
Derivations of the update rules for the paper: Spiking networks can1

solve planning tasks!2

Elmar Rueckert1 , David Kappel2 , Dejan Pecevski2 and Jan Peters1,33

1Intelligent Autonomous
Systems Lab, Technische
Universität Darmstadt

2Institute for Theoretical
Computer Science,

Technische Universität Graz

3Robot Learning Group,
Max-Planck Institute for

Intelligent Systems
64289 Darmstadt, Germany 8020 Graz, Austria 72076 Tuebingen, Germany
rueckert@ias.tu-darmstadt.de kappel@igi.tugraz.at

pecevski@igi.tugraz.at
mail@jan-peters.net

4

Abstract5

In the paper Spiking networks can solve planning tasks! the posterior distribution p (ν1:T | r = 1) is ap-6

proximated by the model distribution q (ν1:T ; θ). In this document update rules are derived that minimize the7

Kullback-Leibler (KL) divergence between these two distributions DKL(p(ν1:T |r = 1)||q (ν1:T ; θ)).8

1 Formulating planning as inference as optimization problem9

In the considered planning as inference process a sequence of discrete states ν1:T is computed through conditioning10

on receiving a reward in each time step. The magnitude of the rewards is encoded as binary event, which is denoted11

by r = 1 in p (ν1:T | r = 1). Note that this shift to binary events from reward magnitude or utility is a crucial step in12

formulating decision making as inference problem (Solway and Botvinick, 2012). To keep the notation uncluttered13

we use the symbol ν as shorthand for the sequence of T states ν1:T .14

The goal of the neural network learning is to minimize the KL divergence15

DKL(p(ν|r = 1)||q (ν ; θ)) =
∑

ν
p(ν|r = 1) log

p(ν|r = 1)

q (ν ; θ)

=
∑

ν
p(ν|r = 1)log p(ν|r = 1)−

∑
ν
p(ν|r = 1) log q (ν ; θ)

= −Hp(ν|r=1) − 〈 log q (ν ; θ)〉p(ν|r=1) .

The entropy of the true data distribution (for planning) is denoted by Hp(ν|r=1) and the second term denotes the16

expectation of the log-likelihood of the model distribution w.r.t the true posterior.17

To derive update rules for the parameters θ through maximum likelihood the entropy can be ignored as it is indepen-18

dent of θ. The optimal parameters minimizing the KL divergence are given by θ∗ = argmax
θ

〈 log q (ν ; θ)〉p(ν|r=1).19

In planning, the distribution p(ν|r = 1) is unknown and we cannot draw samples from it. However, we can draw20

samples from ξ = p (r | ν) q (ν ; θ) and update the parameters such that the probability of receiving a reward is21

maximized. The parameter update is applied iteratively, where η denotes a small learning rate22

∆θ = η

〈
r
∂

∂θ
log q (ν ; θ)

〉
ξ

= η

〈
r

T∑
t=1

∂

∂θ
log φt(νt ; θ)

〉
ξ

, (1)

where we chose functions φt that factorize i.e., φt(ν ; θ) =
∏T
t=1 φt(νt;θ), and we exploited that only the function23

φt depends on the parameters θ in q (ν ; θ) = p (ν0)
∏T
t=1 T (νt | νt−1) φt(νt;θ). This distribution as well as the24

parameter update can be implemented in recurrent spiking neural networks.25

1

2 Solving a planning problem with recurrent neural networks26

We denote the activity of the two populations at time t by νt and yt, and by assuming linear dendritic dynamics
we can define the membrane potential of state neuron k in discrete time

ut,k =

K∑
i=1

wki νt−1,i +

N∑
j=1

θkj yt−1,j . (2)

The activity of the state neurons are constrained to winner-take-all (WTA) dynamics, which assures that exactly

one neuron is active in each time step, i.e.
∑K
k=1 νt,k = 1 ∀t. Therefore the probability ρt,k of neuron k to spike at

time t is given by

ρt,k = p (νt,k = 1 | νt−1,yt; θ) =
exp (ut,k)∑K
l=1 exp (ut,l)

. (3)

These network dynamics realize a distribution over network state trajectories ν = ν1:T given by27

q (ν ; θ) = p(ν0)
T∏
t=1

K∏
k=1

ρt,k
νt,k = p(ν0)

T∏
t=1

K∏
k=1

(
exp (ut,k)∑K
l=1 exp (ut,l)

)νt,k
(4)

= p(ν0)

T∏
t=1

T (νt | νt−1)φt (νt ; θ) ,

with T (νt | νt−1) =

K∏
k=1

exp

(
K∑
i=1

wki νt−1,i

)νt,k
,

and φt (νt ; θ) =

K∏
k=1

exp
(∑N

j=1 θkj yt−1,j

)
∑K
l=1 exp (ut,l)

νt,k

.

Thus the first term of (2) determines the transition operator T implemented through the lateral weights wki, and28

the second term realizes the function φt parametrized by the feedforward weights θkj .29

3 Derivation of a reward-modulated Hebbian learning rule30

In (4) we have established the link between the parametrized distribution q (ν ; θ) and the neural implementation.31

This result is now used to derive a Hebbian learning rule that implements the iterative updates in (1). We solve (1)32

2

for partial derivatives in θkj , where33

∆θkj = η

〈
r

T∑
t=1

∂

∂θk,j
log φt(νt ; θ)

〉
ξ

= η

〈
r

T∑
t=1

∂

∂θk,j
log

K∏
k=1

exp
(∑N

j=1 θkj yt−1,j

)
∑K
l=1 exp (ut,l)

νt,k〉
ξ

= η

〈
r

T∑
t=1

∂

∂θk,j

K∑
k=1

log

exp

 N∑
j=1

θkj yt−1,j

νt,k− K∑
k=1

log

(
K∑
l=1

exp(ut,l)

)νt,k〉
ξ

= η

〈
r

T∑
t=1

∂

∂θk,j

 K∑
k=1

N∑
j=1

θkj yt−1,j νt,k − log

K∑
l=1

exp (ut,l)

〉
ξ

(5)

= η

〈
r

T∑
t=1

[
yt−1,j νt,k −

exp(ut,k)∑K
l=1 exp (ut,l)

∂

∂θk,j
ut,k

]〉
ξ

(6)

= η

〈
r

T∑
t=1

yt−1,j (νt,k − ρt,k)

〉
p(r | ν) q(ν ; θ)

. (7)

In Equation (5) we used
∑K
k=1 νt,k = 1 ∀t. In (6) the definition of the k’s neuron firing probability ρt,k in (3)34

was plugged in. In addition we exploited the fact that the partial derivative of the membrane potential in (2) is35

yt−1,j .36

The resulting iterative update in (7) is a reward-modulated Hebbian learning rule that gives a positive update only37

if a reward (r = 1) is delivered at the end of a trial.38

4 Assumptions39

We made two assumptions. First, in (2) we assumed linear dendritic dynamics without synaptic delays. Second,40

the state neurons νt are constrained to winner-take-all (WTA) dynamics, which assures that exactly one neuron is41

active in each time step, i.e.
∑K
k=1 νt,k = 1 ∀t.42

References43

A. Solway and M. M. Botvinick. Goal-directed decision making as probabilistic inference: A computa-44

tional framework and potential neural correlates. Psychological Review, 119(1):120–154, 2012. ISSN 1939-45

1471(Electronic);0033-295X(Print). doi: 10.1037/a0026435.46

3

