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Abstract: Learning complex robot motions necessarily demands to have models
that are able to encode and retrieve full-pose trajectories when tasks are defined
in operational spaces. Probabilistic movement primitives (ProMPs) stand out as
a principled approach that models trajectory distributions learned from demon-
strations. ProMPs allow for trajectory modulation and blending to achieve bet-
ter generalization to novel situations. However, when ProMPs are employed in
operational space, their original formulation does not directly apply to full-pose
movements including rotational trajectories described by quaternions. This paper
proposes a Riemannian formulation of ProMPs that enables encoding and retriev-
ing of quaternion trajectories. Our method builds on Riemannian manifold theory,
and exploits multilinear geodesic regression for estimating the ProMPs parame-
ters. This novel approach makes ProMPs a suitable model for learning complex
full-pose robot motion patterns. Riemannian ProMPs are tested on toy examples to
illustrate their workflow, and on real learning-from-demonstration experiments.
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1 Introduction

For robots to perform autonomously in unstructured environments, they need to learn to interact
with their surroundings. To do so, robots may rely on a library of skills to execute simple motions
or perform complicated tasks as a composition of several skills [1]. A well-established way to
learn motion skills is via human examples, a.k.a. learning from demonstrations (LfD) [2]. This
entails a human expert showing once or several times a specific motion to be imitated by a robot. In
this context, several models to encode demonstrations and synthesize motions have been proposed:
Dynamical-systems approaches [3], probabilistic methods [4, 5], and lately, neural networks [6, 7].

Probabilistic movement primitives (ProMPs) [4], Stable Estimators of Dynamical Systems
(SEDS) [8], Task-Parameterized Gaussian Mixture Models (TP-GMMs) [5], Kernelized MPs
(KMPs) [9] and Conditional Neural MPs (CNMPs) [6] are some of the recent probabilistic models
to represent motion primitives (MPs). While some of them were originally proposed to learn joint
space motions (e.g., ProMPs), others have mainly focused on MPs in task space (e.g., TP-GMM),
assuming that certain tasks, such as manipulation, may be more easily represented in Cartesian
coordinates. The latter approach comes with an additional challenge, namely, encoding and synthe-
sizing end-effector orientation trajectories. This problem is often overlooked, but the need of robots
performing complicated tasks makes it imperative to extend MPs models to handle orientation data.

Orientation representation in robotics comes in different ways such as Euler angles, rotation matrices
and quaternions. Euler angles are a minimal and intuitive representation, which however is not
unique. They are also known to be undesirable in feedback control due to singularities [10, 11].
Rotation matrices are often impractical due to their number of parameters. In contrast, quaternions
are a nearly-minimal representation and provide strong stability guarantees in close-loop orientation
control [10]. Despite their antipodality (i.e., each rotation is represented by two antipodal points on
the sphere S3), quaternions have gained interest in robot learning, control, and optimization due to
their favorable properties [10, 12, 13, 14]. Pastor et al. [12] and Ude et al. [15] pioneered works
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to learn quaternion MPs, where the classic DMP [3] is formulated to encode quaternion trajectories
for robot motion generation. Its stability guarantees were later improved in [16], while Saveriano
et al. [17] used this new formulation into a single DMP framework to learn full-pose end-effector
trajectories. However, DMPs do not encode the demonstrations variability, which is often exploited
to retrieve collision-free trajectories or to design robot controllers [4, 6].

Silvério et al. [13] proposed the first extension of TP-GMM for learning quaternion trajectories,
which relies on unit-norm approximations. This was resolved in [18], where a Riemannian man-
ifold formulation for both motion learning and reproduction was introduced. Despite TP-GMM
offers good extrapolation capabilities due to its task-parameterized formulation, none of the forego-
ing works provides via-point modulation or trajectories blending. These issues were addressed by
KMP [9] for position data, whose model builds on a previously-learned probabilistic MP, such as TP-
GMM. KMP was then extended to handle orientation data [19], via a projection onto an Euclidean
space using a fixed quaternion reference, i.e. a single Euclidean tangent space. Thus, model learn-
ing, via-point adaptation, and skill reproduction take place in Euclidean space, ignoring the intrinsic
quaternions geometry. Note that such approximations lead to data and model distortions [18].

Although ProMPs have been used to learn Cartesian movements, their formulation does not handle
quaternion trajectories. A possible solution would entail unit-norm approximations as in [13], but
this approach fully ignores the geometry of the quaternions space and may lead to inaccurate mod-
els. An alternative and more sound solution relies on a Riemannian manifold formulation of ProMP,
in the same spirit as [18]. However, two main difficulties arise: (i) learning of the model parameters
does not accept a closed-form solution, and (ii) trajectory retrieval is constrained to lie on the sphere
S3. We here provide solutions to these and related problems, which lead to the first ProMP frame-
work that makes possible encoding and reproducing full-pose end-effector trajectories. In contrast
to TP-GMM methods, our approach provides via-point modulation and blending capabilities, which
are naturally inherited from the original ProMP. Unlike KMP, ProMP is a compact and standalone
model, meaning that learning and reproduction do not rely on previously-learned MPs. Moreover,
our approach is not prone to inaccuracies arising from geometry-unaware operations.

Specifically, we introduce a Riemannian manifold approach to learn orientation motion primitives
using ProMP. Our extension builds on the classic ProMP [4] (summarized in § 2), and considers
the space of quaternions as a Riemannian manifold. We propose to estimate the ProMP parameters
using multivariate geodesic regression (see § 3), and we show how trajectory retrieval, modulation
of the trajectory distributions, and MPs blending are all possible via a Riemannian probabilistic
formulation. In § 4, we illustrate our approach on the unit-sphere manifold S2, and we learn realistic
motion skills on a 7-DoF robotic manipulator featuring complex full-pose trajectories on R3 × S3.

2 Background

2.1 ProMPs

Probabilistic Movement Primitives (ProMPs) [4] is a probabilistic framework for learning and syn-
thesizing robot motion skills. ProMPs represent a trajectory distribution by a set of basis functions.
Its probabilistic formulation enables movement modulation, parallel movement activation, and ex-
ploitation of variance information in robot control. Formally, a single movement trajectory is de-
noted by τ = {yt}Tt=1, where yt is a d-dimensional vector representing either a joint configuration
or a Cartesian position at time step t (additional time derivatives of y may also be considered). Each
point of the trajectory τ is represented as a linear basis function model

yt = Ψtw + εy ⇒ P(yt|w) = N (yt|Ψtw,Σy), (1)

wherew is a dNφ-dimensional weight vector, Ψt is a fixed d×dNφ-dimensional block diagonal ma-
trix containing Nφ time-dependent Gaussian basis functions φt for each DoF, and εy ∼ N (0, Σy)
is the zero mean i.i.d. Gaussian noise with uncertainty Σy (see [4]). ProMPs employ a phase vari-
able z ∈ [0, 1] that decouples the demonstrations τ = {yt}zTt=z0 from the time instances, which in
turn allows for temporal modulation. A table with the relevant notation is provided in Appendix 1.

ProMPs assume that each demonstration is characterized by a different weight vector w, leading to
a distribution P(w;θ) = N (w|µw,Σw). Consequently, the distribution of yt, P(yt;θ) is

P(yt;θ) =

∫
N (yt|Ψtw,Σy)N (w|µw,Σw)dw = N (yt|Ψtµw,ΨtΣwΨT

t + Σy). (2)
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Figure 1: Left: Points on the surface of the sphere S2,
such as x and y belong to the manifold. The short-
est path between x and y is the geodesic ( ), which
differs from the Euclidean path ( ). The vector u
lies on the tangent space of x such that u = Logx(y).
Right: Γx→y(u) and Γx→y(v) are the parallel trans-
ported vectors u and v from TxM to TyM. The inner
product between vectors is conserved by this operation.

Learning from demonstrations: The learning process of ProMPs mainly consists of estimating
the weight distribution P(w;θ). To do so, a weight vectorwn, representing the n-th demonstration
as in (1), is estimated by maximum likelihood, leading to the solution of the form

wn = (ΨTΨ + λI)−1ΨTYn, (3)

where Yn =
[
yT
n,1 . . .y

T
n,T

]T
concatenates all the trajectory points, and Ψ consists of all the time

instances for the basis-functions matrix Ψt. Given a set ofN demonstrations, the weight distribution
parameters θ = {µw,Σw} are estimated by maximum likelihood (see Algorithm 1 in Appendix 1).

Trajectory modulation: To adapt to new situations, ProMPs allow for trajectory mod-
ulation to via-points or target positions by conditioning the motion to reach a desired
point y∗t with associated covariance Σ∗y . This results into the conditional probability
P(w|y∗t ) ∝ N (y∗t |Ψtw,Σ

∗
y)N (w|µw,Σw), whose parameters can be computed as follows

µ∗w = Σ∗w

(
ΨT
t Σ∗

−1

y y∗t + Σ−1w µw

)
, Σ∗w =

(
Σ−1w + ΨT

t Σ∗
−1

y Ψt

)−1
. (4)

Blending: By computing a product of trajectory distributions, ProMPs blend different
movement primitives into a single motion. The blended trajectory follows a distribution
P(y+

t ) =
∏S
s=1 Ps(yt)αt,s , for a set of S ProMPs, where Ps(yt) = N (yt|µt,s,Σt,s), with

associated blending weight αt,s ∈ [0, 1]. The parameters of P(y+
t ) = N (y+

t |µ+
t ,Σ

+
t ) are esti-

mated as follows

Σ+
t =

(
S∑
s=1

αt,sΣ
−1
t,s

)−1
, and µ+

t = Σ+
t

(
S∑
s=1

αt,sΣ
−1
t,sµt,s

)
. (5)

Task parametrization: ProMPs also exploit task parameters to adapt the robot motion to, for
example, target objects for reaching tasks. Formally, ProMPs consider an external state ŝ and
learn an affine mapping from ŝ to the mean weight vector µw, leading to the joint distribution
P(w, ŝ) = N (w|Oŝ+ o,Σw)N (ŝ|µŝ,Σŝ), where {O,o} are learned using linear regression.

2.2 Riemannian manifolds

Since unit quaternions must satisfy a unit-norm constraint, they do not lie on a vector space, thus
the use of traditional Euclidean methods for operating these variables is inadequate. We exploit
Riemannian geometry to formulate ProMPs on quaternion space as presented in § 3. Formally, a
Riemannian manifoldM is a m-dimensional topological space with a globally defined differential
structure, where each point locally resembles an Euclidean space Rm. For each point x∈M, there
exists a tangent space TxM that is a vector space consisting of the tangent vectors of all the possible
smooth curves passing through x. A Riemannian manifold is equipped with a smoothly-varying
positive definite inner product called a Riemannian metric, which permits to define curve lengths in
M. These curves, called geodesics, are the generalization of straight lines on the Euclidean space to
Riemannian manifolds, as they are minimum-length curves between two points inM (see Fig. 1).

We exploit the Euclidean tangent spaces to operate with Riemannian data. To do so, we need map-
pings back and forth between TxM andM, which are the exponential and logarithmic maps. The
exponential map Expx : TxM → M maps a point u in the tangent space of x to a point y on
the manifold, so that it lies on the geodesic starting at x in the direction u, and such that the
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geodesic distance dM between x and y equals the distance between x and u. The inverse oper-
ation is the logarithmic map Logx :M→ TxM. Another useful operation is the parallel transport
Γx→y : TxM → TyM, which allows us to operate with manifold elements lying on different
tangent spaces. The parallel transport moves elements between tangent spaces such that the inner
product between two elements in the tangent space remains constant (see [20, 21] for further de-
tails). Finally, let us introduce a Riemannian Gaussian distribution of a random variable x ∈ M as

NM(x|µ,Σ) =
1√

(2π)d|Σ|
e−

1
2 Logµ(x)TΣ−1Logµ(x), (6)

with mean µ ∈ M, and covariance Σ ∈ TµM. This Riemannian Gaussian corresponds to an
approximated maximum-entropy distribution for Riemannian manifolds, as introduced by Pennec
et al. [22]. Table 2 in Appendix 1 provides the different expressions for the Riemannian distance,
exponential and logarithmic maps, and parallel transport operation for the sphere manifold Sm.

2.3 Geodesic regression

A geodesic regression model generalizes linear regression to Riemannian manifolds. The regression
is defined as y = Expỹ(ε), with ỹ = Expp(xu), where y ∈ M and x ∈ R are respectively
the output and input variables, p ∈ M is a base point on the manifold, u ∈ TpM is a tangent
vector at p, and the error ε is a random variable taking values in the tangent space at ỹ. As an
analogy to linear regression, one can interpret (p,u) as an intercept p and a slope u (see [23] for
details). Given a set of points {y1, . . . ,yT } ∈ M and {x1, . . . , xT } ∈ R, geodesic regression finds
a geodesic curve γ ∈M that best models the relationship between all the T pairs (xi,yi). To do so,
we minimize the sum-of-squared Riemannian distances (i.e., errors) between the model estimates
and the observations, that is, E(p,u) = 1

2

∑T
i=1 dM(ŷi,yi)

2, where ŷi = Expp(xiu) is the model
estimate onM, dM(ŷi,yi) = ‖Logŷi

(yi)‖ is the Riemannian error, and the pair (p,u) ∈ TM is
an element of the tangent bundle TM. We can formulate a least-squares estimator of the geodesic
model as a minimizer of such sum-of-squared Riemannian distances, i.e.,

(p̂, û) = argmin
(p,u)∈TM

1

2

T∑
i=1

dM(ŷi,yi)
2. (7)

The problem in (7) does not yield an analytical solution like (3). As explained by Fletcher [23], a so-
lution can be obtained via gradient descent on Riemannian manifolds. Note that this geodesic model
considers only a scalar independent variable x ∈ R, meaning that the derivatives are obtained along
a single geodesic curve parametrized by a single tangent vector u. The extension to multivariate
cases proposed by Kim et al. [24], where x ∈ RM , requires a slightly different approach to identify
multiple geodesic curves (viewed as “basis” vectors in Euclidean space). Multivariate general linear
models on Riemannian manifolds (MGLM) [24] provides a solution to this problem. MLGM uses a
geodesic basis U = [u1 . . .uM ] formed by multiple tangent vectors um ∈ TpM of dimensionality
d = dim(TpM), one for each dimension of x. Then, the problem (7) can be reformulated as

(p̂, ûm) = argmin
(p,um)∈TM∀m

1

2

T∑
i=1

dM(ŷi,yi)
2, with ŷi = Expp(Uxi). (8)

This multivariate framework allows us to compute the weight vector, analogous to (3), for a demon-
stration lying on a Riemannian manifoldM, for exampleM≡ S3.

3 Orientation ProMPs

When human demonstrations involve Cartesian motion patterns (via kinesthetic teaching or tele-
operation), it is necessary to have a learning model that encapsulates both translation and rotation
movements of the robot end-effector. This means that a demonstration trajectory τ = {yt}Tt=1 is
now composed of datapoints yt ∈ R3 × S3, representing the full Cartesian pose of the end-effector
at time step t. In this case, the challenge is learning a ProMP in the orientation space, as the Eu-
clidean case in R3 follows the classic ProMP introduced in § 2.1. Therefore, we focus on how to
extend ProMP to learn trajectories on M = S3. First of all, let us introduce an equivalent ex-
pression for ŷi, in the MGLM framework, such that it resembles the linear basis-function model
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Figure 2: Illustration of multivariate general linear regression on the
sphere manifold S2 used to learn the weights of orientation ProMPs.
Given the trajectory y, the origin p of the tangent space TpM, and the
tangent weight vectorswm are estimated via (12).

in (1). Specifically, the estimate ŷi = Expp(Uxi) ≡ Expp(Xiu) with U ∈ Rd×M ,xi ∈ RM ,
Xi = blockdiag(xT

1 , . . . ,x
T
M ) ∈ Rd×Md and u = [uT

1 . . .u
T
M ]T ∈ RMd. This equivalence proves

useful when establishing analogies between the classic ProMPs formulation and our approach for
orientation trajectories.

Similarly to (1), a point yt ∈M of τ can be represented as a geodesic basis-function model

P(yt|w) = NM(yt|Expp(Ψtw),Σy), with µy = Expp(Ψtw) ∈M, (9)

where p is a fixed base point onM, w =
[
wT

1 . . .w
T
Nφ

]T
is a large weight vector concatenating

Nφ weight vectors wn ∈ TpM, Ψt is the same matrix of time-dependent basis functions as in (1),
and Σy is a covariance matrix encoding the uncertainty on TµyM. Two specific aspects about
this formulation deserve special attention: (i) the mean µy of the Riemannian Gaussian distribution
in (9), exploits the aforementioned equivalent formulation of MGLM; and (ii) the weight vectors
forming w in (9) correspond to the vector composing the geodesic basis of MGLM.

As a demonstration is characterized by a different weight vector w, again we can compute a dis-
tribution P(w;θ) = N (w|µw,Σw). Therefore, the marginal distribution of yt can be defined as

P(y;θ) =

∫
NM(y|Expp(Ψw),Σy)N (w|µw,Σw)dw, with µy = Expp(Ψw) ∈M, (10)

which depends on two probability distributions that lie on different manifolds. Using the Rieman-
nian operations described in § 2, we obtain the final marginal (see Appendix 2.1)

P(y;θ) = NM(y|µ̂y, Σ̂y), with µ̂y = Expp(Ψµw), Σ̂y = Γp→µ̂y(ΨΣwΨT + Σ̃y), (11)

where Σ̃y and Σ̂y are parallel-transported covariances of the geodesic model (9) and the final
marginal, respectively.

Learning from demonstrations via MGLM: For each demonstration n, we estimate a weight

vector ŵn =
[
ŵT

1 . . . ŵ
T
Nφ

]T
using MGLM (illustrated in Fig. 2). Firstly, we resort to the

equivalent expression for yt introduced previously, where Expp(Wφt) ≡ Expp(Ψtw), with
W =

[
w1 . . .wNφ

]
and Nφ being the number of basis functions. Secondly, we consider a demon-

strated quaternion trajectory τn = {yt}Tt=1 with yt ∈ S3. Then, analogous to (3) in Euclidean
space, ŵn is estimated by leveraging (8), leading to

(p̂, ŵm) = argmin
(p,wm)∈TM∀m

E(p,wm), with E(p,wm) =
1

2

T∑
t=1

dM(Expp(Wφt),yt)
2,

(12)
where φt is the vector of Gaussian basis functions at time t, and W contains the set of estimated
tangent weight vectors ŵm ∈ Tp̂M (i.e., Nφ tangent vectors emerging out from the point p ∈M).
To solve (12), we need to compute the gradients of E(p,wm) with respect to p and each wm.
As explained in Appendix 2.2, these gradients depend on the so-called adjoint operators, which
broadly speaking, bring each error term Logŷt

(yt) from TŷtM to TpM, with ŷt = Expp(Wφt).
Therefore, these adjoint operators can be approximated as parallel transport operations as proposed
in [24]. This leads to the following reformulation of the error function of (12)

E(p,wm) =
1

2

T∑
t=1

‖Γŷt→p(Logŷt
(yt))‖2. (13)
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With the gradients of (13) (given in Appendix 2), we can now estimate both the vector pn and
the weight matrix Wn, for each demonstration n. Note that each demonstration may lead to dif-
ferent estimates of p, which defines the base point on M used to estimate wm ∈ TpM. This
may produce different tangent spaces across demonstrations, and therefore diverse tangent weight
vectors. An effective way to overcome this is to assume that all demonstrations share the same tan-
gent space base p, which is the same assumption made when defining the geodesic basis-function
model (9). So, we only need to estimate p for a single demonstration, and use it to estimate all
tangent weight vectors for the whole set of demonstrations. Then, given a set of N demonstrations,
the weight distribution parameters θ = {µw,Σw} are estimated by standard maximum likelihood
as wn ∈ TpM = R3 ⊂ R4. The complete learning process for orientation ProMPs is given in
Algorithm 2 of the supplementary material.

Trajectory modulation: We formulate a trajectory modulation technique (i.e., to adapt to
new situations) by conditioning the motion to reach a desired trajectory point y∗t ∈ M
with associated covariance Σ∗y ∈ Ty∗

t
M. This results into the conditional probability

P(w|y∗t ) ∝ NM(y∗t |Expp(Ψtw),Σ∗y)N (w|µw,Σw), which depends on two probability dis-
tributions that lie on different manifolds, similarly to (10). We leverage the fact that the mean µy

depends on p ∈ M, which is the basis of TpM where the weight distribution lies on. Thus, we
rewrite the conditional distribution as follows

P(w|Logp(y∗t )) ∝ N (Logp(y∗t )|Ψtw, Σ̃
∗
y)N (w|µw,Σw) = N (w|µ∗w,Σ∗w), (14)

where Σ̃∗y = Γy∗
t→p(Σ∗y), and {µ∗w,Σ∗w} are the parameters to estimate for the resulting condi-

tional distribution. Since both distributions now lie on TpM, which is embedded in the Euclidean
space, we can estimate {µ∗w,Σ∗w} similarly to the classic ProMP conditioning procedure, with spe-
cial care of parallel-transporting the covariance matrices. So, the updated parameters are

µ∗w = Σ∗w

(
ΨT
t Σ̃∗

−1

y Logp(y∗t ) + Σ−1w µw

)
, and Σ∗w =

(
Σ−1w + ΨT

t Σ̃∗
−1

y Ψt

)−1
. (15)

From the new weight distribution, we can obtain a new marginal distribution P(y;θ∗) via (11).

Blending: When it comes to blend motion primitives in M, one needs to consider that each of
them is parametrized by a set of weight vectors lying on different tangent spaces TpM. There-
fore, the weighted product of Gaussian distributions needs to be reformulated. To do so, we
resort to the Gaussian product formulation on Riemannian manifolds introduced by Zeestraten
[18], where the log-likelihood of the product is iteratively maximized using a gradient-based ap-
proach as proposed in [25]. We here provide the iterative updates of the blended distribution
P(y+) = NM(y+|µ+,Σ+), while the full solution is given in Appendix 2.3. The iterative es-
timation of µ+ is

∆µ+
k

=

(
S∑
s=1

αsΛy,s

)−1( S∑
s=1

αsΛy,sLogµ+
k

(µy,s)

)
, and µ+

k+1 ← Expµ+
k

(∆µ+
k

), (16)

for a set of S skills, where Λy,s = Γµy,s→µ+
k

(Σ−1y,s), and αs is the blending weight associated to
the skill s. After convergence at iteration K, we obtain the final parameters as follows

µ+ ← µ+
K and Σ+ =

(
S∑
s=1

αsΛy,s

)−1
. (17)

Task parametrization: Classic ProMP allows for adapting the weight distribution P(w;θ) =
N (w|µw,Σw) as a function of an external task parameter ŝ, as explained in Section 2.1. This task
parametrization straightforwardly applies to our method as the weight vectorswn ∈ TpM⊂ R4, as
long as the task parameter ŝ is Euclidean. However, if ŝ ∈M, we can learn a joint probability distri-
bution P(w, ŝ) using a Gaussian mixture model on Riemannian manifolds as proposed in [18, 26].
Subsequently, we can employ Gaussian mixture regression to compute P(w|ŝ∗) during reproduc-
tion when a new task parameter ŝ∗ is provided. We refer the reader to the works of Zeestraten [18]
and Jaquier et al. [26] for details on how to compute the distributions P(w, ŝ) and P(w|ŝ∗).
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Figure 3: Demonstrated trajectories ( ) in S2, marginal distribution P(y;θ) (mean , covariance ),
and via-point adaptation (mean , covariance , and via-point ) for models trained over S and G datasets.

Figure 4: Trajectory distribution blending via orien-
tation ProMP for datasets {S, J} and {G, I}. The re-
sulting (blended) distribution trajectory (mean ,
and covariance ) starts from the first letter in
the dataset ( ) and then smoothly joins the trajectory
of the second letter ( ).

4 Experiments

Synthetic data on S2: To illustrate how model learning, trajectory reproduction, via-point adap-
tation, and skills blending work in our approach, we used a dataset of hand-written letters. The
original trajectories were generated in R2 and later projected to S2 by a unit-norm mapping. Each
letter in the dataset was demonstratedN = 8 times, and a simple smoothing filter was applied for vi-
sualization purposes. We trained 4 ProMPs, one for each letter in the dataset {G, I, J,S}. All models
were trained following Algorithm 2 with hyperparameters given in Appendix 3.1. Figure 3 shows
the demonstration data, marginal distribution P(y;θ) computed via (10), and via-point adaptation
obtained from (14) and (15), corresponding to the G and S models. The mean of P(y;θ) follows
the demonstrations pattern, and the covariance profile captures the demonstrations variability in S2.
Note that the trajectories G and S display very elaborated “motion” patterns that might be more
complex than those observed in realistic robotic settings. Concerning the via-point adaptation, we
chose a random point y∗ ∈ S2 with associated Σ∗y = 10−3I (i.e., high precision while passing
through y∗). As shown in Fig. 3, our approach smoothly adapts the trajectory and its covariance
while accurately passing through y∗.

To test the blending process, we used the following subsets of our original dataset: {G, I} and {S, J}.
The goal was to generate a trajectory starting from the first letter in the set, and then smoothly
switching midway to the second letter. Figure 4 shows the resulting blended trajectories for the two
aforementioned cases, where our approach smoothly blends the two given trajectory distributions
by following the procedure introduced in § 3. Note that the blending behavior strongly depends on
the temporal evolution of the weights αs ∈ [0, 1] associated to each skill s. We used a sigmoid-like
function for the weights α(I)

s and α(J)
s , while α(G)

s = 1 − α(I)
s and α(S)

s = 1 − α(J)
s . The foregoing

results show that our approach successfully learns and reproduces trajectory distributions on S2, and
provides full via-point adaptation and blending capabilities. We now turn our attention to robotic
experiments where we learn and synthesize full-pose movement primitives.

Manipulation skills on R3 × S3: To test our approach in a robotic setting, we consider a
re-orient skill from [27], which involves lifting a previously-grasped object, rotating the end-
effector, and placing the object back on its original location with a modified orientation (see
Fig. 5). This skill features significant position and orientation changes, and it is therefore suit-
able to showcase the functionalities of our Riemannian ProMP. We collected 4 demonstrations of
the re-orient skill via kinesthetic teaching on a Franka Emika Panda robot, where full-pose end-
effector trajectories {pt}Tt=1 were recorded, with pt ∈ R3 × S3 being the end-effector pose at time
step t. The data was used to train a ProMP on R3×S3, with position and orientation models learned
using respectively a classic ProMP and our approach with hyperparameters given in Appendix 3.2.

Figure 6 shows the demonstrations (gray solid lines) and the mean of the marginal distribution
P(p;θ) depicted as a black trajectory. Our model properly captures the motion pattern on R3 × S3

7



Figure 5: Snapshots of the human demonstrations of the re-orient skill [27]

Figure 6: Time-series plot of the re-orient skill demonstrations ( ), original mean trajectory ( ) of the
marginal distribution P(p;θ), and resulting mean trajectory ( ) of the new marginal distribution P(p;θ∗)
passing through a given via-point ( ) p∗ ∈ R3 × S3. End-effector orientation represented as a quaternion
[qw, qx, qy, qz]. Time axis given in sec.

for this skill. We then evaluated how this learned skill may adapt to a via point p∗ ∈ R3 × S3,
representing a new position and orientation of the end-effector at t = 8.5 sec. By using the approach
described in § 3, we computed a new P(p;θ∗), where the updated mean is required to pass through
p∗. Figure 6 displays the updated mean (light blue lines), which successfully adapts to pass through
the given via-point. Note that the adapted trajectory exploits the variability of the demonstrations
(i.e. the associated covariance) to adapt the trajectory smoothly. We also learned two classic ProMPs
using an Euler-angle representation and a unit-norm approximation, using the same hyperparameters
set. While both models retrieved a distribution P(p;θ) similar to our approach, their performance
is severely compromised in the via-point case, as they retrieve jerky trajectories with lower accuracy
tracking w.r.t p∗ (see Appendix 3.2 and supplemental simulation videos using PyRoboLearn [28]).
These results confirm the importance of our Riemannian formulation for ProMP when learning and
adapting full-pose end-effector skills. Appendix 3.2 reports learning and reproduction of two addi-
tional skills featuring motions of diverse complexity, demonstrating the versatility of our approach.

5 Discussion
Two main issues were identified in our approach: The effect of the hyperparameters on the tra-
jectory distributions, and the increased computational cost of the weights estimation and blending
process. The former problem is a limitation inherited from the classic ProMP, as the more complex
the trajectory, the more basis functions we need. The smoothness of this encoding also relies on the
basis functions width, which is often the same for all of them. We hypothesize that considering the
trajectory curvature to distribute the basis functions accordingly and to define different widths may
alleviate this hyperparameter tuning issue. The second problem arises as our weights estimation has
no closed-form solution, and it relies on Riemannian optimization methods [29, 21] for solving the
geodesic regression and for estimating mean vectors for distributions lying onM. However, note
that the weights are estimated only once and offline, meaning that the computations of P(p;θ) or
P(p;θ∗) are not compromised. Finally, the gradient-based approach to blend several ProMPs often
converges in less than 10 iterations, making it a fairly fast approach for online blending settings.

As mentioned in Section 1, several methods overlook the problem of encoding orientation trajecto-
ries, or propose approximated solutions that produce distortion and inaccuracy issues (as shown in
Appendix 3.2). Our Riemannian approach explicitly considers the geometric constraints of quater-
nion data, and therefore it represents a potential alternative to the Riemannian TP-GMM [18]. Nev-
ertheless, the benefits of ProMP when compared to TP-GMM lie on the trajectory modulation and
blending features, which endow a robot with a larger set of adaptation capabilities. It may be worth
investigating how these formal methods dealing with full-pose trajectories compare to each other in
terms of accuracy, adaptation, and extrapolation capabilities. In this context, benchmark works sim-
ilar to [30] may bring important insights to the field. On a different note, the classic ProMP [4] also
includes time derivatives of the considered variable, which was not covered in this paper. However,
this extension is straightforward: This involves to include linear and angular velocities of the end-
effector into the trajectory variables. Given that these are Euclidean variables, the main challenge
arises when quaternions are part of the trajectory data.
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