�cation accuracies with respect to the number of used LEDs given the best

combinations for 3, 4, 5 PTs. The plot shows always the best combination of LEDs chosen

from a pool of seven LEDs with wavelengths {375, 385, 400, 415, 432, 445, 460}nm.
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Figure 3.20: Mean classi�cation result and variance for 100 Monte-Carlo cross validation iterations.

The three best PTs and �ve best LEDs have been used.

classi�er allows for a good detection of lawn and fragrant violets where it has its problems
distinguishing between dandelion and dead nettle. These results con�rm what had been
seen with the deep learning approach, where also dandelion and dead nettle were proven
hard to distinguish. The overall mean classi�cation accuracy for the low cost approach is
70.43 %.

Lastly, a classi�er which distinguishes only between grass or non-grass was tested. For
the setting with 3 PTs and 5 LEDs a classi�cation accuracy of 90 % was achieved using 5-
fold cross validation. Testing a minimal setup given the PT combination from Figure 3.18
and using only the blue LED with 432nm resulted also into a 90 % classi�cation accuracy.
In order to ensure the balance between grass and non-grass samples, the grass samples
were copied and added such that in total 4, 000 samples for training and testing were used.
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3.7 Discussion

In the previous sections, Section 3.5 and Section 3.6, methods for the detection and clas-
si�cation of the working environment for autonomous lawn mowers were proposed. In the
following, application limitations and implications for the proposed methods are discussed
in detail.

3.7.1 Working Area Detection

The proposed chlorophyll �uorescence sensor is able to reliably detect grass and thus clas-
sify the working area for autonomous lawn mowers e�ciently, Subsection 3.5.4. However,
there are three main issues which have to be discussed: the limitation due to high sun radi-
ation, the measurement noise of the sensor (Figure 3.12a) and possible �elds of application
for autonomous lawn mowers and beyond.

Limitation due to High Sun Radiation The limitation due to high sun radiation comes
from the choice of sensor components and the design itself. Possible workarounds are to
shade the grass sensor, add a resistor bridge to discharge a part of the current or choose
other electronic components with larger resolvable currents. Shading the sensor might be
not always possible, especially if the sensor is placed at the front of the autonomous lawn
mower where bumper sensors are also often situated. Adding a resistor bridge to discharge
a part of the current leads to better performance under high sun radiation but due to
the current discharging, problems for low sun radiation, e.g., measuring at night, appear.
During the development of the sensor various electronic components were tested, such as
di�erent LEDs and PTs. Keeping in mind the low-cost approach, the proposed design
ful�lls the requirements for autonomous lawn mowers as well as it is necessary.

Sensor Measurement Noise Following the physical principle of chlorophyll �uorescence,
an ideal sensor should not detect anything if sensing non-grass (non-chlorophyll) environ-
ments. However, there is some measurement noise caused by several error sources, e.g.,
non-ideal emission and absorption spectra of the LED and the PT or noise of the individual
electronic components due to voltage or current �uctuations. These errors were reduced
by, among other things, continuously improving the design of the Printed Circuit Board
(PCB). As demonstrated in Subsection 3.5.4 the current sensor design is able to reliably
detect the lawn and thus the working area for the autonomous lawn mower.

Fields of Application As introduced, the chlorophyll sensor was developed as a mowing
area detector for autonomous lawn mowers. For this sensor approach to work, the lawn
environment must be clearly demarcated, for example by lawn edging stones. Additionally,
the lawn should be of reasonable quality to ensure good detection. If these two conditions
are ful�lled, the sensor developed here can be used e�ciently for area detection. Moreover,
the general sensor concept is not restricted to this �eld of application. Rather, all areas
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in which chlorophyll �uorescence plays a role can be considered as possible �elds of ap-
plication, e.g., agriculture or gardening in general. A detailed outlook into future sensor
developments is given in Section 3.8.1.

3.7.2 Plant Classi�cation

The introduced low-cost approach for plant classi�cation utilizing active chlorophyll �uor-
escence sensing showed promising results, Subsection 3.6.4. In the following, some insights
are discussed in order to point out the limitations of the here performed method analysis.

Plant Selection The in Table 3.2 listed plants have been selected as proxies for plant-
s/weeds found in standard garden environments, recognizing that these represent only a
small sample of possible garden plants. However, for many gardening applications, e.g.
lawn care, a distinction between grass and other plants/weeds might be su�cient. Also,
in the future the data base will be enlarged including additional plants/weeds.

Phototransistor Selection It may seem strange that only PTs from the near IR-spectrum
were tested for the low-cost approach. The reason for this is that most consumer PTs
either cover the near-IR spectrum (mostly used in remote controls) or the complete visible
spectrum. Since PTs which cover the visible spectrum also register the used LED, they
would not give appropriate information for the classi�cation procedure. Hence, only PTs
covering the near-IR region are usable for the proposed low-cost approach.

In�uence of Light Conditions It is important to note that the presented dataset was
collected under ideal conditions as only one leaf of one speci�c plant was present in the
sensor's �eld of view and the measurement was performed in a darkened environment.
The transferability of the proposed approach to realistic conditions with ambient light and
possibly several leaves from multiple plants in the �eld of view is an interesting research
question and is addressed in Subsection 3.8.1.

3.8 Conclusion

In this chapter, an active low-cost chlorophyll sensor has been introduced for e�ciently
detecting the working area for autonomous lawn mowers. The proposed sensor concept
is built up on standard consumer electronics and provides accurate lawn detection res-
ults. Such a sensory system can replace the current bounding wire systems, which leads
to a reduction in installation and maintenance costs. Furthermore, it allows the use of
autonomous lawn mowers on any enclosed lawn area, thus they gain enhanced mobility.

By adapting the sensory system, additional areas of application can also be opened up.
One example here is plant stress recognition, which is of high importance in modern agri-
culture and can be measured by exploiting the �Kautsky-E�ect� as demonstrated in [109].
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Such plant stress measuring systems were introduced in [124] or [125]. However, these sys-
tems require an enclosure around the plant for executing the measurements. To overcome
this restriction, the here presented active sensing approach can be e�ective to �lter the
sunlight by fast pulsing.

Another example for an additional area of application is plant classi�cation which has
been discussed and analyzed in Subsection 3.6. There, two di�erent plant classi�cation
approaches based on active chlorophyll �uorescence sensing have been introduced. The
�rst makes use of deep learning techniques to take advantage of the whole chlorophyll
�uorescence emission spectrum and serves as benchmark. The latter investigates the low-
cost approach based on the proposed sensor design using consumer LEDs and PTs for
excitation and absorption of the chlorophyll �uorescence, respectively. For the benchmark,
an accuracy of approximately 95 % could be reached classifying �ve di�erent plant species.
This demonstrated the general functionality of plant classi�cation utilizing the chlorophyll
�uorescence spectra. The low-cost approach is still capable of reaching classi�cation ac-
curacies around 70 %. For most applications in the domestic area, that might already be
enough. Considering that in most cases only a di�erentiation between one plant type (e.g.
lawn) and others is needed, a binary classi�cation between lawn and other has reached an
accuracy of approximately 90 %. This shows that the presented method might be the basis
for a�ordable plant classi�cation sensor design utilizing machine learning in a wide range
of applications.

3.8.1 Detailed Future Work

Towards the development of cost-e�cient plant classi�cation sensors, the next step can be
to evaluate the concept, which have been so far tested in a laboratory, ideal setting, under
real-world conditions. Therefore, the measurement system consisting of a spectrometer
and the LEDs can be mounted on to a mobile robot to measure large outdoor areas, e.g.,
harvest �elds or lawns, collecting a vast amount of sample data. This allows for testing
the classi�cation approach for transferability to realistic conditions with ambient light and
possibly several leaves from multiple plants in the �eld of view. In a �nal step, a new low-
cost sensory system for plant classi�cation could be designed based on the sensor concept
introduced here which utilizes consumer LEDs and PTs.
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4 Robot Control and Monitoring �

ROS-Mobile

In this chapter, ROS-Mobile, an Android application for the Robot Operating System,
is introduced. This application facilitates the control and monitoring of mobile robots in
outdoor environments by allowing the usage of mobile devices, e.g., smartphones or tablets.
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4.1 Introduction

In the previous chapters, intelligent navigation and planning strategies for low-cost robots
in closed environments as well as the sensor design and development for those robots have
been discussed. Still missing is a discussion of the basic control and monitoring architecture
of the robot. For the robot used throughout this thesis, this is realized with the ROS [129]
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Figure 4.1: Global market shares for (a) Desktop, Mobile and Tablet devices and (b) di�erent

operating systems. Data retrieved from StatCounter Global Stats, accessed on 02/04/2020.

https://gs.statcounter.com/

framework, which is a widely used framework at universities and companies for control and
navigation of robotic systems. For example, it can be used for controlling an Unmanned
Aerial Vehicle (UAV) using Motion Predictive Control (MPC) methods [130] or to map
the environment with mobile robots using 2D SLAM techniques [131]. A common tool for
controlling and monitoring robotic applications within ROS is ROS Visualization (rviz)1

which comes with a full-desktop installation but is not available for mobile devices. How-
ever, for controlling and monitoring mobile robots in outdoor environments as proposed
within this thesis, a tool like rviz for mobile devices would strongly facilitate the interac-
tion with such robotic systems. Considering also the steadily increasing market share of
mobile devices and tablets (Figure 4.1a) underlines the need of such a mobile application.
To allow for a widest possible range of application scenarios, additional functionalities not
available in rviz but provided by other ROS packages, e.g., teleoperational control should
also be included. This enables the user to e�ciently control and monitor mobile robots in
outdoor environments with easy to handle mobile devices, e.g., smartphones

In this chapter, intuitive controlling and monitoring techniques for autonomous systems
are discussed (Q3 in Subsection 1.2). As a result, ROS-Mobile is introduced, a ROS applic-
ation for mobile devices. The chapter begins with an overview of related work, Section 4.2,
and a short summary of the scienti�c contributions, Section 4.3. This is followed by a
short introduction to the ROS basics, Section 4.4. In Section 4.5, the software architecture
as well as the application functionalities are introduced. Furthermore, the extensibility
of the application is highlighted. Afterwards, di�erent use-case scenarios are presented
(Section 4.6), including a demo example and di�erent application scenarios. Lastly, the
user acceptance is analyzed, Section 4.7, and the chapter is concluded, Section 4.8.

1http://wiki.ros.org/rviz

https://gs.statcounter.com/
http://wiki.ros.org/rviz
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Table 4.1: Comparison of di�erent ROS applications currently available for Android.

Application Features

ROS Control Control & Visualization

AuTURBO Teleoperation

ROS Image Viewer Image View

iviz Visualization & control

ROS-Mobile Debug, Control & Visualization

4.2 Related Work

There have been di�erent attempts and studies concerning remote control and monitoring
of robots via mobile devices. For example, in [132] a low cost robot framework, controlled
by two di�erent Android applications based on ROSJava2, was introduced. In [133], a
remote control application for mobile robots built from Lego Mindstorms NXT kit was
proposed. However, these applications are limited to speci�c robotic system (e.g. Lego
Mindstorms NXT kit) or a speci�c robot con�guration. Moreover, ROSJava is limited to
older Android versions and programming architectures, especially with the nowadays re-
commended Model View ViewModel (MVVM) architecture, which will be introduced later.
For a robotic system to be fully operational, a ROS application for mobile devices should
ful�ll certain requirements. These requirements are (1) a high customizability and extens-
ibility, (2) the possibility to both monitor and control the robot and (3) smooth integration
into the device work�ow to avoid interference with other running applications. Currently,
there are di�erent ROS applications for Android available for download, Table 4.1, which
all su�er from di�erent shortcomings considering the above requirements:
ROS Control3, developed in 2016, allows for example map view, remote control or laser
scan visualization. However, it is based on outdated Android versions and its architecture
is not MVVM conform which results in interference with the mobile device work�ow. ROS
Teleop Controller AuTURBO4 is mainly designed for control and display data supported
by the robots from the TurtleBot family5. ROS Image Viewer only allows to display im-
ages received from a ROS framework. A recently published mobile application for ROS is
iviz [134], which is based on the commercial Unity engine6 and written in C#. This allows
targeting di�erent Operating System (OS), e.g., iOS or Android. Currently, iviz allows
for visualization of robot models and 3D point clouds and provides a joystick for control
inputs. To add additional features, modules have to be implemented and merged into Unity.

2https://github.com/rosjava
3https://github.com/mtbii/RobotCA
4https://github.com/AuTURBO/ros-app-tb3-voiceorder
5https://www.turtlebot.com
6https://unity.com/

https://github.com/rosjava
https://github.com/mtbii/RobotCA
https://github.com/AuTURBO/ros-app-tb3-voiceorder
https://www.turtlebot.com
https://unity.com/
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Table 4.2: Software Information (Status 05/05/2021)

Current code version 1.2

Permanent link to repository https://github.com/ROS-Mobile/ROS-Mobile-Android

Legal Code License The MIT License (MIT)

Code versioning system git

Software languages Java, XML, Gradle

Compilation Requirements Linux or Windows with Android Studio 3.6.1 or higher

Developer Documentation https://github.com/ROS-Mobile/ROS-Mobile-Android/wiki

User and developer support rosmobile.info@gmail.com

4.3 Scienti�c Contributions

In this chapter, a highly customizable ROS application for Android operated devices for
remote control and monitoring of mobile robotic systems is introduced. The application is
based on the Android OS as it is the most widely used OS for mobile devices, Figure 4.1b.
Further, it is based on the MVVM architecture which comes with simple testing structures
and extensibility. In order to use the application, only a mobile device, e.g., a smartphone
or a tablet, with Android Version 5.0 (Lollipop) or higher is required. A wireless network
connection between the ROS master and the mobile device has to be established. The
current version details and requirements of the application are summarized in Table 4.2.
In less than a year, the application is already wide spread within the ROS community as
discussed in Section 4.7 based on statistics collected with the Google Play Console. This
further underlines the need of simpli�ed robot control and visualization with mobile devices.

4.4 ROS-Basics

The Robot Operating System (ROS) is a peer-to-peer middleware package for robotic
systems. It is currently maintained and managed by the non-pro�t organisation Open
Source Robotics Foundation (OSRF). The basic idea behind ROS is to allow for easy
hardware abstraction and extensive code reuse within robotic projects. Therefore, all
major functionalities are broken up into pieces, called nodes, which communicate with
each other using internal ROS messages. For example, one node might be responsible
for collecting camera data and provides (publishes) the data to the ROS system whereas
another node might be responsible for map generation and requests (subscribes) those
camera data. This publish-subscribe messaging pattern allows each node to subscribe or
publish to certain message classes, called topics, without knowledge of which other nodes,
if any, there are. To generate a peer-to-peer network, the nodes are matched by the ROS
master based on the chosen published/subscribed topics. An example of a typical ROS
network is shown in Figure 4.2. Here, a sensor node provides sensory information which

https://github.com/ROS-Mobile/ROS-Mobile-Android
https://github.com/ROS-Mobile/ROS-Mobile-Android/wiki
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Figure 4.2: ROS system with a sensor read out by a sensor node, a mapping node which used the

sensor information for map generation, a planning node for task planning based on given map

information and a control node for controlling the actuators of the robot.

is processed by a mapping node which provides a map of the environment. Based on
the mapping information, a planning node publishes path data which are subscribed by a
control node which controls the actuators of the robot. In the following, the main ROS
components are described in more details as well as an outline of the principal ROS code
hierarchy is given. For a more detailed introduction to ROS, it is referred to [135].

4.4.1 ROS Components

The main components a ROS system is built on are nodes, topics/services and messages.
In the following, these components are introduced in more detail.

ROS Nodes A node is an executable of the system, a process that does some computation,
e.g., a Kalman Filter. Typically, all functionalities of the robotic system are divided into
di�erent modules where each module consists of one or more nodes. The communication
between nodes are handled over topics or services. In general, a typical robotic system
operated with ROS includes many nodes interacting with each other. A system partitioned
into several nodes provides several bene�ts such as a reduction of code complexity or code
reusability.
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ROS Topics A topic is a kind of a named �pipeline� over which di�erent nodes commu-
nicate with each other. It allows the anonymous publish/subscribe messaging pattern by
enabling nodes to subscribe or publish to a given topic. Thereby, each topic can have mul-
tiple publisher or subscriber. The content transported via a topic is de�ned by a message
type and is meant to be unidirectional. Nodes which require bi-directional communication
should use services.

ROS Services Services are very similar to topics but are designed for non-unidirectional
communication, especially request/reply interactions. Therefore, a service requires in com-
parison to a node two message types, one for the request and one for the reply.

ROS Messages A message is a data structure comprising typed �elds. For example,
a point message consists of three �oating point variables x, y and z. In general, most
messages also contain a header which provides important information such as a time stamp
or a reference frame. Moreover, messages can be combined to build new, more complex
message structures.

4.4.2 ROS Code Hierarchy

The ROS code hierarchy is built on the idea that complex projects are broken down into
smaller and smaller components, such that single developers can handle the individual
components. The top hierarchy level is the repository which contains the code from a
particular development group. One level below, the stacks are to be arranged, which each
handle a particular subject of the project. Below this, packages are de�ned as separate
modules of the subject to be handled. In general, such a package consists of several nodes,
the smallest components in the code hierarchy.

4.5 Mobile Application Design

In the following, the underlying software architecture of the ROS application is introduced.
Due to this software architecture, the application allows for a wide range of functionalities,
integrates smoothly into the mobile device work�ow and is easily extensible, which is
described in the second part of this section.

4.5.1 Software Architecture

The basic architecture that the introduced ROS application is based on is called MVVM,
Figure 4.3. The underlying principle is the Separation of Concerns [136]. This means that
each concern should be addressed by a di�erent section of the program. For example,
a User Interface (UI) is required to enable user interaction and ROS nodes are required
to subscribe or publish to certain ROS topics. The information produced by the user
via the UI and the data received or sent via the ROS nodes are thereby the concerns
of the program which have to be handled separately. Moreover, Android applications in
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Figure 4.3: The general MVVM designing concept for mobile applications.

comparison to desktop applications in general do not have a single entry point; instead,
they consist of multiple components, such as Activities or Fragments. These application
components are then used by the Android OS for integration into the device work�ow.
Hence, the application has to be able to handle app hopping behavior correctly. To do
so, the ViewModel class, provided by the Android OS designed for managing UI related
data, is used as a connection between the model/data storage system and the UI. The
work�ow is as follows: Required data is provided by a model/data storage system and is
requested by the ViewModel object. This ViewModel object is directly assigned to a UI
Controller (e.g. Activity, Fragment), which requests the data from the ViewModel object
and let the user interact with them. Thus, the UI controller is decoupled from the data
management system and can be destroyed and rebuilt during runtime by the OS to enhance
performance. In order to implement such a type of architecture, the ROSJava code, which
was designed for older Android versions and architectures, had to be modi�ed according
to the requirements of the MVVM architecture.

4.5.2 Functionality and Extensibility

The introduced ROS Android application enables users to easily control and monitor ROS
operated systems with mobile devices. Therefore, the application establishes a ROS con-
nection via WiFi with the system. This allows to control the robot by publishing ROS
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messages (e.g. velocity commands), visualize published measurement results (e.g. map
data) or analyze the system's behavior. Moreover, an additional control possibility is given
by the included SSH client, which allows direct access to the operating system. Currently,
the following modules are implemented:

� Debugger: A module which can display any ROS message, similar to rostopic echo

� Joystick: A module to teleoperate a robot

� GridMap: A module which displays grid maps

� Camera: A module which displays camera data

� GPS: A module which displays the current position of the robot in an openstreetmap7

based on GPS data

During the development of ROS-Mobile, a lot of e�ort was put into making the applic-
ation easily extensible. This allows members of the ROS community to adjust and extend
the application to their own needs by rede�ning or adding new modules. Therefore, a step-
by-step guide on how to create new modules8 was written. In addition, easy extensibility
ensures easier maintenance of the software and thus better support.

4.6 Use-Case Scenarios

ROS-Mobile was developed within this thesis to provide an easy way to monitor and control
the autonomous lawn mower in outdoor environments. However, since easy expandability
and customizability were the main focus of the development, the application can be used for
various robotic controlling and monitoring scenarios. Here, a demo example showing the
mapping procedure of an apartment environment is used to demonstrate the functionality
of the application. Further, di�erent use-case scenarios for ROS-Mobile currently handled
within the author's institutional a�liation are introduced.

4.6.1 Demo Example

The aim of the demo example task is to build a map of an apartment environment using
a di�erential drive robot. In a �rst step, the robot and the ROS system are started and
the Android powered mobile device is connected via WiFi to the robot. The correct IP
address is de�ned in the MASTER con�guration tab, Figure 4.4b, and the IP address for
the mobile device which is related to the robot's WiFi is chosen from the drop down menu.
After hitting the connect button, it is now possible to communicate between the ROS
system and the mobile device. For an e�cient communication, desired widgets/nodes have

7https://www.openstreetmap.de/
8https://github.com/ROS-Mobile/ROS-Mobile-Android/wiki

https://www.openstreetmap.de/
https://github.com/ROS-Mobile/ROS-Mobile-Android/wiki
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Figure 4.4: Illustrative example for the mapping of an apartment environment and displaying the

mapping result with ROS-Mobile. From left to right: (a) Stored con�guration �les which can

be loaded and/or saved for di�erent robotic systems, (b) master tab for connecting to the ROS

master which requires the robot's IP address, (c) details tab where required widgets/nodes

are de�ned and initialized, (d) visualization tab for either control or monitoring the robotic

system.

to be chosen and con�gured in the DETAILS tab, Figure 4.4c. For this example, a joystick
widget for steering the robot sending geometry_msgs/Twist messages to the ROS system
and a grid map widget subscribing to nav_msgs/OccupancyGrid messages for visualization
of a recorded occupancy grid map are chosen. The widgets can be adapted by de�ning the
size and location in the VIZ tab, Figure 4.4d. In this tab, the recorded occupancy grid
map is displayed as well as the joystick. This visualization can be used now to control and
monitor the robot. For deeper insights, it is referred to the short use-case video9 or to the
ROS-Mobile introduction video10.

4.6.2 Application Scenarios

In addition to the use-case of an autonomous lawn mower, as mainly considered in this
thesis, di�erent other application scenarios occur within the author's institute. For ex-
ample, controlling and monitoring of di�erent mobile robotic platforms, such as rescue
robots, service robots or agriculture robots, Figure 4.5. Rescue robots are remotely con-
trolled and their data evaluated to monitor water pollution and/or �ooding. Service robots

9https://youtu.be/p8lxuGb6xNQ
10https://youtu.be/T0HrEcO-0x0

https://youtu.be/p8lxuGb6xNQ
https://youtu.be/T0HrEcO-0x0
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(a) Intelligent lawn mower (b) Autonomous surface vehicle (c) Loomo, Segway robot

Figure 4.5: Mobile robotic platforms for which ROS-Mobile is currently used within the author's

institute. From left to right: (a) intelligent lawn mower with low-cost sensors for domestic

purpose, (b) autonomous surface vehicle (ASV) for swarm approaches to monitor water con-

tamination, (c) Loomo from Segway-Ninebot for person guidance in hospitals.

are tested to guide persons through hospitals and deliver �les and/or medicine. Agriculture
robots are developed to enable autonomous farming for small, local companies. Finally, for
the autonomous lawn mower used throughout this thesis, ROS-Mobile is used to remotely
control the robot and monitor mapping and path planning results.

4.7 User Acceptance

In order to analyze how well ROS-Mobile has been accepted by the ROS community, the
user data provided by the Google Play Console (Status: 27. April 2021) are taken into
account. In Figure 4.6, the accumulated number of new users and the active users with
currently installed application since the application release (22. May 2020) are shown.
The ROS-Mobile application shows a steadily increasing growth rate with currently 2734
acquired users and 949 active users. That re�ects a high interest and an urgent need for
a manageable mobile application for ROS. Moreover, the open source repository of the
project has attracted multiple users to adjust the application to their needs (38 forks)
and contribute to the master, either by debugging the application and/or by writing new
features. Various users also asked for considering new features for implementation which
are currently not provided, for example point cloud visualization. Overall, this shows a
huge interest and a need to further maintain and develop ROS-Mobile. The most common
features the ROS community asks for are: ROS2 integration and 3D visualization. These
modules are currently being incorporated into the application, such that they will be
provided in the near future.
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Figure 4.6: The accumulated number of new users since the app release (22. May 2020) and the

active users with currently installed application.

4.8 Conclusion

In this chapter, the development of ROS-Mobile, a mobile application for Android powered
devices, has been introduced and evaluated. The main goals for ROS-Mobile are simple
design and easy extensibility/customizability to allow a wide range of users to interact with
and contribute to the application. Moreover, the application should be seamlessly integ-
rated into the work�ow of mobile devices and provide debug, monitoring and controlling
features. In comparison to other available applications, this was reached by using a MVVM
architecture and providing basic features in combination with a detailed description how to
add new modules. However, there are open tasks like ROS2 integration and/or improved
user interaction feedback which should be included in the near future based on user reviews.

Despite these open tasks, the ROS community accepted the application well which is
re�ected in the rapidly increasing number of users and also in the huge interest of contrib-
uting to the development of the application. Thus, ROS-Mobile is a great contribution for
the robotic community and has the potential to steadily increase its usability by including
progressively more functionalities.

Within this thesis, ROS-Mobile ful�lls its purpose by enabling simple control and mon-
itoring of the autonomous lawn mower in outdoor environments. For example, by testing
the introduced mapping and path planning approaches in realistic environments or by
recording measurement data for the sensor evaluation.

4.8.1 Detailed Future Work

As already mentioned above, there are still open improvements for ROS-Mobile which
should be included to the application in the near future. In detail to mention are:
(1) ROS2 integration to allow the usage of the application with ROS2 operated systems,
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(2) 2D/3D map view with multiple layers to allow more e�cient planning and monitoring
and (3) cloud con�guration storage to allow the sharing of prede�ned con�gurations. Addi-
tionally to these main points, there are a lot of suggestions from the community to further
improve ROS-Mobile such as being able to display the robots battery level, improve user
experience and many more.
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5 Conclusion

In this chapter, a summary over all topics addressed throughout this thesis is given. After-
wards, the research questions introduced in Subsection 1.2 are concluded and future work
is proposed.
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5.1 Summary

In this thesis, smart sensors and intelligent navigation and planning strategies for low-cost
lawn care systems were developed. It was shown that e�cient work management is possible
for such low-cost autonomous robots with only limited sensing capabilities, e.g., in-/outside
area detection. Additionally, a ROS application for mobile devices was developed to con-
trol and monitor ROS operated autonomous systems in outdoor environments.

In detail, Chapter 2 discussed optimal planning and navigation strategies for low-cost
robots with limited sensing capabilities. Here, the focus was on di�erential drive robots
with only in-/outside area detectors as available with common lawn mowers. In a �rst step,
a mapping strategy for closed environments was developed which allows the generation of
a map estimate of the environment. Such a map of the environment is essential for e�cient
planning and navigation which allows then in a second step the development of an intelli-
gent path planning strategy for covering the complete workspace. There, a neural network
approach in combination with a probabilistic coverage map was introduced to cope with
the high pose uncertainties during path execution. The proposed approach allows for an
e�cient complete coverage of the workspace. However, the proposed methods require the
adjustment of certain hyper-parameters which can be crucial for e�cient method execu-
tion. Therefore, an optimization procedure for exemplary learning the hyper-parameters
for the proposed mapping procedure was introduced. The research results were presented
or are submitted to be presented at the European Conference on Mobile Robotics (ECMR)
2019/2021 and at the 12th IROS 2020 Workshop on Planning, Perception and Navigation
for Intelligent Vehicles.
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In Chapter 2, for the proposed navigation and planning methods, existing sensor techno-
logies for in-/outside area detection, e.g., perimeter wire systems, were assumed as given.
In Chapter 3, a novel low-cost sensor was developed which exploits the characteristics of
the working environment and replaces the commonly used in-/outside area detectors. For
this purpose, an active optical sensor was developed which stimulates the chlorophyll �uor-
escence of the grass and captures the response. In this way, the working environment can
be swept without the need for additional instruments, e.g., bounding wires. Additionally,
plant classi�cation was investigated based on the same idea stimulating the chlorophyll
�uorescence and capturing the response. Such a classi�cation is able to expand the range
of application for lawn mowers, e.g., by enabling weed detection. The research results were
presented at the international conference IEEE Sensors 2020 and are published or under
review for publication in the IEEE Sensors journal.

In Chapter 4, the problem of controlling and monitoring a mobile robot in outdoor
environments was addressed. Such a control/monitor panel must be easy to handle and
intuitive to use. Thus, mobile devices, e.g., smartphones or tablets, are the natural choice
here. A ROS application for Android powered devices was developed which enables the
user to intuitively control and monitor mobile robots. Open source code was published on
GitHub1 and the application was made available via the Google Play Store. Additionally,
the research results are submitted to the International Conference on Intelligent Robots
and Systems (IROS) 2021 and to the SoftwareX journal.

5.2 Conclusion on the Guiding Research Questions

In Section 1.2, the research questions were de�ned which led through this thesis. In the
following, the contributions and limitations of the methods developed to answer these
research questions are discussed.

Q1.a: Is it possible to develop planning and navigation strategies for

autonomous systems with only limited sensing capabilities?

In general yes, it is possible to develop planning and navigation strategies for autonomous
systems with only limited sensing capabilities, e.g., in-/outside area detectors, as shown
in Chapter 2. However, the here proposed methods for map estimation and complete
coverage path planning require both the adjustment of method speci�c hyper-parameters
which crucially e�ect the performs of the methods. Especially for the mapping procedure
badly chosen hyper-parameter might result in bad or failed map estimates. Moreover, the
accuracy of the generated map estimates as well as the performance of the proposed path
planning method drops with increasing odometry error. Nevertheless, the proposed meth-
ods enable autonomous robots with only in-/outside area detectors to avoid the commonly

1https://github.com/ROS-Mobile/ROS-Mobile-Android

https://github.com/ROS-Mobile/ROS-Mobile-Android


5.2. CONCLUSION ON THE GUIDING RESEARCH QUESTIONS | 91
used random walk strategy. Thereby, the methods become better especially with increas-
ing map complexity. For the here investigated autonomous lawn mower, improvements of
approximately 50 % for the traveled distances compared to a random walk strategy could
be shown.

Q1.b: Can reinforcement learning be used for hyper-parameter learning to

enable true autonomy for lawn mower?

This question arises while adapting the hyper-parameters for the proposed mapping pro-
cedure. The hyper-parameters are sensitive to the problem and thus have to be adjusted
accordingly. Therefore, cost functions dependent on the hyper-parameters were proposed
which can be optimized in order to �nd su�cient accurate hyper-parameters. In general,
the proposed optimization method led to su�cient accurate hyper-parameters which res-
ulted into accurate map estimates. However, in some cases the hyper-parameters found by
the optimization procedure did not lead to accurate map estimates. This can be attributed
to the fact that the cost functions are highly non-linear and the optimization procedure can
get stuck into local minima. Nevertheless, learning the hyper-parameters is the �rst step
towards true autonomy for lawn mowers, even though the optimization process does not
provide the optimal solution in every case. Also, since the cost functions use the fact that
the boundary of an enclosed environment has a constant circumference, they can poten-
tially be adopted for learning the hyper-parameters of other mapping or SLAM algorithms.
This holds especially for robots operating in indoor environments.

Q2.a: How to e�ciently exploit characteristics of the working environment

for navigation and planning for autonomous lawn mowers?

For autonomous lawn mowers, the working environment consists of grass surrounded by
an enclosing line, e.g., lawn edging stones. Here, a sensor was developed that exploits the
chlorophyll �uorescence properties of the grass and is thus able to replace the conventional
boundary wire sensors. Due to the low-cost design of the proposed chlorophyll sensor, this
leads to a reduction in acquisition and operating costs. Moreover, with the in Chapter 2
mentioned methods, autonomous lawn mowers are able to e�ciently navigate and operate
within their working environment utilizing only the proposed chlorophyll sensor for in-
/outside area detection. Limitations of the sensor are its light saturation, which in the
current design is at approximately 12000 lx, and that the sensor can not distinguish between
grass and other plants.

Q2.b: Can machine learning approaches be used to learn to distinguish

di�erent plant species based on their chlorophyll �uorescence response?

In general yes, machine learning can be used to distinguish between di�erent plant species
only based on their chlorophyll �uorescence emission. However, in order to achieve ac-
curacies over 90 % for a �ve plant classi�cation, deep learning techniques were required. A
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low-cost approach instead, utilizing simulated phototransistor data based on the recorded
full spectra, only led to accuracies of around 70 % but also only required computationally,
less demanding machine learning techniques like random forests. Considering only a binary
classi�cation, e.g., between grass and non-grass, even the low-cost classi�cation approach
was able to reach accuracies of about 90 %. This demonstrates the general applicability
for the approach in the gardening area.

Q3: What are intuitive controlling and monitoring techniques for

autonomous robots in outdoor environments?

First, as today's most intuitive systems to operate are mobile devices, e.g., smartphones or
tablets, autonomous systems should be controlled/monitored with such devices. Second,
ROS is widely used in many robotic applications and provides a large number of con-
trol, planning and monitoring tools. Therefore, a mobile application (ROS-Mobile) was
developed which allows to control and monitor ROS operated autonomous systems with
mobile devices. This application (Release: 22. May 2020) is already widely spread within
the robotics community with currently 2734 acquired and 949 active users (Status: 27.
April 2021) which illustrates the need for such an application.

5.3 Future Work

Promising future work could be the development of a novel smart mobile robot for lawn
care equipped with multiple of the developed chlorophyll �uorescence sensors. Further, the
robot should be tested using the developed mapping and planning algorithms in challenging
complex garden environments. Finally, the plant classi�cation approach can be further
developed and a �rst plant classi�cation sensor prototype could be built and tested on the
lawn mower. With the additional information available through the plant classi�cation,
the lawn mower can then be situated within a smart garden setup, where it communicates
with other garden robots, e.g., weed removing robots.
For more details on these research directions, see the individual subsections to future works
in the three research chapters (i.e., Subsections 2.8.1, 3.8.1 and 4.8.1).
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Appendix

In this chapter, further implementations details are presented to enable the reader to
reproduce the results of this thesis. Implementations in Matlab and C++ can be found in
open access GitHub repositories on the author's GitHub page2.
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A Wall Following Algorithm/Controller

For mapping and relocalization with only in-/outside area detection sensors, a wall follow-
ing method is required since only at the boundary valid sensor data for those tasks can
be generated. Therefore, a control algorithm is proposed which steers the robot along the
boundary in wiggly lines. This steering pattern increases the scanning area and allows to
navigate the robot along the boundary line even if the binary measurements are corrupted
by noise. The approach proposed here is based on [139].

Let s be the sensor measurement with s = 1 being an in-�eld and s = 0 being an
outside-�eld detection, then a running average µd can be calculated using exponential
smoothing

µd ← aµµd + (1− aµ)s, (A.1)

where aµ de�nes the update rate of the mean µd. The initial value for the running average
can for example be set to µd = 1.0 under the assumption that the robot starts within the
�eld. By following the boundary line, the desired running average should be µd = 0.5,
whereas the di�erence between the actual running average and the desired one is given as

d = 2

(
1

2
− µd

)
. (A.2)

2https://github.com/NRottmann

https://github.com/NRottmann
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Figure A.1: Wall Follower: Control method blocks representing the wall following algorithm.

The di�erence is scaled onto the range [−1, 1] for further use in the control algorithm.
Based on the di�erence d between desired and actual average measurement value, the
relative linear velocity v̂ can be updated as

v̂ ← avv̂ + (1− av)(1− |d|). (A.3)

Here, av de�nes an update rate and |d| the absolute value of d. The relative velocity
increases the longer and better the desired mean of µd = 0.5 is reached. Thereby, the
relative velocity is always in the range of v̂ ∈ [0, 1]. Additionally, the relative angular
velocity can be determined using the deviation d and a stabilizing term cos

(
2π c

M

)
to

ensure robustness against noise corrupted measurements

ω̂ =
1

2

(
d+ cos

(
2π

k

K

))
. (A.4)

Here, k is a counter variable and K the counter divider. Thus, K should be chosen
accordingly to the frequency of the operating system. Finally, the relative velocities can be
transformed to the desired velocities by multiplication with the maximum allowed velocities
for the given robotic system, v0 and ω0,

v = v̂v0, ω = ω̂ω0. (A.5)

A diagram of the controller can be found in Figure A.1.
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B Bayesian Optimization

Bayesian Optimization (BO) is used as global optimizer for the cost functions introduced
in Subsection 2.5.3. For optimizing these cost functions, any global optimizer could be
used but BO is e�cient if only few hyper-parameters have to be optimized, as it is the case
for the proposed cost-functions. Hence, in the following BO is introduced based on [140].
For further details it is referred to [141].

The main concept of BO is to build a model for a given system based on the so far
observed data D = {X,y}. The model describes a transformation from a given data point
x ∈ X to a scalar value y ∈ y, e.g., from the parameter vector θ to the return J(θ). Such
model can either be parametrized or non-parametrized and is used for choosing the next
query point by evaluating an acquisition function α(D). Here, the non-parametric Gaus-
sian Process (GP) is used for modeling the unknown system which is a state-of-the-art
model learning or regression approach [142, 143] that was successfully used for learning
inverse dynamics models in robotic applications [144, 145]. For comprehensive discussions
it is referred to [143, 146].

GPs represent a distribution over a partial observed system in the form of[
y
y∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

])
, (B.1)

where D = {X,y} are the so far observed data points and D∗ = {X∗,y∗} the query
points. This representation is fully de�ned by the mean m and the covariance K. The
mean function is here de�ned as m(x) = 0 and for the covariance function a Matérn kernel

k(d) = σ2 21−ν

Γ(ν)

(√
2ν
d

ρ

)ν
Kν

(√
2ν
d

ρ

)
is used with d = ||x − x∗||. Here, Γ is the gamma function, Kν the modi�ed Bessel
function and ρ and ν positive parameters. The Matérn kernel is a generalization of the
squared-exponential kernel where the additional parameter ν controls the smoothness of
the resulting function. The smoothing parameter can be bene�cial for learning local mod-
els. The hyper-parameters can be optimized by maximizing the marginal likelihood [143].

Predictions for a query points D∗ = {x∗, y∗} can then be determined as

E(y∗|y, X,x∗) = µ(x∗) = m∗ +K>∗K
−1(y −m)

var(y∗|y, X,x∗) = σ(x∗) = K∗∗ −K>∗K−1K∗.
(B.2)

The predictions are then used for choosing the next model evaluation point xn based on
the acquisition function α(x;D). Therefore, EI [63] is used which considers the amount of
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Figure B.1: Illustration of the Bayesian Optimization Process. Based on the measurements

D = {x1:n, y1:n} the mean µ and variance σ are estimated for sampled position in a de�ned

area. The acquisition function α(x;D) is calculated as in Equation (B.3) and the position of

the maximum value maxx α(x;D) is chosen as next evaluation point xn+1. For comparison

the true function f is depicted as dashed line.

improvement

α(x;D) = (µ(x)− τ) Φ

(
µ(x)− τ
σ(x)

)
+ σ(x)φ

(
µ(x)− τ
σ(x)

)
,

(B.3)

where τ is the so far best measured value max(y), Φ the standard normal cumulative
distribution function and φ the standard normal probability density function. Samples,
distributed over the area of interest, are evaluated and the best point is chosen for evalu-
ation based on the acquisition function values. In Figure B.1 the BO process is illustrated.

C Optimal traveled Distance

The optimal traveled distance, assuming the centers of each grid cell should be traversed,
can be determined as the number of cells visited multiplied by the length between two grid
cell centers, thus the reciprocal of the resolution of the grid. Given a grid map with an
area to cover A and a resolution r, the total number of cells to cover is

cells = Ar2 (C.1)
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and the distance required to traverse over all cell centers, thus to reach 100 % coverage, is
then

Topt =
1

r
cells = Ar. (C.2)

For this calculation, it is assumed that it is possible to �nd a path along all cell centers
without traversing diagonal or revisiting cells. This assumption might not hold always and
thus the calculated distance re�ects a lower bound for the optimal traveled distance along
all cell centers.

D Sensor Circuit Diagrams

The core of the chlorophyll �uorescence sensor introduced in Section 3.5 is the micro-
processor ATMEGA32U4. In Figure D.1, the electrical circuit for the processor within
the chlorophyll �uorescence sensor is shown. The ATMEGA32U4 has multiple pins for
controlling and monitoring the sensor components. In the following, the most important
sensor component circuits, such as the LED control circuit, are highlighted in more detail.

Figure D.1: Processor circuit.
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LED control circuit The LED used for excitation of the chlorophyll �uorescence is con-
trolled via a current control loop to ensure a constant current �ow through the LED,
Figure D.2. Therefore, two Bipolar Junction Transistors (BJTs) are used in combination
with a resistor, which determines the current �ow through the LED. If the LED control
signal is turned on, current �ows through the �rst BJT (T1) base, IB,1, and allows a
current �ow from the collector

IC,1 = βIB,1, (D.1)

where β is usually in the range of 100. The current through the resistor is then the sum of
the collector and the base current, IC,1 + IB,1 ≈ IC,1. This current increases until a voltage
of 0.7 V is reached over the resistor, since this induces also a base-emitter voltage over the
second BJT of VBE = 0.7 V. This activates the second BJT such that excess current can
�ow over this BJT and does not increase the collector current according to Equation (D.1).
Hence, the current through the LED is controlled at

ILED = IC,1 ≈
0.7 V

R
. (D.2)

Figure D.2: LED circuit.

PT monitoring circuit The chlorophyll �uorescence is measured with a phototransistor
which is connected to a transimpedance ampli�er, an additional ampli�er and a band
pass �lter, Figure D.3. All of these components are included within one element, the
VSOP98260. The phototransistor provides a current based on the absorbed light energy
which is then transformed to a voltage by the transimpedance ampli�er. The voltage is
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then further ampli�ed and the signals is band pass �ltered around 38 KHz. The processed
signal is then forwarded to the microprocessor for further analysis.

Figure D.3: PT circuit.

Power supply circuit In order to stabilize the operating voltage of the phototransistor
circuit, a power supply circuit with large power supply rejection ratio has been inserted to
the sensor design, Figure D.4. This prevents supply voltage dips caused by pulsing of the
LED.

Figure D.4: Power supply circuit.

Output signal circuit In order to receive the sensor signal produced from the proposed
chlorophyll �uorescence sensor, either a simple three pin connection with ground, power
and signals can be used, Figure D.6, or a USB connection, Figure D.5, with which the
sensor can also be programmed.
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Figure D.5: USB port circuit.

E PT & LED Spectra

In order to analyze which di�erent PT and LED combinations can be used for the low-
cost plant classi�cation approach from Section 3.6, 11 di�erent PTs and 7 di�erent LEDs
were tested. In Figure E.2, the relative spectral sensitivities for the PTs are shown and in
Figure E.2 the relative spectral emission curves for the LEDs. To better classify the data,
the chlorophyll a and b emission and absorption spectra are included as well. Additionally,
in Table E.1 all PTs are listed given their label, the producing company, the peak sensitivity
wavelength and the response time (rise and fall).
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Figure D.6: Analog output circuit.
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Figure E.1: Relative sensitivities of the investigated PTs for plant classi�cation.
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Figure E.2: Relative emission spectra of the investigated LEDs for plant classi�cation.
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Table E.1: Phototransisitor selection analyzed for plant classi�cation.

Label Company Peak Sensitivity Wavelength Rise Time Fall Time

PT480FE0000F SHARP 860 nm 3µs 3.5µs

SDP8106 Honeywell 890 nm 75µs 75µs

PT204-6B Everlight 940 nm 15µs 15µs

PT5529B/L2/H2-F Everlight 940 nm 15µs 15µs

RPT-34PB3F ROHM 800 nm 10µs 10µs

SFH 309 FA OSRAM 950 nm 9µs 9µs

SFH 313 FA OSRAM 950 nm 14µs 14µs

WP3DP3BT/BD-P22 Kingbright 940 nm 15µs 15µs

PNA1601M PANASONIC 850 nm 4µs 4µs

OP599 TT Electronics 890 nm - -

OP522 TT Electronics 935 nm - -
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