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SKID RAW: Skill Discovery from Raw Trajectories
Daniel Tanneberg1 and Kai Ploeger1 and Elmar Rueckert2,1 and Jan Peters1,3

Abstract—Integrating robots in complex everyday environ-
ments requires a multitude of problems to be solved. One crucial
feature among those is to equip robots with a mechanism for
teaching them a new task in an easy and natural way. When
teaching tasks that involve sequences of different skills, with
varying order and number of these skills, it is desirable to
only demonstrate full task executions instead of all individual
skills. For this purpose, we propose a novel approach that
simultaneously learns to segment trajectories into reoccurring
patterns and the skills to reconstruct these patterns from un-
labelled demonstrations without further supervision. Moreover,
the approach learns a skill conditioning that can be used to
understand possible sequences of skills, a practical mechanism
to be used in, for example, human-robot-interactions for a more
intelligent and adaptive robot behaviour. The Bayesian and
variational inference based approach is evaluated on synthetic
and real human demonstrations with varying complexities and
dimensionality, showing the successful learning of segmentations
and skill libraries from unlabelled data.

Index Terms—Deep Learning Methods; Representation Learn-
ing; Learning Categories and Concepts

I. INTRODUCTION

WHILE pattern recognition, the ability to find order and
regularities in noisy observations, is a necessary skill

for intelligent behaviour, learning to abstract and transfer that
information is a crucial ability that goes beyond pattern recog-
nition [1]. Such cognition abilities are also helpful to employ
intelligent robots into our everyday life, by lowering the barrier
to program the desired robotic behaviour. While often trained
experts can program robots with complex behaviour, this pro-
cess requires a lot of expert knowledge in different domains,
is cost intensive and often limited to special tasks or domains.
Instead, it is easier to teach the robot the desired behaviour
instead of programming it and is the main motivation behind
the learning from demonstrations paradigm [2]. Teaching the
robot by showing the desired behaviour is not only a more
natural and intuitive way of programming the robot, but it
also drastically reduces the required expert knowledge of the
system and time.
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Fig. 1. Snapshot from the data collection process from the human teaching
experiment. The human was instructed to move 1-3 cubes from one position to
another, while the hand position was tracked. These unlabelled hand position
trajectories consisting of a variable number of moved cubes are used to learn
to segment these into skills and the skills simultaneously.

Typically demonstrations consist of single tasks, and one
skill, or policy, per such task is learned from these demon-
strations. For more complex tasks, that typically consist of
multiple subtasks, the task is often either broken down into
demonstrated subtasks or the demonstrations are segmented
and labelled afterwards. Both methods again require specific
knowledge, are time consuming, and scale poorly with the
number of (sub)tasks and their arrangements. Subtasks can ap-
pear within a demonstration as well as across demonstrations
and it can be challenging to decide where to cut or which
segments can be considered the same subtask.

A more natural approach is to just demonstrate the full
tasks, and let the system automatically learn to segment
the full demonstration into subtasks or skills [3], [4]. Such
decompositions of movements into different phases were also
detected in the primary motor cortex of monkeys perform-
ing reaching tasks [5]. When equipping robots with such
an automatic segmentation technique, teaching tasks which
consist of a sequence of skills becomes easier for non-experts.
Furthermore, by learning the segmentation, the robot can
understand the demonstrated tasks by, for example, learning
important (sub)goals or which skills are likely to follow each
other. This approach can therefore also be used in human-
robot interaction [6] by, for example, learning the sequence
of movements of a human, and using this knowledge to
predict the humans future behaviour, which allows for a more
intelligent and adaptive robot behaviour.

A. Contribution

Here, we propose a novel approach for learning simul-
taneously to segment trajectories into reoccurring patterns
and the skills to reproduce them from unlabelled trajectories
without supervision. Our approach is based on the variational
autoencoder (VAE) [7] framework and the iterative concept
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Fig. 2. (a) Graphical model representation of the relationship between the N-dimensional latent trajectory description z = {zd ,zs}, the sub-trajectory τ̄ and the
full trajectory τ . (b) Sketch of the SKID implementation with the learned neural networks in orange. The recurrent neural network (RNN) and the output layer
learn the distribution of zd given the, potentially p transformed, trajectory τ . Then zd and the raw trajectory are used in a spatial transformer (ST) to extract
the sub-trajectory τ̄ . This sub-trajectory is used to learn the skill library and the approximated sub-trajectory τ̂ is added to the reconstructed trajectory τ̃ with
a spatial transformer. This process is repeated N times, iteratively segmenting the full trajectory into sub-trajectories utilizing the simultaneously learned skill
library. The two inlays show examples from the 1D synthetic task, where the left inlay shows the original trajectory τ in blue and the reconstructed trajectory
τ̃ in red. The coloured background indicates the learned skill zs used to approximate this segment of size zd . The right inlay shows the learned skill library.

of AIR [8] to explain sub-parts of the given data per it-
eration. A similar iterative approach is investigated in the
CompILE framework [9], but without an interpretable latent
space, skill conditioning and length-independent skills. In
contrast to related approaches [10], [11] that learn skills with
VAEs from single-skill trajectories, our approach operates on
trajectories with a varying and unknown number of skills per
demonstration and learns to segment the trajectory and the
skill library simultaneously.

Furthermore, the proposed method requires less initial
knowledge like heuristic cutting points [3], expert domain
knowledge [12], segmented and labelled demonstrations [13],
pretraining [14], and segmentation and skill library are trained
simultaneously instead of subsequently [4], [15], [16] to use
the skill knowledge for segmentation. Trajectory segmentation
shares similarities with switching systems and hierarchical
skill discovery, investigated, for example, in (inverse) rein-
forcement learning settings [17], [18], hybrid systems [19] and
compositional program induction [20].

We show that our approach can be used to learn skills from
unlabelled demonstrations of full task executions involving a
varying and unknown number of skills per demonstration, and
that the learned model can also be used to understand the
relation between skills and, hence, predict possible future skills
for adaptive behaviour.

II. DISCOVERING SKILLS FROM RAW TRAJECTORIES

The proposed skill discovery (SKID) approach is inspired
by the AIR [8] model for images. AIR is a generative
model that learns to reconstruct visual scenes by learning the
properties of individual objects to render the scene. We take
this approach as inspiration to construct a similar generative
model for trajectories, that learns to segment raw trajectories
into reoccurring patterns (subtasks) and the individual skills
to reconstruct these simultaneously and without supervision.

We assume that a trajectory τ is composed of N sub-
trajectories τ̄ that we call skills. Like AIR [8] did for images,
we take a Bayesian perspective of trajectory understanding
and treat it as inference in a generative model. In general, for
a given trajectory τ , the model parametrized by θ is given
by pτ

θ
(τ|z)pz

θ
(z), where the prior pz

θ
(z) over the latents z

captures the trajectory assumptions, and the likelihood pτ
θ
(τ|z)

describes how the latent trajectory description is composed
into the full trajectory. We are interested in recovering the
trajectory description z, given by computing the posterior

p(z|τ) = pτ
θ (τ|z)pz

θ
(z)/p(τ) . (1)

As we assume a trajectory τ consists of N sub-trajectories or
skills, the trajectory description is structured into a sequence
of zi. Each zi is a structure that describes the properties of
one skill, here, duration and skill type, i.e., z = {zd ,zs}. The
duration of a skill zd is used for the segmentation and the
skill type zs is a discrete identifier for each skill. Figure 2(a)
shows this relation between τ and zi in a graphical model. The
generative model is given as

pθ (τ) =
N

∑
n=1

∫
pz

θ
(zn|zn−1)pτ

θ (τ|z)dz , (2)

where N is given by the sequence of zn
d summed up until

a given threshold is reached, i.e., ∑
N
n=1 zn

d ≥ tε . The number
of skills (N) in a trajectory is dependent on the number of
available skills in the library (S) and learned without additional
feedback from the reconstruction loss. The condition of zn on
zn−1 allows to learn a conditional sequencing of the skills,
i.e., learning which skills are likely to follow after each other.
This conditioning is necessary to sample valid trajectories
from the generative model, i.e., trajectories without big jumps
between the individual skills. Additionally, by learning this
conditioning, the model can be used to understand the pre-
sented task trajectories, e.g., like predicting which skills are
likely to follow each other for adaptive robot behaviour, or be
used in planning algorithms when solving new tasks with the
learned skills.

A. SKID Instantiation

We use an amortized variational approximation of the
true posterior p(z|τ) which learns a parametrized distribu-
tion qφ (z|τ) by minimizing the Kullback–Leibler divergence
between KL(qφ (z|τ)||p(z|τ)). The inference model qφ (z|τ),
parametrized by φ is realized as a recurrent neural network
to take previous zd’s into account, i.e., allowing the model to



TANNEBERG et al.: SKID RAW: SKILL DISCOVERY FROM RAW TRAJECTORIES 3

BA
1D

 s
yn

th
et

ic
3D

 s
yn

th
et

ic
2D

 H
RI

2D
 te

ac
hi

ng

learned segmentation & reconstruction learned skill library

Fig. 3. Showing the learned segmentations and skill libraries by SKID for the four datasets (see Section III). A shows segmented and reconstructed sample
trajectories. Line colours indicate trajectory dimensions, where solid lines show the original data and dashed lines show the reconstructions. The coloured
area highlights the segmentation and the colour indicates which skill is used for that segment. B shows the learned skill library with one panel per trajectory
dimension and one colour for each skill.

remember which part of the trajectory have been explained
already. Before the trajectory τ is fed into the recurrent
network, it is preprocessed by a function p. In our experiments,
we tested with p as the identity function and p outputting the
mean velocity of τ over all dimensions for each timestep. The
mean velocity performed slightly better and was used in all
evaluations. The skill duration zd is modelled with a Gaussian
distribution with a given prior, i.e., zd ∼N (µd ,σ

2
d ), fed into a

sigmoid activation to get the duration as the fraction of the
trajectory length.

To extract the part of the trajectory τ indicated by zd in
a differentiable way, a spatial transformer (ST) [21] is used.
Each skill duration zd is used starting with the remaining
part of the trajectory, i.e., the part of the trajectory that
has not been explained by all previous zd . This extracted
sub-trajectory τ̄ is then used as the input for learning the
skill library, the generative model parametrized by θ . Here,
we use discrete β -variational autoencoder (VAE) [7], [22],
[23] with skip-connections [24] using the continuous gumbel-
softmax/concrete approximation [25], [26] for the discrete skill
type zs, with a latent dimension of size S. This realization of
the skill library is very general, which allows to capture any
kind of trajectories and is trainable end-to-end within the SKID
framework. Similar VAE based approaches but for single skill
trajectories were successfully used in [10], [11]. The condition
of zn on zn−1 is realized as an additional neural layer, with zn−1

as input and the output is added to the logits of the encoder
network before sampling zn. The output of the skill library
is the sub-trajectory τ̂ approximated with one activated skill,
which is then added to the overall approximated trajectory τ̃ by
a spatial transformer. This iterative process is repeated N times

until the sum of zn
d reaches a given threshold tε , reconstructing

a fraction zd of the full trajectory τ per step. The number N
is determined by the model through the unsupervised learning
process, aiming at reconstructing the data under the constraints
of the model. The full framework is shown in Figure 2(b).

B. SKID Learning

Learning is done by jointly optimizing the generative model
and the inference network, i.e., the parameters θ and φ , to
maximize the evidence lower bound (ELBO) given as

L(τ;θ ,φ) = Eqφ (z|τ)
[
log

pθ (τ,z)
qφ (z|τ)

]
= Eqφ (z|τ)

[
logpθ (τ|z)

]
−KL(qφ (z||τ)|p(z)) , (3)

with the parametrized likelihood pθ (τ|z), the parameterized
inference model qφ (z|τ) and the latent prior p(z). The first
term aims at reconstructing the data while the KL-divergence
forces the model to stay close to a given prior. Due to the
reparametrization trick for the Gaussian distributed zd and
the gumbel-softmax/concrete distributed zs, the φ parametrized
inference network and the θ parametrized generative model,
can be learned jointly via stochastic gradient descent.

To enforce disentangled representations, the β -VAE [22]
was introduced, which weights the KL term by the hyper-
parameter β . This balancing was further refined by adding
capacity terms to the KL [23], [27], which can be seen
as a slack variable allowing some distance in the KL, and
which is increased during training. Adding these to Equation 3
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Fig. 4. Showing the learned skill conditioning by SKID for the four datasets (see Section III). A shows two examples of learned skills and the sequencing of
the subsequent skills in one dimension, where the strength of the second plotted skill indicates how likely that skill follows the first one. B shows the learned
conditioning for all skills as a matrix heatmap, encoded as how likely the skill in column j follows the skill in row i.

and separating the different latent variables [27], we get our
learning objective as

L(τ;θ ,φ) = Eqφ (z|τ)
[
logpθ (τ|z)

]
(4)

− γd |KL(qφ (zd ||τ)|p(zd))−Cd |
− γs|KL(qφ (zs||τ)|p(zs))−Cs| ,

with γd , γs constant scaling factors, and Cd , Cs the information
capacities, i.e, the allowed slack.

To tighten the lower bound estimate and get a more com-
plex implicit distribution, we use the importance weighted
autoencoders (IWAE) [28] objective. This formulation uses
K samples of the latent variables and weights the according
gradients by their relative importance.

III. EXPERIMENTS

In all experiments, SKID is presented unlabelled trajectories
and learns to segment those into skills and the required
skills simultaneously. The different datasets vary in their
complexity in multiple ways: artificially created or real world
recorded trajectories, the dimensionality of the trajectories,
the number of subsequent skills N, or the total number of
different skills. Here skills refer to reaching specific locations.
With these different datasets, we test the capacity of SKID
to uncover the underlying latent representation from various
complex data. Additionally we test SKID’s performance in a
continuous learning setting, where the number of skills in the

demonstrations is increased during training, and the transfer
of skills learned from human demonstrations to the robot.

a) 1D Synthetic: This dataset consists of 1-dimensional
trajectories with up to N = 3 skills per trajectory, and with
a 6 different skills. Data was generated by sampling 10.000
trajectories for each sequence length. The individual locations
per trajectory are sampled uniformly and Gaussian noise
is added to each skill location. The resulting trajectory is
generated by creating a minimum jerk trajectory connecting all
the locations. To create a diverse dataset, we adapt a trajectory
augmentation method [10] to generate the trajectory τ as:

τ =N (τo,aB†) , (5)

with the original trajectory τo, the constant a and B† the
Moore-Penrose pseudo-inverse of M, where M is set to

M =



0 0 0 · · · 0

0 2 −1 0
...

0 −1 2
. . . 0

... 0
. . . . . . −1

0 · · · 0 −1 2


(6)

to smoothly propagate the disturbances along the trajectory.
This data augmentation method allows for small datasets and
hence less physical demonstrations are required.
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(a) 1D synthetic. (b) 3D synthetic. (c) 2D HRI. (d) 2D teaching.

Fig. 5. Shown is the median with the 50& and 90% quantiles of the log-likelihood of the train and test model over 10 runs. The test model uses the discrete
skill type zs and is evaluated on a held-out test set, while the train model uses the continuous approximation. The two real world datasets (bottom row) have
a bigger gap between train and test due to the higher noise and variability in the data. Moreover, the two datasets (right column) with the highest number of
required skills (12), tend to get stuck in local optima due to posterior collapse, i.e., no utilizing all discrete dimensions and hence, miss some skills (see also
Figure 6(b)). In addition to these two challenges, the 2D teaching dataset also requires the most complex segmentation of the datasets.

b) 3D Synthetic: This dataset consists of 3-dimensional
trajectories with up to N = 3 skills per trajectory, with a 12
different skills. Thus, the dataset is more complex in contrast
to the 1-dimensional not only in the dimensionality of the
trajectories, but also in the number of skills that need to be
learned. Generating the dataset was done similar to the 1-
dimensional dataset.

c) 2D Human-Robot-Interaction: This dataset is taken
from a human-robot-interaction (HRI) scenario presented
in [29], where we use the tracked hand movements of the
human to learn the movements used by the human. As SKID
also learns the conditioning or sequencing of the skills, this
can be used to predict the human behaviour for a more
intelligent robot adaptation in such collaborative scenarios.
The dataset was created by taking the data form one person
(10 task executions) and using 1000 random cuts at the four
known goal locations, such that each trajectory consists of
2 to 5 of those locations, and use the described trajectory
augmentation method to create 30.000 trajectories in total. The
augmented dataset consists of two-dimensional x,y trajectories
with up to N = 4 subsequent skills, and ideally 5 different
skills to learn. Due to the heuristic cuts and human variation,
the actual dataset includes samples with N > 4, and has the
biggest variability within skills and the biggest noise across
the datasets.

d) 2D Teaching: For this dataset, we recorded the wrist
position of a human during an object manipulation task, shown
in Figure 1. The human was instructed to move between 1
and 3 boxes per demonstration between the four locations.
SKID learns the required skills for such manipulation tasks,
than can be used for planning by sequencing the discovered
skills, and to directly teach the skills to the robot as task
space trajectories. The learned conditioning can be used,
for example, to reduce the search complexity of planning
algorithms. In total we recorded 223 demonstrations and used
the trajectory augmentation method described in the synthetic
datasets to create a dataset of 5000 trajectories for each number
of moved boxes. Thus, the resulting dataset consists of two-
dimensional x,y trajectories with up to N = 5 subsequent skills
and 12 different skills to learn.

A. Experimental Setup

Learning is done by optimizing Equation 5 with the Adam
optimizer [30] with learning rate α , weight decay λ [31],
with batch prior regularization [32] for the discrete skill type,
and the loss is variance normalized. The capacities Cd , Cs are
linearly increased during training from (start,end,iterations).
Parameters were optimized with grid search for the 1D syn-
thetic data set, and modified for the other datasets with smaller
grid searches. The mini-batch size is set to 64 and for the
IWAE importance sampling k = 20 samples are used. The
recurrent neural network (RNN) that learns zd is a vanilla
recurrent network, the threshold is set to tε = 0.85 and
maximum iterations is set to Nmax. The skill library VAE
encoder and decoder consist of two hidden layers with [30,15]
neurons with elu activations, latent layer of size S (skill
library size), and skip connections within the decoder. For the
gumbel-softmax encoded zs the temperature ω is decreased
from (start,end,iterations) with a cosine schedule, using the
continuous approximation for training but hard one-hot vectors
for evaluation. Trajectories are normalized to 200 steps and
the sub trajectories extracted by the spatial transformer for the
skill library consist of 50 steps. The remaining parameters for
all datasets are given in Table I.

B. Results

The goal of SKID is to simultaneously learn to segment
trajectories into a varying number of sub-trajectories (skills)
and these skills from unlabelled trajectories. Additionally, as

TABLE I
HYPERPARAMETERS USED IN THE EXPERIMENTS.

1D syn. 3D syn. 2D HRI 2D teaching
RNN size 64 64 64 32
linear size 16 16 16 16

Nmax 3 3 4 5
α 1e−3 1e−3 1e−3 5e−4

λ 5e−2 5e−1 5e−3 5e−1

Cd (0,1,30k) (0,2,30k) (0,2,30k) (0,2,30k)
Cs (0,1,30k) (0,1,30k) (0,1,30k) (0,1,30k)
γd 5 3 10 3
γs 5 3 10 3
ω (1,0.2,30k) (1,0.2,30k) (1,0.2,30k) (2,0.5,30k)
µd 0 0 0.5 −0.5
σd 1 1 1 1

VAE σ 0.02 0.02 0.02 0.02
S 6 12 6 12

pθ σ 0.1 0.1 0.15 0.1
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(a) Maximum log-likelihood. (b) Unidentified skills.

Fig. 6. (a) Shown is the median and interquartile range of the maximum log-
likelihood of the train and test model over 10 runs for each dataset. The test
model uses discrete one-hot encodings for zs and is evaluated on a held-out
test set. (b) Shown are the number of missed skills, i.e., skills that were not
recognized and learned, for each dataset over 10 runs each. Black horizontal
line indicates the mean, the box the interquartile range with whiskers, crosses
show outliers, and the shaded area represents the data density. Identifying
skills is harder in the real world datasets due to their higher noise and
variability. In addition, the 2D teaching dataset also has the most complex
segmentation and like the 3D synthetic dataset, the most required skills (12).

part of the skill library, a skill conditioning is learned, that
encodes how likely a certain skill follows after another skill.
In Figures 3 & 4 qualitative results on the different datasets are
summarized, showing the evaluation of the test model on held-
out data and using hard one-hot samples of zs. Evaluations
over 10 runs per dataset are shown in Figure 5 & 6, where the
log-likelihood and number of unidentified skills are shown.

1) Segmentation & Skill Library: The segmentation and
skill library learning results for all four datasets are shown
in Figure 3, where each row corresponds to one dataset. The
plot shows one exemplary run for each dataset. In the left
part of the figure (A), different random trajectories are shown
along with their reconstruction and segmentation. Line colours
indicate the different dimensions of the trajectories, where
solid lines show the input trajectory τ and dashed lines show
the reconstructed trajectory τ̃ . Shaded areas indicate the skill
used for that segment, where the according learned skills are
shown in the right part of the figure (B), with one panel per
trajectory dimensions and one coloured line per skill.

For all datasets SKID is able to learn to segment given
trajectories into skills and the required skill library simulta-
neously without supervision. Learning the underlying skills
and their segmentation from full plan executions without
additional knowledge and feedback, enables users to teach
a robot sequential tasks in a natural way by just executing
the full task, without having to specify and demonstrate the
individual skills. This learned knowledge can then be used
by the robot to, for example, solve new task instantiations by
planning with the learned skills.

2) Skill Conditioning: In addition to learning the segmen-
tation and skill library, SKID also learns a skill conditioning.
This learned conditioning and sequencing is shown for all
datasets in Figure 4, with each dataset in one row. In the left
part (A), two examples are shown in the two panels. In each
panel, first one learned skill is plotted followed by all learned
skills, but with the line intensity scaled by how likely this skill
follows the first one. This sequencing shows that SKID is able
to learn which skills are likely to follow each other, and that,
for example, jumps between subsequent skills are unlikely. The
right part of the figure (B) shows this learned skill conditioning
for the whole skill library with a matrix heatmap, where the

values indicate how likely the skill in column j follows the
skill in row i.

SKID is able to learn this skill conditioning, i.e., task
structures, for all datasets. This information can additionally
be used, for example, to support the planning for new tasks
with the learned skills by reducing the planning space. Another
possibility for human-robot-interaction scenarios, the robot can
learn to understand the movements of the human, and use the
learned structure to predict the future behaviour of the human
in order to adapt its own behaviour.

3) Continuous Learning: In many settings not all required
skills are known when starting to teach a new task. Hence, the
number of skills shown in the demonstrations may increase
over time and the train data distribution changes. We tested
SKID’s ability to learn continuously in such a setting, when
the number of skills in the demonstrations is increased during
training. The results are shown in Figure 7, using the 1D
synthetic dataset and increasing the number of skills in the
demonstrations every 3000 iterations from 2 to 4 to 6. The
model successfully learns all skills in the corresponding phase
and is able to adapt the skill library when new skills are
presented. Note, the same parameters and settings as in the
previous experiments were used, except the temperature decay
is reset when the data distribution changes. By changing the
hyperparameters for such settings and incorporating additional
mechanisms from lifelong-learning research, the performance
and flexibility of SKID in continuous learning scenarios may
even be increased.

4) Robot Skill Execution: To test the transfer of the learned
skill library, we used the skills learned from the human
2D teaching demonstrations to rearrange objects with a real
KUKA robot with a SAKE gripper. Snapshots of the robot
execution of a sequence of learned skills are shown in Figure 8.
The learned skills – as shown in the skill library in Figure 3B
last row – represent the xy-transition trajectories between
the four stacking locations. Each skill duration is set to 5
seconds for execution, height adjustment and gripper control is
automated. The skills learned autonomously from unlabelled
raw human trajectories can be successfully used on the real
robot.

C. Limitations
While SKID is able to learn the segmentation, conditioning

and skill library for different datasets with varying complexi-
ties, the stochastic variational inference setting is challenging.
Not all runs achieve perfect results (see Figures 5 & 6), where
the major problem that occurs is that the discrete VAE used
for the skill library sometimes misses one or a few skills
(see Figure 6(b)), even with good or perfect segmentation.
In other cases the unidentified skills hinder the learning of
perfect segmentation (see Figure 6(a)). Due to the continuous
approximation during training, the training model can mix
multiple skills to achieve good performance, the test model
with hard one-hot vectors for the skills type zs can only use
one skill, and thus, this results in a sub-perfect performance.
While using lower temperatures for the gumbel-softmax during
training can help with this issue, the lower temperatures create
higher variance in the gradients.
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Fig. 7. Showing results on the 1D synthetic dataset with different latent dimension sizes S, i.e., skill library size, (A) and when increasing the shown skills
in the demonstrations during training (B). Each column shows one setting for S or the number of currently shown skills, top row shows the learned skill
library, and rows below show sampled demonstrations with their reconstruction (dashed) and segmentation (colored background indicate the corresponding
used skill from the library above). C-D shows the median with the 50& and 90% quantiles of the log-likelihood of the train and test model over 15 runs.
The test model uses the discrete skill type zs and is evaluated on a held-out test set, while the train model uses the continuous approximation. Dashed lines
in D indicate when more skills were added to the demonstrations.

As the number of skills has to be specified for the skill
library, another possibility is to use more skills than required
(higher S), such that unused latent dimensions matter less. This
strategy was successful in some experiments (especially in the
2D HRI setting and see Figure 7 for an evaluation of different
settings of S), but with more potential skills, the segmentation
may become worse, as the model tends to learn too complex
skills, i.e., combining multiple skills into one, as the higher
number of available skills reduces the necessity of finding the
simplest individual skills, or learning uninformative skills used
as connection skills, e.g., holding a position (see Figure 7), and
hence may lead to over-segmentation. The size of the skill
library influences the quality of the segmentation.

While the choice of using a VAE for the skill library
is very general and allows straightforward learning of any
trajectories, it has the disadvantage of a fixed latent space,
i.e., number of (maximum) skills, and less flexible skills.
The SKID framework is not bound to this choice, and more
complex realizations like goal-conditioned VAE’s [10] or a set
of probabilistic movement primitives [33] can be incorporated
if more flexible skills are required.

IV. CONCLUSION

We proposed a novel Bayesian approach to simultaneously
learn trajectory segmentation and skills from unlabelled raw

trajectories. The SKID framework builds on a hierarchical
VAE structure and learns simultaneously to segment trajec-
tories into reoccurring patterns, the skills to reproduce them,
and the temporal relation between these skills. These features
were successfully shown on multiple datasets with varying
complexities, including two datasets with tracked human mo-
tions, and transferred to a robotic setup.

Such automatic skill discovery can be used as a natural
interface for teaching a robot complex tasks consisting of
sequences of multiple skills. In addition with the learned skill
conditioning, the framework can also be used to analyse and
predict the behaviour of a human, or another robot, for a more
intelligent adaptive behaviour of the agent.

The next challenge is to increase the robustness of the
learning, especially in settings with a high number of skills,
continuous learning settings, and noisy real world data. More-
over, the framework is not limited to robotic or human
movement trajectories, but can be applied to any kind of
trajectories, that consist of reoccurring patterns and opens
interesting future research. Another promising direction could
tackle the limitation of the offline setting, i.e., full trajectories
are used for segmentation and learning, by integrating ideas
from online change point detection approaches [34], [35] into
the SKID framework and feeding the trajectories step by step
to allow the processing of longer sequences.
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time

Fig. 8. Snapshots of the robot execution of a sequence of skills learned from human demonstrations (2D teaching) using SKID. Coloured arrows indicate
the used skill from the learned library shown in Figure 3B. The learned skills represent the xy-transition trajectories between the four stacking positions.
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