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Recurrent Spiking Networks Solve 
Planning Tasks
Elmar Rueckert1, David Kappel2, Daniel Tanneberg1, Dejan Pecevski2 & Jan Peters1,3

A recurrent spiking neural network is proposed that implements planning as probabilistic inference 
for finite and infinite horizon tasks. The architecture splits this problem into two parts: The stochastic 
transient firing of the network embodies the dynamics of the planning task. With appropriate injected 
input this dynamics is shaped to generate high-reward state trajectories. A general class of reward-
modulated plasticity rules for these afferent synapses is presented. The updates optimize the likelihood 
of getting a reward through a variant of an Expectation Maximization algorithm and learning is 
guaranteed to convergence to a local maximum. We find that the network dynamics are qualitatively 
similar to transient firing patterns during planning and foraging in the hippocampus of awake behaving 
rats. The model extends classical attractor models and provides a testable prediction on identifying 
modulating contextual information. In a real robot arm reaching and obstacle avoidance task the ability 
to represent multiple task solutions is investigated. The neural planning method with its local update 
rules provides the basis for future neuromorphic hardware implementations with promising potentials 
like large data processing abilities and early initiation of strategies to avoid dangerous situations in 
robot co-worker scenarios.

Probabilistic inference has emerged as a promising framework for solving Markov decision problems (probabilis-
tic planning)1,2. In parallel to this development, the probabilistic inference perspective has also been successfully 
used in cognitive science and neuroscience for modeling how biological organisms solve planning problems3–6. 
However, it was not clear how probabilistic planning can be implemented in neural substrates with biologically 
realistic learning rules. Here, we show that probabilistic planning can be implemented and learned by recurrent 
networks of spiking neurons such that the generated spike sequences realize mental plans.

Recently, it was shown that recurrent spiking networks can implement Bayesian filtering and are able to learn 
a generative model of temporal sequences from presented examples drawn from a target distribution (i.e., the 
distribution that has generated the samples)7–9. Training was realized through synaptic plasticity rules without 
supervision. After learning, when running freely, the neural networks effectively perform forward sampling in 
the dynamic Bayesian network representing the target distribution. For solving a planning problem, however, it is 
necessary to sample from the posterior distribution conditioned on receiving a reward. In other words, forward 
sampling needs to integrate future rewards propagating backward in time in the dynamic Bayesian network.

We consider a recurrent network of stochastic spiking neurons, which without any input, samples sequences 
through forward sampling from the corresponding dynamic Bayesian network. We show that by injecting appro-
priate input in the network from a layer of task-related context neurons, it can generate samples from the posterior 
distribution conditioned on getting a reward. Optimal reward-modulated Hebbian learning rules are derived that 
implement planning as probabilistic inference in the spiking network through iterative local updates. The recur-
rent dynamics of the neural network can be reused for solving different planning problems through activating 
different sets of context neurons which encode different goals and constraints (e.g., reaching for different goals 
or avoiding obstacles).

The presented theory is compatible with recent results on transient firing observed in behaving animals in 
phases of rest10–13. In particular, the model reproduces characteristic spatiotemporal spiking activity that preplays 
movement paths to remembered home locations10 and provides an alternative to attractor networks14, which are 
typically used to explain movement planning in maze navigation tasks15–18. In attractor networks only the end 
point can be adapted. For non-straight line paths, for example to escape a labyrinth, complex attractor sequence 
models were proposed19. The presented neural model allows to learn such non-straight line paths from single 
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scalar rewards that encode in addition to desired goals and obstacles knowledge about rewarding routes. The 
ability to modulate the shape of a movement path is a testable prediction for future neuroscience studies.

Another contribution of the presented theory is that it provides the basis for neuromorphic hardware 
implementations of control and planning strategies in mobile robots. Similar architectures building also on 
winner-take-all circuits and spike-timing dependent plasticity (STDP) rules were already proposed as compu-
tational models for such brain-like chips20–22. For planning, neuromorphic hardware implementations promise 
to process large input streams from visual and tactile sensors through parallel computing23, go round strategies 
may be initiate in real-time to avoid dangerous situations in robot co-worker scenarios and event based neural 
network implementations are energy efficient alternatives to classical von Neumann architectures22. In first exper-
iments, we demonstrate that spiking neural networks can be trained to simultaneously represent multiple obstacle 
avoiding strategies in a real robot arm reaching task.

Methods
We first formulate finite horizon probabilistic planning tasks with terminal rewards only. Later we will generalize 
to infinite horizons where rewards can be received at any point in time. Let ∈ Rxt

d denote the d dimensional 
continuous state of a behaving agent at time t. The goal of the agent is to find the sequence of states = ( … )x x xT1  
that maximizes the total received reward (i.e., the return) r̂ at the end of the trial.

Such planning tasks can be modeled as inference problems1,2 where the joint distribution over state sequences 
and returns is given by ( , ) = ( ) ( ) ∏ ( )= −Tx x x x xp r p p r t

T
t t0 1 1 . The distribution p(x0) encodes an initial prior 

over states, T corresponds to the state transition model, and the distribution ( )xp r  determines the probability of 
receiving the return r given the trajectory of states x. As in related work1,2,24 we assume that ( )xp r  can be factor-
ized as ψ( ) = / ∏ ( )=x xp r Z r1 r t

T
t t1 . In this formulation, r denotes a binary random variable, where without loss 

of generality, the probability of observing such a binary return event is a modulo rescaling of the original reward 
maximization problem1.

An agent can use such an internal model of the environment to plan a sequence of movements by solving the 
inference problem

∏( = ) ( ) ( ) ( ),
( )=

−
ZZ

Tx x x x xp r p r p1 1
1t

T

t t0
1

1

where = ∑ ( , )ZZ xp rx  is a term that guarantees that equation (1) is normalized. In our formulation of the plan-
ning problem, the actions in the probabilistic model are integrated out. It is assumed that the actions can be sub-
sequently inferred from the posterior over state sequences.

The unconstrained process for planning models a freely moving agent by

∏( ) = ( ) ( ).
( )=

−Tx x x xp p
2t

T

t t0
1

1

Sampling from this probability distribution can be implemented by a recurrent network of spiking neurons (e.g., 
using ideas from7–9). However, it is not straightforward for a recurrent network to solve the inference problem 
in equation (1), which requires to integrate future returns backward in time. Only local temporal information is 
available when sampling from the network. Such temporal models are different to model-based Markov decision 
process methods encoding global value or Q functions25.

We propose here a solution to this problem that relies on replacing ( )xp  with a model distribution ν θ( )q ; , 
where sampling from ν θ( )q ;  is implemented with an extended neural network architecture and ν  is the neural 
approximation of x. The parameters θ are learned such that the Kullback-Leibler divergence between the true 
posterior for planning in equation (1) and a model distribution ν θ( )q ;  converges to zero.

Planning with recurrent neural networks. We propose a recurrent spiking neural network to implement 
planning. Our network consists of two populations of neurons, which we denote by Y and V (see Fig. 1A). V is 
a layer of K state neurons that control the state (e.g., the agent's spatial location) of a freely moving agent. These 
neurons receive lateral connections from neighboring state neurons and from all N neurons in a population of 
context neurons Y with weights wki and θkj. The context neurons produce spatiotemporal spike patterns that repre-
sent high-level goals and context information (e.g., the target state that should be reached after T time steps). We 
show that probabilistic planning problems defined in equation (1) can be implemented in the network by training 
the synapses θkj.

We denote the activity of the state neurons at time t by ν ν ν= ( , …, ), ,t t t K1 , where νt,k =  1 if neuron k spiked 
at time t and νt,k =  0 else. Discrete random variables xt can be encoded as a multinomial distribution, where one 
neuron maps to one state instance. For continuous variables a simple encoding scheme is used, i.e., 

ν ν= / ∑ ( )= ,x p1t t k
K

t k k1 , where  ν ν= ∑ = ,t k
K

t k1  and pk is the preferred position of state neuron k.
Analogously, we define the spiking activity of the context neurons at time t by a binary vector 
= ( , …, ), ,y y yt t t N1 . Using these definitions of vt and yt, we define the membrane potential ut,k and firing proba-

bility ρt,k of state neuron k at time t by

∑ ∑ν θ ρ ν= + = ( = ) = ( ).
( )

,
=
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=
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The last term f(ut,k) denotes the activation function, where we only require that it is differentiable. The probability 
that the network generates a spike sequences ν ν ν= ( , …, )T1  of length T starting from a given initial state v0 is thus

( )∏ ∏ν θ ν ρ ρ( ) = ( ) − .
( )

ν ν

= =
, ,

−
,

,q p; 1
4t

T

k

K

t k t k0
1 1

1
t k

t k

We assume that the transition model (encoded in the synaptic weights wki) is known or was acquired in a 
pre-learning phase, e.g., using contrastive divergence learning26. Using this assumption, we define the goal of 
probabilistic planning as minimizing the Kullback-Leibler divergence between the true posterior for planning in 
equation (1) and the model distribution

∑

ν ν θ

ν
ν
ν θ

ν θ

( ( = ) ( ))
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1 ;
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1

;
log ;

5

KL

p r p r1 1

where ν( = )H p r 1  denotes the entropy of the true data distribution. Thus, solving the inference problem in equation 
(1) is equal to minimizing the Kullback-Leibler divergence in equation (5).

Typically, ν( = )p r 1  is unknown and we cannot draw samples from it. However, we can draw samples from 
the model distribution ν θ( )q ;  and update the parameters such that the probability of receiving a reward event is 
maximized

ν θθ η
θ

∆ =
∂
∂

( ) ,
( )ν ν θ( ) ( )

r qlog ;
6

kj
kj p r q ;

where η denotes a small learning rate. Note that this general update rule is the result of a standard maximum 
likelihood formulation where we exploited that ν ν ν( = ) ∝ ( ) ( )p r p r p1  using equation (1) and equation (2). 
The update is an instance of the Expectation-Maximization (EM) algorithm27, where evaluating the expectation 
with respect to ν ν θ( ) ( )p r q ;  corresponds to the E-step and the parameter update realizes the M-step. The 
update is also related to policy gradient methods28–30 with the difference that we interpret the parameters θ as 
having the role of linear controls31.

To derive the update rule for the proposed neural network architecture, the network dynamics in equation (4) 
is used in equation (6). For a detailed derivation we refer to the supplement. The spiking network update rule reads

∑θ η ν ρ
θ

ρ∆ = ( − )
∂
∂

( ) ,
( )ν ν θ=

, , ,

( ) ( )

r logit
7

kj
t

T

t k t k
kj

t k
p r q1 ;

where ρ ρ ρ( ) = ( /( − )), , ,logit log 1t k t k t k  are the log-odds of neuron k firing at time t. Equation (7) is the general 
learning rule for arbitrary differentiable activation functions ρ( ) =, ,f ut k t k. It adapts the weights θkj to maximize 

Figure 1. Illustration of the model for finite horizon planning. (A) The neural network architecture 
considered here for solving the probabilistic planning problem. A recurrent layer of state neurons (green) that 
control the behavior of the agent receive feedforward input from context neurons (blue), the activity of which 
determine the desired goal. (B,C) A simple planning problem that requires to pass through a passage at two 
specific points in time. Superposition of network activity averaged over 100 trial runs (B) and decoded network 
states (C) are shown. Blue dots in (B) show 1 example spike train. (D) The accumulated number of rewards 
for the spiking network. (E) The Kullback-Leibler divergence between the learned distribution and the true 
posterior. (C,D) show averages over 100 trial runs.
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the return. For many relevant activation functions (e.g., exponential or sigmoid functions), equation (7) turns 
into a simple reward-modulated Hebbian-type update rule.

We will compare online and offline updates of equation (7). In its stochastic online variant, the E-step is 
approximated by sampling a finite set of L samples to estimate the expectation32, or in the simplest case after a 
single sample (L =  1) as done in our experiments. We refer to this as the online approximation of equation (7). 
With offline updates, implemented as batch learning, the KL divergence ν ν θ( ( = ) ( ))D p r q1 ;KL  between the 
true posterior for planning in equation (1) and the model distribution converges to zero for L →  ∞ (assuming an 
exact encoding of the state and the transition model). This KL divergence establishes the relation between the 
inference problem for planning in equation (1) and the introduced problem of finding the network parameters 
that maximize the expected return.

A finite horizon planning task. To evaluate the spiking neural network model we consider a simple one 
dimensional planning problem, where the agent moves on a linear track and the activity of the state neurons 
population V directly determines its position. K =  9 state neurons encode nine discrete locations. A final reward 
is only received if the agent passes through two obstacles, one at time T/2 and one at time T (see Fig. 1C). 
Furthermore the agent is constrained not to jump to distant states within one time step. We model this constraint 
by the state transition model, i.e., ν ν( = = ) = /−T k i 1 3t t 1 , if  − ≤ ≤ +k i k1 1 and (close to) zero other-
wise (see the supplement for further details).

Due to the limitation on the state transitions, this problem requires planning ahead in order to avoid the 
obstacles successfully, i.e., to start moving to the passage before the obstacle actually appears. We show that the 
optimal planning policy can be learned using the reward modulated update rule in equation (7) in a network 
where the state neurons follow (soft) winner-take-all (WTA) dynamics. The probability ρt,k of neuron k to spike at 
time t is given by ρ = ( )/∑ ( ), , = ,u uexp expt k t k l

K
t l1 . Thus, in each time step exactly one state neuron is active and 

encodes the current position of the agent.
The precise timing required to solve this task can be learned if the context neurons provide sufficient temporal 

structure. We study here the case of only one context neuron being active for one time-step, i.e., =,y 1t j  for j =  t 
and =,y 0t j  else. The weights θkj were adapted according to the online approximation of equation (7). Prior to 
learning, the agent performs a random walk according to the state transition model encoded in the weights wkj, 
performing successful trials only occasionally. As learning proceeds, the activity of the context neurons shapes the 
behavior of the agent leading to nearly optimal performance. Figure 1D shows the accumulated reward through-
out learning. After 5000 training iterations, the network generates rewarded trajectories in 97.80 ±  4.64% of the 
trials. We also evaluated a more detailed spiking version of the network model which produced similar results 
(success rate: 87.40 ±  15.08%, see Fig. 1B,C in the supplement).

In addition to the online learning rule, we also evaluated the offline update rule. The network draws samples 
from a fixed distribution ν θ( = )q ; 00  simulating random walks without any input (the initial state distribution 
p(v0) was uniform). Offline updates are applied to the parameters θ and Kullback-Leibler divergence converges 
towards zero with an increasing number of updates as shown in Fig. 1E.

Extension to the infinite horizon problem. Previously, we demonstrated how our network can model 
finite horizon planning tasks with terminal rewards (i.e., returns). Here we generalize to infinite horizon planning 
problems where rewards can be received at any point in time. The goal of the planning problem is to optimize the 
parameters θ in the neural network so that it generates infinite trajectories that maximize the expected total dis-
counted reward γ∑ =

∞ r̂t
t

t0 , where γ is the discount factor. We can reformulate this planning problem as proba-
bilistic inference in an infinite mixture of Markov chains of finite lengths T1. The corresponding mixture 
distribution of trajectories is given by

∑ν θ ν θ ν( , ) = ( ) ( ) ( )
( )=

∞
q r p T q p r; ;

8T
T T

1

where γ γ( ) = ( − )p T 1 T is the prior distribution over trajectory lengths, and ν θ( )q ;T  is the distribution over 
spike trains of length T according to the network dynamics in equation (4). The probability of getting a reward r 
at the end of the trajectory is given by ν( = | )p r 1 T . Intuitively, in infinite horizon planning tasks the agent seeks 
a solution that balances getting to the goal as fast as possible (imposed by the prior) against the cost of large state 
jumps (imposed by the state transition model).

For the infinite horizon model we consider network dynamics where each state neuron has a sigmoid activa-
tion function, i.e., ρ σ= ( ), ,ut k t k  with σ ( ) = /( + )−u e1 1 u . Using this activation function we find that for learn-
ing the infinite planning task the parameters θkj should undergo a change in each time step t where the reward is 
present, according to

∑ ∑ ∑θ η ν ρ η γ ν ρ∆ = ( ) ( − ) = ( − ).
( )τ τ

τ τ τ
τ

τ
τ τ τ,

= = −

∞

, , ,
=

−
, , ,ˆ ˆr p T y r y

9t kj t

t

T t
j k k t

t
t

j k k
1 1

This synaptic weight update can be realized using an eligibility trace33 et,kj associated to each synapse with 
dynamics

γ ν ρ θ θ η= + ( − ) = + . ( ), − , , , , , − , ,e e y r eand 10t kj t kj t j t kj t kj t kj t kj t t kj1 1
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The eligibility trace is updated in each time step, whereas the weight updates are only applied for >r̂ 0t . More 
details on the learning rule can be found in the supplement.

Note that the precise timing of attracting or repelling states cannot be modeled through explicit context neu-
rons per time step as in the finite horizon model (since → ∞t ). Therefore, we consider stationary activity pat-
terns of context neurons. This assumption implies that after convergence of the parameter updates an attractor 
cannot be visited twice.

An infinite horizon planning task. To test the infinite horizon model we consider a planning task, where 
the goal of the agent is to navigate from a given initial state to a target state in a grid maze with obstacles (dimen-
sions [15 ×  20]). The network has 300 state neurons, one for each grid cell. The agent can perform only one-step 
moves, to the left, to the right, up or down, with equally probable transitions in each direction, and receives a 
reward =r̂ 1t  only at the target state. The sampling process is either terminated if the target state is reached, or if 
the time step exceeds the maximum number of allowed steps (T =  300). The discount factor was γ =  0.98.

With the offline learning rule the learned parameters θ setup a gradient towards the target state, which covers 
multiple solution trajectories that lead to high total received rewards (θ0 is chosen such that the agent starts at 
the initial state). This gradient is indicated by the radii of the dots in the first row in Fig. 2A. Figure 2B illustrates 
12 example trajectories with weights obtained after 10000 trials of learning. Out of the shown 12 trajectories 9 
reached the target state that is denoted by the black horizontal lines.

With the online learning rule, the learned parameters θ specialize on one locally optimal path through the 
maze, which is illustrated in the second row of Fig. 2A. In the evaluated example, there are two locally optimal 
trajectories that are also the global optima. They are shown in the inset in Fig. 2C. For both, the offline and the 
online updates the average received reward converges to the maximum value (see Fig. 2C), where we compare to 
Monte-Carlo policy evaluation (MC)25.

Results
A computational model for hippocampal sweeps. We show that the neural network reproduces the 
transient firing recorded in place cells in rats during planning phases. We compare our model predictions to 
recent results in10, where the authors analyzed the neural activity of 250 simultaneously recorded hippocam-
pal neurons during phases of mental planning (using a 40-tetrode microdrive). In the experiments the animals 

Figure 2. Illustration of the model for infinite horizon planning. (A) The agent has to move from the red 
cross the black cross. The radii of the dots are proportional to the log of the θ parameters. The results for the 
offline and the online learning rules are shown in the two rows, respectively. (B) Illustration of 12 sampled 
trajectories after 10000 trials of offline learning. (C) The mean of the received rewards over 20 experiments. We 
compare to Monte-Carlo policy evaluation (MC).
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received a reward, in an alternating manner, either at a known home location or at some (unknown) random 
location (one out of 36 locations arranged in a grid in a 2 ×  2 m maze). Here, we model only events that were 
observed while the animal was resting at some known current location and plans a route to the memorized home 
location (mental planning). An example event of a rat is illustrated in Fig. 3C, which illustrates the transient in the 
reconstructed position posterior probabilities. The resulting movement plan, i.e., the decoded and summed place 
cells’ activity across time is shown in the lower panel in Fig. 3C.

In our network, the current location and the target location of the rat are modeled by N =  20 context neurons. 
The activity of which is denoted by y(t) and shown in Fig. 3A. The first ten context neurons encode the current 
location through a transient pattern. The remaining ten context neurons represent the desired target location. 
These neurons fire with a stationary Poisson process throughout the experiment. In this experiment we did not 
learn the weights of the context neurons. The weights were set proportional to the Euclidean distance of the pre-
ferred position of place cells to the initial state or the home location.

The network activity of 100 place cells (the preferred positions of which are aligned with a 10-by-10 grid) is 
solely driven by the context neurons and the recurrent weights. The recurrent synapses implement a Gaussian 
state transition model which prevents that the network directly draws samples close to the target state. In contrast 
to the ideal model used in the previous experiments multiple place cells can be active simultaneously, i.e., the 
recurrent weights encode a soft WTA circuit as in34.

Encoding continuous state variables. A simple encoding scheme is used to reconstruct the two dimensional state 
of the simulated rat x(t) from the place cells' activity, i.e., νν( ) = / ( ) ∑ ( ( ) )=x pt t t1 l

L
l l1 , where ν ν( ) = ∑ ( )=t tl

L
l1  

and pl is the preferred position of place cell l.
The generated transient activity of the place cells realize a path between the initial and the home location as 

shown in the 3rd row in Fig. 3A. The reconstructed movement plan is denoted by the line in Fig. 3B, where the 
integrated activity over the whole movement duration of each place cell is encoded by the color of the correspond-
ing grid position. The simulated sequential firing shows a coherence to the transient firing in place cells in rats 
that is illustrated in Fig. 3C (see also the online material in a work of B. Pfeiffer and D. Foster10). A notable differ-
ence from the biological data is the resolution of the simulated activity in Fig. 3B. To visualize the corresponding 
spike events only 100 place cells were modeled. For a higher density of 900 uniformly distributed place cells we 
refer to additional results provided in the supplement.

Task adaptation through context neurons in a real robot. Typical robot planning tasks have to con-
sider a large number of constraints that dynamically change and planning algorithms have to adapt to new solu-
tions online. Here, we show that by activating context neurons multiple constraints can be modeled and used for 
task adaptation. As test platform we used a KUKA lightweight arm controlled in a two dimensional Cartesian 
space. The network generated movement plans in 2D and the complexity of the control problem itself is absorbed 
by a built-in Cartesian tracking controller. The two coordinates modeled, x and y span the transverse plane. The 

Figure 3. Planning and modeling transient firing in place cells with simulation results in (A,B,D). (C) Biological 
data showing the position posterior probabilities in selected frames (the event duration was 205 ms). Reprinted 
by permission from Macmillan Publishers Ltd: Nature 497, 74–79, ©2013. (A) The first ten context neurons are 
only activated for the first 200 ms to initialize the network at the desired initial state. The ten context neurons 
in the 2nd row in (A) implement a gradient towards the desired target state. The transient neural activity of 100 
place cells is shown in the 3rd row in (A). The reconstructed movement trajectory is denoted by the line in (B). 
(D) The result of four planning processes for an increasing planning horizon.
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trajectory was executed using inverse kinematics to obtain a reference joint trajectory and inverse dynamics 
control to execute it.

We used K =  225 state neurons that receive excitatory input from context neurons modeling the initial state 
and the target state (as in the previous experiment), see Fig. 4A. Strong inhibitory input is used to model obstacles 
(the gray areas in Fig. 4B). The transition model was learned from demonstrated state transitions (through kines-
thetic teaching) in contrastive divergence learning26 (see the supplement for details).

After learning, the network generates goal-directed movement plans that can be used for obstacle avoidance. 
Sampling a movement plan of a duration of 1.3 seconds took on average 635 ±  8 milliseconds on a standard com-
puter (the symbol ±  denotes the standard deviation computed from 1000 trajectories). The minimum distance to 
the target was 2.71 ±  2.24 cm in an operation area of 70 ×  70 cm.

An interesting property of the spiking model is that multiple solutions can be encoded in the same model. For 
the considered obstacle avoidance task, two solutions are shown in Fig. 4B and snapshots of the second solution 
are depicted in Fig. 4C.

Discussion
The brain efficiently processes and predicts sequential activity patterns in the context of planning tasks10–13. 
Understanding these processes and how information is possibly encoded in stochastic neurons are major goals 
of theoretical neuroscience. In this paper, we demonstrated how recurrent spiking neural networks can solve 
planning problems and provide a solid theory based on the framework of probabilistic inference. The model 
reproduces observed neural dynamics, predicts that contextual information is one of the key modulating factors 
and is a promising low-energy control strategy for mobile robot applications.

Theoretical contributions. Spiking neural networks are a reasonable neuroscience model as verified by 
data35–38. Their capabilities in solving planning tasks however have been underexplored to date. It was shown that 
spiking networks can encode and draw samples from arbitrary complex distributions39,40, models of temporal 
sequences can be learned7,8 and Bayesian filtering was studied38,41–43.

Our model builds on these probabilistic sampling results and a solution to planning problems is suggested that 
approximates a stochastic process for planning through forward sampling from a parameterized model distribu-
tion. The parameters of the model distribution denote the synaptic weights of a population of afferent neurons 
for which local Hebbian update rules were derived from the principle of probabilistic inference. The deriva-
tions include arbitrary differentiable activation functions and postsynaptic potential shapes for the neuron model 
(details are provided in the supplement).

Links to expectation maximization27,32 and policy gradient methods28–30 were established, where the resulting 
offline learning rules are similar to Monte Carlo policy evaluation25 and the network parameters subject to these 
updates converge to the globally optimal solution for WTA network dynamics. The online learning rules resemble 
the online Monte Carlo policy iteration algorithm and converge to local lower bounds of the optimum.

The correctness of the neural planning method was validated in two toy tasks, a finite horizon planning task 
with a known optimal solution and an infinite horizon task, where the neural network achieved the same perfor-
mance level as Monte-Carlo policy evaluation25.

Implications for neuroscience. Previous neural models that implement path planning have focused on 
attractor networks or potential fields15,44–47 and their activity was related to hippocampal firing17,18. A deficit of 
these models is however that the path which was taken to reach a desired state cannot be modeled with attrac-
tors. To overcome this limitation a sequence of successive metastable states in attractor networks was proposed19 
but it is left unclear how these networks can be trained from rewards. We followed a different approach where 
attractors emerge through reinforcement of rewarding trajectories. As a result, different input neurons with its 
synaptic weights can model different routes to multiple attractors. Thus, the proposed model extends the mod-
ulation abilities of attractor networks and can be validated, e.g., in a study on contrasting planning of safe versus 
straight-line paths.

Figure 4. Planning with multiple constraints on a real robot. (A) Generated spike train (top: context 
neurons, bottom: state neurons) after contrastive divergence learning of the transition model. (B) Two sampled 
movement plans solving the obstacle avoidance task. (C) Snapshots of the executed movement on the real robot.
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We demonstrated in simulation results that the proposed recurrent neural network can reproduce the dynam-
ically changing firing rates observed during hippocampal sweeps10. The input modulated activity in our network 
hypothesizes that a cognitive map representation (the recurrently connected state neurons) receives contextual 
input from other brain regions. Potential sites for these contextual inputs are projections from the entorhinal and 
the prefrontal cortex48,49. It is worth mentioning that the network is not limited to model hippocampal sweeps. It 
may be used to model frequently observed dynamically changing firing rates from other brain regions50–53.

Embedded in the framework of probabilistic inference, the proposed network can be naturally extended 
in multiple ways, e.g., the place cells encoding the state transition model might be learned17, actions might be 
encoded additionally34, forward and backward replays11,12 can be simulated, or multiple cognitive maps can be 
installed18. Furthermore, Poisson neurons were chosen for simplicity and the model generalizes to noisy integrate 
and fire neurons54.

Implications for robotics. State-of-the-art planning algorithms in robotics generate movement plans 
within seconds and scale to many degrees of freedom55–57. Spiking neural networks could not compete with 
these methods due to the encoding of continuous variables, e.g., in our robot experiment, we used population 
codes58,59 to encode a two-dimensional continuous state variable and more than a few hundred neurons could 
not be simulated without risking to run out of memory in a standard computer. A potential solution that is cur-
rently under investigation are factorized population codes which scale but can not capture correlations (which are 
needed to avoid obstacles). Another promising alternative are neuromorphic chips which were already used to 
learn 62-dimensional joint angle sequences of human jump motions in recurrent networks60. In addition, related 
spiking network models were proposed which also build on winner-take-all circuits and local plasticity rules20–22. 
Therefore, it is reasonable to assume that the presented theory provides the basis for future neural controller 
implementations in neuromorphic hardware for robot control.

In contrast to previous work on spiking neurons in a reinforcement learning framework34, we followed here a 
model-based approach where the recurrent dynamics of the network can be reused to learn multiple related tasks 
with different sets of weights from the context neurons (e.g., representing different goal positions or obstacles). 
The state transition model does not need to be re-learned when switching between environments.

Furthermore, our model has the advantage that multi-modal solutions to planning tasks can be learned. This 
feature was exploited in an obstacle avoidance task in a real robot, where the network randomly sampled one 
out of two paths. This ability to encode non-linear mappings is in particular beneficial for learning forward and 
inverse kinematic models in robotics.
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