
1

Reinforcement Learning with Dynamic Movement
Primitives - DMPs

Gerhard Kniewasser, kniewasser@student.tugraz.at
and Supervisor: Elmar Rückert

Department of Theoretical Computer Science, University of Technology, Graz

Abstract—In this project we set up the AMARSi Oncilla
Simulator1 and used Dynamic movement primitivies (DMPs) as
movement representation and optimized their parameters in a
reinforcement learning framework to adapt the robot’s behaviour
to new problems. After some experiments on toy examples we
applied an open-loop control scheme to the Oncilla Simulator.
In the end we want to apply this approach to a real robot, the
AMARSi2 Oncilla quadroped and evaluate its performance.

I. INTRODUCTION

Teaching a robot to learn a certain behaviour is a non-trivial
task, since the dynamics of such systems are highly non-linear
and living in a high-dimensional space (e. g. 10 to over 50
dimensions). The increasing performance in today’s computer
systems allow for real-time control of robots with many DoF
(e.g. humanoid robots). Therefore, control approaches such as
[3] are very interesting for engineers and scientists. Netherthe-
less, it is mandatory to find a good movement representation,
to achieve good learning results. In the field of leged robots
CPGs (central pattern generators) found to be a good choice.
There are quite many approaches, how to implement these
CPGs. The authors in [1] present a novel bio-inspired approach
using CPGs with nonlinear phase-coupled Hopf oscillator with
reflex feedback signal for preventing from stumbling and
virtual model control (VMC) for posture control. They achieve
very good results. One of the most impressive results of leged
robots in the present is the “Big Dog” from Boston Dynamics
[7], which is cabable of walking in rougth terrain. For very
complex movement plans, a discretization into a sequence of
much simpler movement primitives seems, so far, to be the
only chance to cope with this high complexity.

In this project we implement the CPG movement represen-
tations with DMPs. Dynamic movement primitives are a quite
interesting research field, since DMPs provide a very general
and simple system representation (e.g. point attractor or ryth-
mic limit cycle are possible) and they are by themselves stable,
so one does not have to cope with stability issues [3], [5]. In
the following sections we give a brief overview and description
of DMPs and the implemented learning framework.

II. DMP - MODEL DESCRIPTION

The system in Equation 1 descripes a second order dynam-
ical system and is called the transformation system.

1http://docs.cor-lab.de/oncilla-sim-manual/0.1/html/index.html
2http://amarsi-project.eu

τ ż = αz(βz(g − y)− z) + ftask(φ), (1)
τ ẏ = z.

The variables αz, βz are time constants which corresponds
to the spring- and damper- coefficients in dynamic mechanical
system. τ defines the period of the movement and g is the
unique attractor in this system, which represents the goal
state. Since we are looking for rythmic walking behaviour,
we describe in the following equations only the limit cycle
case.

The simple canonical system in Equation 2 represents the
time evolution in this description, where φ is a substitute for
the time t.

τ φ̇ = 1, (2)
φ = mod(φ, 2π). (3)

If ftask would be zero, we would get an homogenous second
order dynamic system converging to g. By introducing the
function ftask it is possible to force the dynamical system to
follow an arbitrary trajectory.

The forcing term ftask is approximated by a set of normal-
ized radial basis function ψi(φ) and weights ωi

ftask =

K∑
i

ψi(φ)wi∑
j

ψj(φ)
A, (4)

ψi(φ) = exp(hicos(φ− ci)− 1). (5)

ψi(φ) in Equation 5 is represented by von Mises basis
functions, which are periodic in φ and distributed over the
centers ci with precision hi.

III. OPTIMIZATION FRAMEWORK

The parameters of the movement representation are Θ =
{ωi} , i = 1 : K. The goal of the optimization is to find an
optimal policy vector

Θ∗ = argminΘ C(Θ),

which minimizes the expected costs

C(Θ) = E[J(y, ẏ) | Θ].

2

Figure 1: Reinforcement learning En-
vironment [10]

DMPs are a model-
free approach, where
a model of the for-
ward dynamics of a
robot is not needed.
We use the classic re-
inforcement learning
framework [10] to op-
timize the gait of our

Robots (see Figure 1). In this case the Agent generates a
parameter vector ω for each DoF and generates the desired
trajectories (here: the actions at are the desired trajectories).
The environment is represented by our simulator, or the real
robot hardware, which generates a trajectory and a correspond-
ing reward to evaluate the choice of the parameter vector.

To generate and optimize our parameters, we use a stochas-
tic optimization algorithm called CMA-ES (Convolution
Matrix Adaptation - Evolutionary Strategy) [2], which in short
words samples the parameter space, picks the best samples
and use it to update the mean µ and covarianz matrix Σ of the
policy distribution to get closer to the (local) optimal solution.

A. Course of dimensionality

In the following experiments we use a biped walker model
and the AMARSi oncilla robot. The size of the parameter
vectors is shown in Tab I.

DoF K dim of parameter vector
biped walker 4 4 16

oncilla 12 8 96

Table I: parameter vector dimensions for each robot. The
walker impl. 2x Hip, 2x Knee. The Oncilla impl. 4xHip-Pro-
/Retraction, 4xHip-Ab-/Adduction, 4xKnee. K is the number
of parameters needed for the representation.

Imaging, we would have a discretized space, where each
dimension is encoded by 10 possible values. We would get, in
case of the walker, 1016 or 1096 possible values for the oncilla
robot, where the optimal values live in a small subspace.

Due to the high dimensional contineous parameter space
parameter learning is hardly feasible without a good initial
solution, e.g. from demonstration or tuning by hand.

In the walker task we made use of the hand tuned values
from Table II as initial state. The vector g sets the attractor
point in Equation 1, kpos and kvel are the gains for the PD-
feedbackcontroller.

Variable Value
q1 [3.5, 4.4,−0.07,−0.5,−0.7,−1.5,−0.6,−1.0, 0.3,−0.4]
g [2.8, 4.5,−0.3,−1.8]

kpos [632.5, 885.6, 463.4, 643.7]
kvel [14.5, 13.2, 38.6, 40.6]
qmin [2.8, 2.8,−2.6,−2.6,−1.04]
qmax [4.7, 4.7, 0, 0, 1.0]

Table II: Biped walker setting of pre-optimized quantities.

IV. EXPERIMENTS AND RESULTS

A. Toy Example

To get used to the DMPs we start with an easy task and try to
learn / fit a one-dimensional function, which is a superposition
of sine and cosine oscillations.

y∗(t) = sin(2πt) + 0.25cos(4πt+ 0.77) + 0.1sin(6πt+ 3.0)

We want to learn the forcing function ftask(φ) for our
model in Equation 1. In this simple scenario we can use a
simple supervised learning approach (e. g. locally weighted
regression) to fit the desired trajectory [3] or reinforcement
learning. We briefly discuss both strategies.

1) Imitation learning/ curve fitting: The paramter vector ω
for each DMP is found by locally weighted regression [9]:

We want to minimize the weighted sum Ji for every
dimension of ω, where our kernels ψi(t) are used as weights
too:

Ji =

T∑
t=1

ψi(t)(ftask(t)− f̂(t;ωi))
2, (6)

ωi =
sT Γif task

sT Γis
, (7)

where

s =


A
A
. . .
A

 Γi =


ψi(1)

ψi(2)
. . .

ψi(T)

 ,

f task =


ftask(1)
ftask(2)
. . .

ftask(T)

 ,

where A is the amplitude of our oscillator from Equ. 4.

0 500 1000 1500 2000
−1.5

−1

−0.5

0

0.5

1

t

y
(t

)

target trajectory

fit trajectory

0 500 1000 1500 2000
−10

−8

−6

−4

−2

0

2

4

6

8

10

t

d
y
(t

)

target trajectory

fit trajectory

Figure 2: learned trajectory, K = 20, αz = 4, βz = 1, τ =
0.1952s. (left) y-position, (right) velocity

Figure 2 shows the result for imitation learning. The DMPs
fit the trajectories very well, allthough the DMPs start at a
different point (yDMP (0) = 0).

3

2) reward based Learning: For the reinforcement learning
approach we used the following cost function:

J(α) =

N∑
n=1

α0(y∗(n)− ŷ(n;ω))2+ (8)

+α1(dy∗(n)− dŷ(n;ω))2, with

α =

[
α0

α1

]
=

[
1

0.1

]
(9)

y∗ represents the desired trajectory and ŷ is the generated
output from our DMP. N is the number of trajectory samples.
Figure 4 and 3 show the different learning performances, if
using the result of imitation learning or random initialization
and using different explorationrates.

0 500 1000 1500 2000
−1200

−1000

−800

−600

−400

−200

0

rollout

p
e
rf

o
rm

a
n
c
e

5 Runs, Explorationrate = 0.1

stddev

mean

(a)

0 500 1000 1500 2000
−1200

−1000

−800

−600

−400

−200

0

rollout

p
e
rf

o
rm

a
n
c
e

5 Runs, Explorationrate = 0.06

stddev

mean

(b)

Figure 3: with initial fit a)mean learning performance, 5 runs,
λ = 5, b) mean learning performance, 5 runs, λ = 5

0 500 1000 1500 2000
−8000

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

rollout

p
e
rf

o
rm

a
n
c
e

5 Runs, Explorationrate = 0.1

stddev

mean

Figure 4: random initial parameter set

B. Five Link Walker

In this section we investigate a more difficult model. This
model simulates a biped walker and consists of 5 links and
4 Joints, namely 2 hip joints and 2 knee joints. Each joint is
represented by a single DMP, which all are sharing the same
canonical system.

The parameters are optimized according to:

• progress in forward direction,
• stable time,

using the following cost function J :

J(α) =

N∑
n=1

α0 · steplength+

+α1 · (maxTime− stableT ime)
+α2 · xdistance,

α =

 α0

α1

α2

 =

 0.6
0.2
0.1

 .
Figure 6 shows, that learning converges after about 600 roll-

outs to the trajectories depicted in Figure 5 and Figure 7. Since
the simulator switches the legs on every step, discontinuities
occur in the joint angle trajectories, which are not very natural
from a biological point of view. A Phase resetting mechanism
on foot impact supports the walker in learning [4].

0 200 400 600 800 1000 1200 1400
−1

0

1

2

3

4

5

6

7

rollouts

p
e

rf
o

rm
a

n
c
e

Performance chart, Explorationrate = 0.04

Figure 6: performance chart of walker with explorationrate
0.04 and 100 Iterations

0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

time [s]

a
n
g
le

 [
ra

d
]

jointangle trajectories

left hip

right hip

left knee

right knee

Figure 7: simulated trajectories of the biped walker

C. Oncilla Quadruped

The oncilla quadroped is similar to a house cat in size and
weight. It can actuate hip ad-/abduction, pro-/retraction and
knee flexion/extension. In the following experiments we are
neglecting the actuation of ad-/abduction servos for simplicity,
resulting in a 8-DoF robot platform. Due to the early develop-
ment stage of the AMARSi Oncilla simulator, we could only
use position control instead of torque control. Thus we had to
use the already implemented gain’s of the feedback controller.

4

T
est

 = 0.53

0 1

(a) t=0.53 s

T
est

 = 0.65

1

(b) t=0.65 s

T
est

 = 0.75

1

(c) t=0.75 s

T
est

 = 0.85

1 2

(d) t=0.85 s

T
est

 = 1.02

1 2

(e) t=1.694 s

Figure 5: snapshots of walker sequence

(a) t=1.440 s (b) t=1.548 s (c) t=1.614 s (d) t=1.660 s (e) t=1.694 s

Figure 8: snapshots of trotting oncilla

1) simple trotting gait: If we look at dogs or other bio-
logic quadroped, we can see that in the case of trotting the
movement of the diagonal legs is equal,

θleftfore = θrighthind, (10)
θlefthind = θrightfore. (11)

Therefore we can simplify our learning and restrict our
parameter vector to learn only the parameters for the left_fore
and right_fore legs and assign these values to the other legs
according to Equation 10 and Equation11. Additionally, we
can assume that the left_fore leg and the right_fore leg have
a phase shift of π. Considering this assumptions we provide
an initial solution with simple sinusoidal oscillators.

As reward function we implemented the following:

J(α) = α0 · simulationT ime+

+α1 ·
N∑

n=1

(CoMheight(n)− desiredHeight)2

+α2 · xdistance,

α =

 α0

α1

α2

 =

 −0.25e− 4
0.4

1e− 3

 .
To speed up learning, each iteration step is aborted, if the

robot is falling on the ground. Thus, the simulation time
is a good measure for the stability of the gait. The CMA-
ES learning method is stopped after 60 iterations due to
time issues, but achieves already good results after about 40
iterations (~600 rollouts) shown in Fig. 9. Figure 10 shows the
learned trajectories simulated on the robot. The oncilla robot
achieves with this learned gait an average speed of 0.18m

s .

0 200 400 600 800 1000
−5

0

5

10

15
x 10

−4 learning performance
p
e
rf

o
rm

a
n
c
e

rollouts

Figure 9: learning performance with λ = 14, explorationrate
= 0.05

0 2 4 6 8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
trotting trajectories

jo
in

t
a
n
g
le

s
 [
ra

d
]

t [s]

lf hip

lf knee

rf hip

rf knee

Figure 10: performed trajectories of the left and right for legs
of the oncilla robot in a trotting gait

5

V. CONCLUSION AND FUTURE WORK

In this project we used DMPs to perform gaits on the
biped walker and the AMARSi oncilla robot. All experiments
were performed on an Intel Core 2 Duo @ 2x2.8GHz. The
experiments showed, that DMPs are quite useful. The walker
was parameterized with 16 parameters and performed quite
well after about 600 episodes.

The oncilla uses a parameter vector of 32 parameters,
representing the left and right fore legs hip and knee joints,
and using those for the two other legs as well. Due to a lack
of time and the limited computation power on our system we
restricted the CMA-ES learner to 60 iterations per run. The
robot achieves with the learned trotting gait an average speed
of 0.18m

s at a step frequency of 0.5 Hz. These are nice results
for the begining and further steps will be, introducing feedback
signals form the robot investigating perturbations and different
environments (e.g. slopes, rough terrain, etc.), and to set up
a new computer system to speed up learning. Due to some
issues on the Oncilla hardware, which could not be fixed til
the end of this project, we were not able to execute the learned
gaits on the real robot, which is part of ongoing research.

ACKNOWLEDGEMENTS

I would like to thank my supervisor DI Elmar Rückert for
supporting me in this project.

REFERENCES

[1] Mostafa Ajallooeian, Soha Pouya, Alexander Sproewitz, and Auke Jan
Ijspeert. Central pattern generators augmented with virtual model control
for quadruped rough terrain locomotion. 2013.

[2] N. Hansen, S.D. Muller, and P. Koumoutsakos. Reducing the Time
Complexity of the Derandomized Evolution Strategy with Covariance
Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1):1–18,
2003.

[3] A. Ijspeert, J. Nakanishi, P Pastor, H. Hoffmann, and S. Schaal. dynam-
ical movement primitives: learning attractor models formotor behaviors.
(25):328–373, 2013.

[4] Jun Nakanishi, Jun Morimoto, Gen Endo, Gordon Cheng, Stefan Schaal,
and Mitsuo Kawato. Learning from demonstration and adaptation of
biped locomotion. Robotics and Autonomous Systems, 47:79–91, 2004.

[5] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. learning and
generalization of motor skills by learning from demonstration. In
international conference on robotics and automation (icra2009), 2009.

[6] J. Peters and S. Schaal. Reinforcement Learning of Motor Skills with
Policy Gradients. Neural Networks, 21(4):682–697, 2008.

[7] Marc Raibert. BigDog, the Rough-Terrain Quadruped Robot. In
Myung J. Chung, editor, Proceedings of the 17th IFAC World Congress,
2008, volume 17.

[8] S Schaal, P. Mohajerian, and A." Ijspeert. dynamics systems vs. optimal
control - a unifying view, pages 425–445. Number 165. 2007.

[9] Stefan Schaal and Christopher G. Atkeson. Constructive incremental
learning from only local information. Neural Computation, 10:2047–
2084, 1997.

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

