UNIVERSITAT ZU LUBECK

An exploration scheme based on the state-action novelty in continuous
state-action space

Ein auf der Zustands-Aktionen-Neuheit im kontinuierlichen
Zustands-Aktionen-Raum basierendes Erkundungsschema

Bachelorarbeit

verfasstam
Institut fiir Robotik und Kognitive Systeme

im Rahmen des Studiengangs
Robotik und Autonome Systeme
der Universitat zu Liibeck

vorgelegtvon
Phillip Johann Overloper

ausgegeben und betreut von
Prof. Dr. EImar Riickert

mit Unterstiitzung von
Honghu Xue, M.Sc.

Libeck, den15. Oktober 2020

IM FOCUS DAS LEBEN

Eidesstattliche Erklarung

Ich erklive hiermit an Eides statt, dass ich diese Arbeit selbstindig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Phillip Johann Overloper

Zusammenfassung

Die Erkundung im schrittbasierten Verstirkungslernen ist ein herausfor-
derndes und offenes Problem. Falls es in einem kontinuierlichen Suchraum
angewendet wird, kann eine naive Erkundungsstrategie dazu fihren, dass
nur in der Nachbarschaft des initialien Zustandes erkundet wird und aus
diesem Grund ein grofder Anteil des gesamten Raumes unerkundet bleibt.
Das nur einmalige Besuchen eines Zustands fiithrt allerdings zu schlechter
Leistung, wobei der Verstirkungslernalgorithmus in einem lokalen Mini-
mum stecken bleibt. Diese Arbeit prasentiert ein neuartiges Erkundungssche-
ma fir kontinuierliches Zustands-Aktions-Raum-Verstirkungslernen, wel-
ches auf der Neuheit von Zustands-Aktionen-Paaren basiert. Die Neuheit ei-
nes solchen Paares wird anhand der Dichte der komprimierten Zustands-
Aktionen-Paare bestimmt. Weiterhin stellt diese Arbeit eine Methode vor,
die eine Aktion interpoliert, um eine glatte Trajektorie in einem Markow-
Entscheidungsprozess zu ermdéglichen, und auf einen Roboter angewandt
werden kann. Dieses Experiment wurde in der Simulationssoftware Coppe-
liaSim anhand eines Roboters mit sieben Freiheitsgraden durchgefithrt. Die
Ergebnisse zeigen, dass dieser neue Ansatz eine effektivere Erkundung er-
moglicht, als eine Baseline-Erkundung.

Abstract

Exploration in step-based reinforcement learning is a challenging and
open problem. Ifit is applied in a continuous search space, the naive explo-
ration strategy could result in an explored space which is only explored in the
neighbourhood of an initial state, leaving a vast amount of entire space un-
explored. Visiting states only once leads to poor performance, where the re-
inforcement learning algorithm gets stuck in a local minimum. This thesis
presents a novel exploration scheme for continuous state-action space rein-
forcement learning, based on the novelty of state-action pairs, where the nov-
elty is measured via the density of the compressed state-action pair. Further-
more, this thesis presents a method to interpolate the action to reach a smooth
trajectory in a Markov Decision Process, which can be applied to any robot.
The experiment was performed in the CoppeliaSim simulator on a robot with
seven degrees of freedom. The results of the new approach show a more effec-
tive exploration than the baseline exploration.

Contents

1.1
1.2

2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3

3.1
3.2

4

4.1
4.2

5

5.1
5.2
5.3

6
6.1

Introduction

Motivation and Challenges
Outlook

Preliminaries

Markov Decision Process

Reinforcement Learning

Dimensionality Reduction
Density Estimation

Optimization Problems
Movement Primitives

Exploration by Stochastic Sampling in Continuous State-Action Space

Related Work
Exploration Strategies in continuous State-Action Space

Characterization of Robot Arm Trajectories

State-Action Novelty-Based Exploration in MDP
Trajectory Blending between two Decision Steps

Exploration by Searching for the Minimal State-Action Pair Density

Results

Performance Measure for Exploration
Effectiveness of the Exploration Strategy

Dimensionality Reduction

Conclusion

Potential Future Work

Bibliography

O 00 g A W W W

10

1

11
14

15
15

21

21
23
27

29
30

31

Al
A2
A3
A4
A5
A6
A7
A8
A9

B.1
B.2
B.3

Experimental Setups

Details of the Environment

Task formulation as a RL problem

Covariance Matrix Adaptation Evolution Strategy Settings
Autoencoder Settings

PCA Settings

Baseline Settings

Density Estimation Settings

Algorithm Settings

Other Settings

Position Plots

Baseline Exploration

Autoencoder Exploration
PCA Exploration

34

34
35
35
36
37
37
37
37
38

39

39
39
40

Introduction

This chapter will give an overview of the challenges regarding exploration in reinforce-
ment learning and thus motivation for this thesis. It also presents an outlook for this
thesis.

11 Motivation and Challenges

One of the key challenges of reinforcement learning is the Exploration-Exploitation-
Trade-Off. The agent needs to decide at each decision point, whether to choose an action
of which the agent knows that it brings it closer to what is expected (exploitation) or risk
exploring the environment more to find a better solution. Therefore, the performance
of reinforcement learning algorithms is highly dependent on to what extent the agent
has explored the environment to avoid convergence in a local optimum. Furthermore,
the application of efficient exploration is not restricted to reinforcement learning, but
also to a wider spectrum of problems, e.g., in mobile robotics where the agent needs to
explore the environment mostly to generate a complete map. In this thesis, we focus on
the setting of Markov Decision Process, i.e., a sequential decision process, where the se-
lection of a new action is solely based on the current state.

For discrete state-action spaces several exploration strategies exist, e.g. the e-greedy
algorithm. Although they have the nice property that if the exploration is done several
times, every state-action pair can be visited sufficiently to determine which action is opti-
mal. However, they cannot be extended to continuous cases. In continuous state-action
spaces it is necessary to have extensive knowledge about the environment without ex-
ploring every option, since it would not be feasible to do so.

One popular exploration strategy in continuous state-action spaces is stochastic sam-
pling, where an action is randomly sampled from a density distribution, e.g. a normal
distribution. However, these strategies explore the environment in an uninformative
manner, which often results in a space that is only extensively explored in the neighbor-
hood of some initial state, leaving a vast amount of the entire space unexplored. Hence
there is a motivation to develop better exploration strategies for continuous state-action

1 Introduction

spaces.

The goal of this thesis is to present a novel exploration strategy, which enables an
efficient exploration in a continuous state-action space and belongs to the state-novelty
category of the different exploration strategies. The idea is to choose the next action
based on the novelty of the state-action pair. The novelty of the compressed representa-
tion of the state-action pair is then evaluated through its density.

The contribution of this thesis is to present a novel exploration strategy, which has
two different variants. These variants are compared to each other, but also to a baseline
exploration to evaluate the efficiency of the strategy. This evaluation is done based on a
robot with seven degrees of freedom, which was simulated with the help of the simula-
tion software CoppeliaSim. Additionally, this thesis presents a way to interpolate trajec-
tories to ensure a smooth trajectory with respect to (angular joint) velocity profile and a
continuous acceleration profile.

1.2 Outlook

The thesis is structured as follows: The second Chapter 2 gives an overview of the back-
ground knowledge, which is required for this thesis. The third Chapter 3 presents other
exploration strategies and different examples of movement primitives. The fourth Chap-
ter 4 introduces the two variants of the novel exploration strategy proposed by this the-
sis as well as the interpolation method. The fifth Chapter 5 presents an evaluation of the
results of the novel exploration strategy. The sixth Chapter 6 is the conclusion of this
thesis.

Preliminaries

This chapter covers the background knowledge that is required for this thesis. Firstly
the concept of reinforcement learning (RL) and the Markov decision process (MDP) are
presented. The next section covers dimensionality reduction and the two reduction ap-
proaches, which are used in this thesis — Principal Component Analysis (PCA) and Au-
toencoders —in detail. The following section covers optimization problems and the black
box optimizer Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES). The last
two chapters cover movement primitives and the baseline approach which is used in this
thesis as a comparison for the novel exploration strategy.

2.1 Markov Decision Process

The Markov decision process (MDP) is specified as a sequence of states and actions
which adhere to the Markov property. A process has the Markov property, when the fu-
ture of the process only depends on the present and not the history. The MDP is mathe-
matically defined as a five-tuple M = (S, A, T, R, p,), where:

- S s the set of states

- A is the set of actions

- Tis the transition probability function, such that T(s,s’,a) = p(s'ls,a), where state
s and successor state s’ € S and action a € A

— Ris the reward function, which assigns a reward r € R! to every transition caused
by action a

- p, is the initial distribution, which tells how likely it is to start in a certain state

2.2 Reinforcement Learning

Reinforcement learning [(Sutton and Barto, 2018)] is a field of machine learning,
in which an agent shall learn a policy 77 to maximize a reward. The process is unsuper-
vised, meaning there are no labels or teaching errors given and the solution is learned
autonomously and potentially from scratch. The environment in which the agent acts is

2 Preliminaries

usually formulated as a MDP. The environment has a set of states Sand the agent chooses
from a set of actions A in each state and hence gets an intermediate reward r. The selec-
tion, which action is chosen at which state, is called policy and can be modeled as:

-m:AxS - [0,1]
- 71(s,a) = p(als)

The goal now is to find a policy 7r, which maximizes the sum of all rewards. In value
based reinforcement learning it is necessary to have knowledge of the accumulative re-
ward starting at any state s. This reward is determined by the value function V. It re-
turns the expected accumulative reward, when policy 7t was followed. It is defined as
shown in Equation 2.1:

VT(s) = E[) 7'mlso =sl, 2D
t=0

where the discount factor y € [0, 1], such that the effect of future states is counted less
importantly. The maximum possible value of V™ is defined as is shown in Equation 2.2:

V(s) = maxv’” (s) (2.2)

When V' has a solution, it is the optimal solution for the problem. However, it can
be useful to also consider the action values. The function which does this, is defined as
shown in Equation 2.3:

Q" (s,a) = IE[Z Y'rls, =s,a, = a] (2.3)
t=0

The value Q™ (s, a) returns the accumulative reward, starting at state s and choosing ac-
tion a.

The goal now is to find a policy 7r, which chooses the probability 77 (s,a) according
to an action a in state s. Under the condition that 77" is the optimal policy, optimality can
be achieved, when at each state s the optimal action is chosen from Q™ (s, -).

2.3 Dimensionality Reduction

Dimensionality reduction is the process of transforming a given data set from a
high-dimensional space into a low-dimensional space. This transformation has to be ex-
ecuted in such a way that the low dimensional representation of the dataset still retains
the key properties of the original high-dimensional data for further process. There ex-
ist several ways of how to reduce the dimensions of a given data set. Two of them are
discussed in detail in this thesis: Principal Component Analysis and dimensionality re-
duction through Autoencoders. Both these approaches are explained more thoroughly
in the following sections.

2 Preliminaries

PCA

The Principal Component Analysis (PCA) [(Wold, Esbensen, and Geladi, 1987; Abdi
and Williams, 2010)] is a method to reduce the dimensionality of a dataset by decorrelat-
ing its data and increasing its variance. It does this by transforming the data to so called
principal components. The principal components are then ordered in a way in which
the first few of them that have the greatest eigenvalues hold the basic information of the
original data set and account for the most variance.

The first step is to compute the covariance matrix of the entire dataset to examine
whether there are any relations between different variables. The equation to calculate
the covariance between to random variables X and Y is shown in Equation 2.4

1 n
Cov(X,Y) = ~ Y (= EX) (s — E(V)), (2.4)
i=1

where n denotes the size of each random variable and x; € Xandy; € Y. E(X) and E(Y)
arereferring to the means of Xand Y, respectively. The covariance matrix for a 3-dimensional
dataset would look like this:

Cov(Y,X) Cov(Y,Y) Cov(Y,Z)

Cov(X,X) Cov(X,Y) Cov(X, Z)
(Cov(Z,X) Cov(Z,Y) Cov(Z,Z))

Since the covariance of a variable with itself is its variance, the diagonal of the matrix
consists of the variance of each random variable. And because the covariance is commu-
tative, the matrix is mirrored at the diagonal.

The second step in the PCA is to calculate the eigenvectors and eigenvalues of the
covariance matrix. This is done to ascertain the principal components. The equation for
calculating the eigenvalues of a matrix is shown in Equation 2.5:

det(A — AI) = 0, (2.5)

where A denotes the matrix, I the identity matrix and A the eigenvalues to be calculated.
Thus in the case of the 3-dimensional covariance matrix, the calculation is shown as fol-
lows:

Cov(X,X) — A Cov(X,Y) Cov(X,Z)
Cov(Cov(Y,X) Cov(Y,Y) — A Cov(Y, Z)) =0
Cov(Z,X) Cov(Z,Y) Cov(Z,Z) — A

For each eigenvalue A there is a corresponding eigenvector v. They can be calculated
with the equation shown in Equation 2.6:

2 Preliminaries

where i = 1,..., m and m denotes the number of eigenvalues.

Since the goal is to reduce the dimensionality of the dataset, the next step is to sort
the eigenvectors (principal components) and only keep the k < m of them, which ac-
count for the most variance. Because the eigenvectors simply indicate the direction of
the new axes, the sorting is done based on the corresponding eigenvalues. Hence the k
eigenvectors are chosen, which possess the highest eigenvalues. These are then used to
form a new matrix W € R%* where d denotes the dimension of the original data, i.e.
the amount of different labels.

The last step is to multiply this matrix W with the original dataset to project it into
the lower dimensional subspace. The equation for this is shown in Equation 2.7:

S=0xW, 2.7)

where S denotes the projection in the subspace and O € R™ the original dataset. The
variable n denotes the number of samples per label.

One additional potential step is to whiten the data to give all data points the same
variance. This is done by dividing every dimension (column) of the matrix W by the
square root of its corresponding eigenvalue.

Autoencoder

The special kind of neural networks used in this thesis is called autoencoder [(Baldi,
2012)] and they are wildly used in unsupervised learning. Their purpose is to reduce the
dimensionality of a dataset while keeping the recreational loss minimal. They difter from
PCA in the way they transform the data. While PCA performs only linear transforma-
tions, autoencoders perform nonlinear transformations, where the non-linearity is a re-
sult of the non-linear activation function in the neural network.

An autoencoder is usually comprised of two main parts: The encoding part and the
decoding part. Since autoencoders are normally symmetric in nature, the decoder has
the same amount of layers as the encoder. It incorporates the hidden layers and the out-
put layer (see Figure 2.1).

The idea is that the encoder subsequently reduces the dimensionality of the input
through several different layers to a compressed representation of the input. Afterwards
the decoder increases the dimensionality of the now compressed input, until the input
and the output have the same dimension. Given that procedure, an autoencoder is clas-
sified as an unsupervised learning model.

The two parts of an autoencoder can be mathematically represented as follows:

The encoder is a function f : X — H that maps the n-dimensional input array X € R" to
the compressed representation H € R™, such thatm < n.

2 Preliminaries

Encoder Decoder

Input
X
T
_<

nding

Figure 2.1: This figure shows the Autoencoder architecture. Here X refers to the input,
Y to the output and H stands for the compressed representation. X and Y have the same
dimensionality.

The decoderisafunctiong : H — Ythat maps the m-dimensional compressed represen-
tation H € R" to the reconstructed dataY € R".

The goal of an autoencoder is to choose fand g, such that f, g = argmin||X — g(f(X))ll,.
fa
Special kinds of autoencoders are widely used in the field of image recognition, clas-
sification and denoising. Several prominent implementations exist, like the convolu-
tional [(Chen et al., 2017)] or variational [(Kusner, Paige, and Hernandez-Lobato, 2017)]
autoencoder, which differ in how they encode the given input.

2.4 Density Estimation

Density estimation is a way to estimate the probability density function of given
data. The probability density function describes the relative likelihood that a specific
sample (here one dimension of the reduced state-action-pair) occurs anywhere in the
search radius. An example of that is the normal distribution X ~ A((y, %), where p is
the mean and ¢* the variance. The probability that a state occurs that is less than one o
away from p is 68.26 percent. Now the exploration strategy does not have to choose the
next state with the lowest probability, but with the lowest probability density. However,
this estimation has to be computed for every dimension of the state.

An example of how a density estimation looks like is shown in Figure 2.2. The distribu-
tion of the data is shown in Figure 2.2 a) and its density estimation is shown in Figure
2.2 b).

2 Preliminaries

10 . '.-"z"l
".',.;.:";';"..
% B
>~ 0 AR AN
-10
-10 -5 0 5

X
b) The corresponding density estimation

a) Distribution of three different clusters. Lo
of the distribution.

Figure 2.2: Distribution of data points of three different clusters and their den-
sity estimation. The means and standard deviations are ((2.5,10),1), ((6, —9),2) and
((5,0),1.125).

2.5 Optimization Problems

An optimization problem [(Boyd, Boyd, and Vandenberghe, 2004)] is defined as the
problem of finding the best solution from all available solutions. The best solution is eval-
uated using an objective, which can be represented as a scalar. It can be mathematically
formulated as shown in Equation 2.8:

x = argminfy(x)subjecttof,(x) < b,i=1,...,m. 2.8)

Here f, : R® — R is called the objective function and f; : R® —» R,i = 1,..., m the
constraint function. The constants by, ..., b, refer to the constraints or limits. A vector
x is then optimal, when it has the smallest objective value (see Equation 2.8.1), while
satisfying all constraints (see Equation 2.8.2).

Evolutionary Strategies

An evolution strategy is a technique, which is primarily used for optimization prob-
lems. As the name suggests, this approach tries to find the optimal solution through the
methods of evolution, mutation and selection. Mutation refers to the process of chang-
ing the genes of a genome, for example changing bits in a bitstring, where a single bit is
a gene and the bitstring itself is the genome. Selection refers to the process of selecting
a certain amount of individuals (each with their own genome) of a population, based on
a criterion. For example, selecting the five bitstrings out of a total amount of ten bit-
strings, which have the greatest sum. There exist several implementations differing in
what they mutate and their selection criteria. However, the general process is as follows:
the evolutionary strategy generates a set of candidate solution which it analyzes on the
basis of a fitness or an objective function. The proposed solutions, which yield the best
fitness values are then used to generate the next generation of candidate solutions. This
process will not cease until a predefined criteria has been met.

2 Preliminaries

One kind of evolutionary strategy proposes new candidate solutions by randomly
sampling from a multivariate normal distributions with mean u and a fixed covariance
matrix 2. In each generation the current mean is updated based on the best candidates
from the previous generation. However, because the covariance matrix ¥ is fixed and
with hence the search space, one shortcoming is that whenever X is inadequately chosen,
the convergence speed can be slow for X is too small. Or even worse, the optimization
process gets stuck in a local optimum.

The Covariance Matrix Adaptation Evolution Strategy Algorithm

The Covariance Matrix Adaption Evolution Strategy (CMA-ES) [(Hansen, Miiller,
and Koumoutsakos, 2003) and (Hansen, 2016)] is a special kind of evolution strategy that
overcomes this issue, since it updates not only the mean y every generation but also the
covariance matrix . This modification allows for a larger search space in the beginning
and thus a fast convergence to the optimum and a smaller search space towards the end
for finetuning the found optimum.

The general procedure of the CMA-ES can be represented as shown in Algorithm 1:

Algorithm 1 The general Procedure of the CMA-ES

1: Create multivariate normal distribution X ~ A (p, £) (The initial values are usually
Ho=0and X, =1

2: fori=1,..,I (I:= Number of iterations) do

3: Sample N points from X, such that Y = (y,, ..., yy) withy, e XVi=1,.. N

4. Evaluate all samples from Y with a previously defined fitness function f, such that
F= (0, fOn) V3, €Y

5: From F choose the M samples with the best fitness value (i.e. the highest or the
lowest) and calculate the new mean y and the new covariance matrix X

6: end for

The process ends, when the termination criteria has been met. The best solution from
all iterations is then chosen by the algorithm.

2.6 Movement Primitives

The idea of movement primitives is that a policy, which could posses a high com-
plexity, due to for example a dynamically changing environment, could be learned from
a combination of simpler policies (i.e. movement primitives).

A policy 7t is formulated as a function that maps the (continuous) state vector x to a
continuous control vector u, as shown in Equation 2.9:

u=r(xu,rt), (2.9

2 Preliminaries

where t denotes the possibility that x is time dependent and « denotes adjustable param-
eters specific to the problem. However, this policy can also be represented as a combina-
tion of simpler policies as shown in Equation 2.10:

K
u=xa,t) = Z TT,(X, 0, 1), (2.10)
k=1

where K denotes the number of simple movement primitives.

2.7 Exploration by Stochastic Sampling in Continuous State-Action
Space

To evaluate the efficiency of the novel exploration strategy presented in this thesis,
it is necessary to compare it to an already existing exploration strategy. In this work a
baseline approach was chosen.
One popular baseline for exploration in continuous space involves sampling from a nor-
mal distribution X ~ A((y, o). This is the simplest method computation wise and also
the quickest overall [(Lillicrap et al., 2015)]. The pseudo-code for the algorithm is shown
in Algorithm 2. Firstly the search radius and the constraint are initialized (see Algorithm
2 line 1). Then a random value is drawn from the normal distribution, with mean y and
variance o, at every decision step. This process is repeated until the action satisfies the
constraint (see Algorithm 2 line 7). Afterwards the action is performed (see Algorithm
line 2 9, the interpolation is done internally). The exact specifications can be seen in Al-
gorithm 2.

Algorithm 2 Baseline Exploration Strategy via Stochastic Sampling

1: Initialize: Action Constraint C, Search Radius o

2: Start Environment

3: fori=0,...,N (N := Number of episodes) do

4. S, « ResetEnvironment()

5: forj=0,..,M (M := Number of decision points) do
6 repeat

7 Sample a; ~ N(0,0)

8 until g satisfies C

9 s; < Environment.step(s;,a;) (Interpolation done internally)
10: end for

11: end for

10—

Related Work

This chapter presents work, which is connected to the novel exploration approach
that is presented in this thesis. Section 3.1 presents research for the exploration in a con-
tinuous state-action space for four different categories: exploration through a stochastic
policy, exploration through prediction error, exploration through information gain and
exploration through state novelty. The research, which is presented in this thesis belongs
to the latter category. Section 3.2 presents research for enabling smooth trajectories in
continuous state spaces.

3.1 Exploration Strategies in continuous State-Action Space

This thesis proposes a novel exploration strategy for continuous state-action space
based on state novelty. There are however several other approaches to achieve explo-
ration in a continuous state-action space. These can be grouped in four main categories:
stochastic policy, prediction error, information gain and state novelty.

Exploration through a Stochastic Policy

The methods, which belong to the category of exploration through stochasticity
present the actions, which can be taken, as a distribution, typically a Normal distribu-
tion. This distribution tells the probability of taking an action a given a state s. This
is called a policy. At each decision step an action is then sampled from this probability
distribution a ~ f,,, where f,, denotes the probability distribution with the distribution
parameters w. In real world systems, the distribution is always bounded due to physical
constraints, which can introduce a bias.

The authors [(Chou, Maturana, and Scherer, 2017)] presented a new stochastic pol-
icy for continuous reinforcement learning, which was based on the Beta policy and com-
pared ittoa Gaussian policy. They found that their proposed policy was, in contrast to the
Gaussian policy, bias free and outperformed it when both were used with Trust Region
Policy Optimization (TRPO) [(Schulman et al., 2015)] and Actor Critic with Experience
Replay (ACER) [(Wang et al., 2016)].

—11-

3 Related Work

Exploration through the Prediction Error

The methods, which belong to the category of exploration through prediction error,
generate an intrinsic reward based on how accurate an agent predicts the outcomes of
its actions. Mathematically, this reward can be represented as the distance between the
real and predicted state as shown in Equation 3.1:

R(s,s") = |lg(s’) — F(g(s),a)ll,, 3B.D)

where gis a function, which represents the real next state and Fa function that represents
the predicted next state.

This however can be lead to many problems given the stochastic nature of the agent’s
environment and the agent’s actuators inherent noise.

The authors [(Pathak et al., 2017)] managed to avoid many problems with previous
prediction approaches. They only predicted the changes in the environment of the agent
that could be caused by its actions. They observed that the agent manages to move around
the corridors and halls of the game VidDoom without any extrinsic reward. In the game
Mario however, the agent only manages to complete around 30% of the first level due to
a specific sequence of button presses that the agent has to do. They concluded that their
methods performed well when the environment has only few reward signals, but did not
extend to environments that have few interaction opportunities as well.

The authors [(Stadie, Levine, and Abbeel, 2015)] presented a method, which assigned
exploration bonuses that were based on a learned model of the system dynamics. The
method learns the state representation of the environment from observations, trains
dynamics model from this representation and then uses the prediction error from this
model to asses the novelty of a state. The idea is that novel states yield a greater predic-
tion error than states which were already visited, since they were not used for training
the model. Exploration bonuses were assigned based on how great the prediction error
was. They found that their method achieves large improvements over other methods in
arange of Atari games.

Exploration through the Information Gain

The methods, which belong to the category of exploration through the information
gain, generate an intrinsic reward based on the information gain that an action yields.
One potential method of computing the information gain is to calculate the change of
entropy of the action. Mathematically this idea can be formulated as shown in Equation
3.2:

R(s,s") = U'(0) — U(O), (3.2)

where the function U refers to the current entropy, U’ to the entropy after an action has
been performed and 6 to the parameter set of the agent.

—-12—

3 Related Work

The authors [(Stachniss, Grisetti, and Burgard, 2005)] proposed a gain-based exploration
that uses Rao-Blackwellized Particle Filters [(Grisetti, Stachniss, and Burgard, 2007)].
The mapping of the agent’s environment is done by the Filter. The decision of what action
to choose next is done based on the action that reduces the expected uncertainty the
most. This is done by calculating the change of entropy of the Rao-Blackwellized Filter
for the execution of that action. By doing that, they found that they obtained a “robust
decision-theoretic exploration algorithm that produces highly accurate grid maps.”

Exploration through the State Novelty

The methods, which belong to the category of exploration through state novelty,
generate an intrinsic reward on the novelty of the state that an action brings. In discrete
state spaces this can be easily done by keeping records of the already explored states and
thus knowing the probability of each state. Mathematically this idea can be formulated
as shown in Equation 3.3:

R(s) = (3.3)

1
N(s)’
where the function N represents the number of times state s has been visited. Unfortu-
nately this approach can not be extended to continuous state spaces, since the probability
of any state would always be zero, due to the high dimensionality of the data. The solu-
tion to this are so called pseudo counts as shown in Equation 3.4:

N(s) = N(s) = P92 =0) (3.4)
p'(s) —p(s)

where p is the density model, which returns the probability of observing state s and p’
the probability of observing s after one more pass of s.

The authors [(Bellemare et al., 2016)] proposed pseudo-counts that were directly derived
from the density model. Based on this pseudo-count, they generated an exploration
bonus for a Deep-Q-Network-agent in continuous state discrete action space. The agent
managed to achieve state of the art exploration performance in the game Montezuma’s Re-
venge on the Atari 2600 when combined with a mixed Monte Carlo update. [(Ostrovski et
al,, 2017)] examined how important the quality of the density model is. They compared
a pseudo-count derived from the CTS density model [(Bellemare, Veness, and Talvitie,
2014)] and a pseudo-count derived from the Pixel CNN density model [(Oord, Kalchbren-
ner, and Kavukcuoglu, 2016)]. They concluded that the PixelCNN density model pro-
duces better samples. For the role of the Monte Carlo update they found that it sped up
training time but hurt performance.

! (Stachniss, Grisetti, and Burgard, 2005), page 8, line 15 f.

—13—

3 Related Work

3.2 Characterization of Robot Arm Trajectories

Since this thesis is focusing on finding an exploration strategy for robots, it is re-
quired to have a property, which guarantees that the new action, which is chosen by
the exploration strategy (in this case a new velocity), does not harm the actuators of the
robot. This is why it is necessary to achieve a smooth transition from the old action to
the new. One approach to achieve smooth exploration is to define policies as movement
primitives. Several implementations of movement primitives exist.

The authors [(Schaal, 2006)] have presented the notion of Dynamic Movement Primi-
tives, where units of action are formulated as stable nonlinear attractor systems. The
attractor here refers to the desired kinematic state, i.e., position, velocity and accelera-
tion, instead of direct motor commands.

Thus complex tasks can be represented as a combination of multiple MPs. In [(Paraschos
etal., 2013)] certain criteria a MP has to meet are formulated, so that different MPs can be
combined to a complex task. These criteria are blending between motions, co-activating
several MPs simultaneously and adapting to modified task variables. To achieve that they
presented Probabilistic Movement Primitives (ProMP), which are formulated as a den-
sity distribution over trajectories. This enables the formulation of described criteria as
operations from probability theory. They concluded that this approach is promising for
“learning, modulating and re-using movements in a modular control architecture.”
Theidea of blended trajectory in ProMP is closely related to this work, where this idea was
extended to step-based MDP settings but still ensured the smoothness of the trajectory
at each decision step.

Z (Paraschos et al., 2013), page 8, line 23f.

14—

State-Action Novelty-Based Exploration in MDP

The first Section explains, why it is necessary to enable a smooth trajectory in a con-
tinuous state-action space between two decision points and how this is done, when rein-
forcement learning itself only works with discrete state-action spaces. The second sec-
tion presents the two variants of the novel explorations approach, which are presented
in this thesis, autoencoder and PCA.

4.1 Trajectory Blending between two Decision Steps

In reinforcement learning a new action is chosen at each decision step. Both for dis-
crete and continuous state and action spaces. The problem is that this approach does not
consider a smooth trajectory, i.e. what happens in between the decision steps. Within
the simulation environment an abrupt change of velocity is not a problem. However, in
a real robot application this can severely harm its mechanical parts. The resulting non-
smooth trajectory can oftentimes lead to oscillation. Especially in a real robot task the
performance of the robot arm hardware can be severely impacted by these oscillations.
One potential solution to this is to allow actions of small amplitude for each decision
step. However, they are also non smooth at each decision step, as is shown in Figure 4.1.
Therefore, one more elegant way is trying to retain the properties of smoothness and is
based on the idea of trajectory blending in movement primitives.

In this thesis a new action is chosen at every decision step. This action is a vector of ve-
locities of each joint. Therefore it is nice to enable a smooth transition from the current
action to the new action, i.e. extend a smooth trajectory to step-based MDP settings,
where the velocity is still smooth for a complete episode.

The equation, which was used to achieve this, is shown in Formula 4.1. Its derivative is
shown in Equation 4.2:

V.(t) = (1 — sin((t-floor(t))t * §)3) * V. + sin((t-floor(t)) * 2)3 *V, (4.1

3 T T
A((t) = —En cos((t-floor(t)) * E) sin((t-floor(t)) * E)Z(VC -V,), (4.2)

—15—

4 State-Action Novelty-Based Exploration in MDP

where V; and A; denote the current interpolated velocity and acceleration respectively
and V. denotes the current velocity and V, the new velocity. The parameter t refers to the
current time.

1.00 1.0
50.75 v 05
g 3
£0.50 = 00
®0.25 %—05
0.00(_~ v -1.0 —
0 1 2 3 0 1 2 3
Time in [s] Time in [s]
a) Joint Position Profile b) Joint Velocity Profile
))
e el
g g
—= 0 = 0
£ <
= s
0 1 2 3 ’ 0 1 2 3
Time in [s] Time in [s]
c) Joint Acceleration Profile d) Joint Jerk Profile
1.00
0.75
=) w_1
£0:50 - W2
0.25
0.00
0 3
Time in [s]
e) Weights

Figure 4.1: The plots of the position a), velocity b), acceleration c) and jerk d) profile of
the trajectory before smoothing for three different actions. The actions are 1 rad/s (t =
0), -1 rad/s (t=1) and 0.5 rad/s (t = 2). Plot d) shows the weights “W_1” and “W_2” of the
two blended trajectories, which were used. The non-smoothness is clearly observable for
the position a), velocity b), acceleration c) and jerk d) profile at each time step (t=1, 2, 3).
The non-continuity is also observable in b) and ¢) and d).

Figure 4.1 shows the profiles of position 4.1 a), velocity 4.1 b), acceleration 4.1 ¢) and
jerk 4.1 d) as well as the weights for a trajectory 4.1 e) before smoothing. We can see
that choosing an action at time step t leads to an unsmooth and noncontinuous velocity
profile (see Figure 4.1 b)). The acceleration and jerk profiles have the same properties
(see Figure 4.1 ¢) and d)). Merely the acceleration profile is continuous, however it is not
smooth (see Figure 4.1a)). The weights, which were used to blend both action trajectories
(old and new action) are shown in Figure 4.1 e). Orange symbolizes the weights for the
old and blue the weight for the new action.

Figure 4.2 shows the profiles for the same actions as Figure 4.1 after smoothing. A
new action is still chosen at each decision step t, however, we can see that this time it

—16—

4 State-Action Novelty-Based Exploration in MDP

0.8 1.0
g 0.6 % 0.5
£0.4 ‘i‘ 0.0
0.2 5-05
0.0 -1.0
0 1 2 3 0 1 2 3
Time in [s] Time in [s]
a) Joint Position Profile b) Joint Velocity Profile
B 2 10
g o T oo
< <
G ?’—10
0 1 2 3 0 1 2 3
Time in [s] Time in [s]
c) Joint Acceleration Profile d) Joint Jerk Profile

1.00
0.75 \
Z0.50 w1
=0 —_—p
0.25 \
0.00
1 2 3

Time in [s]

e) Weights

Figure 4.2: The plots of the position a), velocity b), acceleration c) and jerk d) profile of
the trajectory after smoothing for three different actions. The actions are 1 rad/s (t=0),
-1 rad/s (t =1) and 0.5 rad/s (t = 2). Plot e) shows the weights “W_1” and “W_2” of the
two blended trajectories, which were used. We can observe continuity or the position a),
velocity b), acceleration c) and jerk d) profile at each time step (t =1, 2, 3). The position a)
and velocity b) profile also show that smoothness is achieved.

leads to a continuous and smooth trajectory (see Figure 4.2 b)). The position profile ex-
hibits the same properties (see Figure 4.2 a)). The acceleration profile is now continuous,
however it is not smooth (see Figure 4.2 c)). The same is true for the jerk profile (see Fig-
ure 4.2 d)). The weights, which were used to blend both action trajectories (old and new
action) are shown in Figure 4.2 e). Orange symbolizes the weights for the old and blue
the weight for the new action. These weights are shown in the Equation 4.1.

4.2 Exploration by Searching for the Minimal State-Action Pair Density

This thesis presents a novel approach for exploration based on state-action pair den-
sity for continuous state-action space. Since the result of the density estimation on raw
datais almost zero everywhere due to the high dimensionality of the data, the density es-

—17—

4 State-Action Novelty-Based Exploration in MDP

timation is performed on a representation of the data with reduced dimensionality. The
first variant for compressing the data, which is used in this thesis, is an autoencoder. The
second variant is PCA. The reason why the data has to be reduced in its dimensionality,
is that otherwise the density would be close to zero everywhere.

The novelty of the approach presented in this thesis is twofold: firstly, the density es-
timation is not performed solely on the all states, but on all state-action pairs. Secondly,
the density estimation itself is not used as a reward, but instead the next action is chosen
with an optimizer. The utilised optimizer is the CMA-ES.

Begin of the Begin of the
program program

Reset the Reset the
environment environment
Compress last Compress last
K data points K data points

with AE with PCA
Perform density Perform density
estimation on the estimation on the
compr. represent. compr. represent.
Choose new Choose new
action with CMA-ES action with CMA-ES
No \|/ No No \|/ No
Add state-action Add state-action
pair to R pair to R
Perform the Perform the
action action
Train AE with Fit PCA with
all data in R all data in R
Current

episode =
N?

episode =
N?

Yes Yes
End of the End of the
program program
a) b)

Figure 4.3: Flow Charts of the Autoencoder variant a) and the PCA variant b).

—18—

4 State-Action Novelty-Based Exploration in MDP

Exploration via State-Action Novelty, Variant |

The first variant of acquiring a new set of actions is through autoencoder and CMA-
ES. It has already been explained how they work and what they are used for individually
(see Chapter 2.3 and Chapter 2.5). However, now they are utilised in conjunction. The
process itself also uses density estimation (Chapter 2.4) as an evaluation method for rein-
forcement learning in a continuous state-action space. The settings of the autoencoder
are shown in Appendix A in Table A.3.

The flow chart of the algorithm of the autoencoder variant is shown in Figure 4.3 a)
and the pseudo-code is shown in Algorithm 3. Firstly the autoencoder, the replay buffer
and the constraint are set up (see Algorithm 3 line 1). The second step is the actual sam-
pling of an action using CMA-ES. At the beginning of each decision step of the algorithm
the CMA-ES is initialized with a certain mean y and covariance matrix X (see Algorithm
3 line 7). Then each of the actions, which the CMA-ES has proposed, gets concatenated
with the current state and propagated through the previously trained autoencoder to re-
duce their dimensionality and obtain their compressed representation. This compressed
representation is then evaluated on the compressed representation of the state-actions-
pairs of the last K episodes.® The action that yields the best result (lowest density) of all
iterations of the CMA-ES is then chosen as the action for the current decision step (see
Algorithm 3 line 8). The state-action pair is then added to the replay buffer (see Algo-
rithm line3 9) and the action is performed until the next decision step (interpolation is
done internally). When the episode is terminated, the autoencoder is trained on all avail-
able data in the replay buffer (see Algorithm line 3 12).

Algorithm 3 Exploration via state-action novelty, Variant I

1: Initialize: Replay Buffer R, Action Constraint C, Autoencoder AE

2: Start Environment

3: fori=0,...,N (N := Number of Episodes) do

4. S, « ResetEnvironment()

5. forj=0,..,M (M := Number of decision points) do

6 Perform density estimation on all K previous data points
(K := Number of last episodes for density estimation)
Initialize CMA-ES with p and 2

: a; — arggnin density(AE(sj, a)), where a satisfies C

9: Add (s;, a;) to R

10: s; < Environment.step(s;,a;) (Interpolation done internally)

11: end for

12: Train AE on all data points (s,a) in R

13: end for

® N

3K can be chosen as one likes. In this thesis K is fixed to 20, so the overall calculation time could be
reduced. However, K can also be set to incorporate every previous episode.

19—

4 State-Action Novelty-Based Exploration in MDP

Exploration via State-Action Novelty, Variant I

In the second variant of acquiring a new action, the action itself is also determined
by the CMA-ES. However, the method of reducing the dimensionality of the state-action
pair differs from the autoencoder approach. Here this is achieved through PCA. The set-
tings of the PCA can be seen in Appendix A in Table A.5.

The flow chart of the algorithm of the PCA variant is shown in 4.3 b) and the pseudo-
code is shown in Algorithm 4. It resembles the algorithm for the autoencoder approach.
Firstly, the replay buffer, the constraint and PCA are initialized (see Algorithm 4 line 1).
Then, at the beginning of each decision step, PCA is performed on all L previous data
points in the replay buffer (see Algorithm 4 line 7) to obtain their compressed represen-
tation. The next step is to initialize CMA-ES with the mean y and the covariance matrix
¥ (see Algorithm 4 line 8). The process of how the new action is determined is the same
as in the autoencoder approach, the only difference is that the dimensionality reduction
of the state-action pair is achieved through PCA (see Algorithm 4 line 9). The resulting
state-action pair is added to the replay buffer (see Algorithm line 4 10) and the action is
performed until the next decision step (interpolation is done internally).

Algorithm 4 Exploration via state-action novelty, Variant II

1: Initialize: Replay Buffer R, Action Constraint C, Principal Component Analysis PCA
2: Start Environment

3: fori=0,...,N (N := Number of episodes do

4. s, < ResetEnvironment()

5. forj=0,..,.M (M := Number of decision points do

6: Perform density estimation on all K previous data points in (s,a) in R
(K := Number of last episodes of density estimation)

7: Perform PCA on all L previous data points in (s,a) in R

(L := Number of last episodes for PCA)
8 Initialize CMA-ES with p and X
a; < argmin density(PCA(sj, a)), where a satisfies C
a

10: Add (s, a;) toR

11: s; < Environment.step(s;,a;) (Interpolation done internally)
12: end for
13: end for

—20—

Results

The first section of this chapter introduces the performance measurements, which
are used to evaluate the effectiveness of the two variants of the novel exploration strategy
presented in this thesis: autoencoder 4.2 and 4.2. The second chapter applies these mea-
surements to the state-action pairs, which were gathered from the two different variants
and analyses the results and compares them to each other and the baseline approach 2.7.
The third chapter presents the results of the autoencoder training.

5.1 Performance Measure for Exploration

Since the goal of this thesis can be formulated as choosing the action which mini-
mizes the density value of the compressed representation, we expect that both the com-
pressed representation of the autoencoder and the PCA variant have a lower mean den-
sity and are spread out more broadly than that of the baseline approach. Seeee Figure
5.1 for a visual example of how the compressed representation looks like. It shows the
compressed representation of data, which was collected using the autoencoder variant
and compressed using an autoencoder after 50 dimensions exemplary for the first di-
mension. The black cross beneath the plot show the value of the original data points (see
Figure 5.5 for the compressed representation of the other approaches). To measure how
broadly the compressed representation is spread out, two performance measurements
are used.

The first performance measurement measures how far the compressed representa-
tion is spread out by computing its entropy. The expectation is that both the autoencoder
and PCA variant have a larger entropy score than the baseline approach, since they ex-
plored more area, i.e. the compressed representation is spread out more broadly and
thus has a larger information value about the environment. The entropy is computed
using the following Equation 5.1:

H(X) =) —P(x;)log(P(x)), suchthatx; E XV i=1,..n, G.1)

i=1

21—

5 Results

2.5

2.0

1.5

Density

0.5

0.01 =&

-15 -1.0 -0.5 0.0 0':5
Compressed Value

Figure 5.1: Density of the compressed representation of state-action pairs which were

collected using the autoencoder variant and compressed using the autoencoder after 50

episode for the first dimension. The black crosses beneath the plot refer to the location

of the individual data points.

where X denotes the entire data and n the number of samples within the data. Here the
data refers to one dimension of the (five-dimensional) compressed representation. Ad-
ditionally the data was discretized, so that for each episode the number of samples stays
constant at 1000. The maximum entropy that can be achieved can be calculated with
log(n). So in this case the maximal reachable entropy is log(1000) = 9.966.

The second performance measurement measures how far the compressed represen-
tation is spread out by computing the mean density of the compressed representation
of the autoencoder, PCA and baseline approach. The expectation is that both the com-
pressed representation of the autoencoder and PCA variant have a smaller mean density,
since they are spread out more broadly than that of the baseline approach and therefore
are not clustered around a certain value. The density estimation fof the actual density f
of any data point is done using the Kernel Density Estimation as is shown in Equation
5.2:

- 1 & —
f(x) = A Z K(%), suchthatx,x; e XVi=1,..n, (5.2)
i=1

where X denotes the entire data, n the number of samples within the data, K the kernel
and h a smoothing parameter called bandwidth. In this thesis this is done using the Ker-
nel Density Estimation of the Scikit-learn Python Package [(Pedregosa et al., 2011)], the
exact configurations are listed in Appendix A in Table A.é6.

Additionally the plots of the absolute endeffector position (in Cartesian coordinates
X,Y,Z) of all three approaches as well as plots of the compressed representation of the
original data are shown and compared to the results of the two performance measure-
ments mentioned above.

—22—

5 Results

5.2 Effectiveness of the Exploration Strategy

Firstly we want to take a look at the results of the first performance measurement.
In Table 5.2 the mean and the variant of the three different approaches after 50, 100, 150
and 200 episodes are shown. Since the state-action pairs originally had 21 dimension
and were compressed to five dimensions, for each approach five entries are shown. The
column labeled “Autoencoder” refers to state-action pairs, which were gathered using the
autoencoder variant and compressed using the autoencoder. The column labeled “PCA”
refers to state-action pairs, which were gathered using the PCA variant and compressed
using the PCA. The columns labeled “Baseline - AE” and “Baseline - PCA” refer to state-
action pairs, which were gathered using the baseline approach and compressed using
the Autoencoder and PCA, respectively. The expectation was that both the PCA and au-
toencoder variant have a higher entropy than the baseline approach, since they should
explore the available search space more efficiently. This is exactly what we can see in the
Table 5.2. Throughout all dimensions and episodes we can see that both the Autoencoder
and PCA variant consistently score higher mean entropy than the baseline approach. Ad-
ditionally we can observe that the Autoencoder variant performed better than the PCA
variant in exploring the search space, since its entropy is higher and thus the range of
explored state-action pairs is greater.

Now we take a look at the results of the second performance measurement. For that
we compress the state-action pairs using either the autoencoder or the PCA and forward
their compressed representation to the Kernel Density Estimation. This returns the log-
arithmic density, which is then exponantiated to obtain the density. What is expected,
is that the mean of the density of the autoencoder and PCA variant is lower than that of
the baseline approach. Since the autoencoder and PCA variant compress the data differ-
ently and thus return results of a different magnitude, we can not simply compare the
results directly. This is why Table 5.3 consists of two sub tables. The first table shows the
mean and the variance, when the autoencoder is used as the reduction method ,i.e. au-
toencoder data, which has been compressed with the autoencoder (column “AE on AE”),
PCA data, which has been compressed with the autoencoder (column “PCA on AE”) and
baseline data, which has been compressed using autoencoder (column “BL on AE”). The
second table shows the mean and variance, when PCA is used as the reduction method,
i.e. autoencoder data, which has been compressed with PCA (column “AE on PCA”), PCA
data, which has been compressed with PCA (column “PCA on PCA”) and baseline data,
which has been compressed using PCA (column “BL on PCA”). Both show the mean and
variance after 50, 100, 150 and 200 episodes. However, we can examine the tendency of
the mean density. In both sub tables, we can observe that the autoencoder and the PCA
variant have a smaller mean density than the baseline approach. This corresponds to the
observations of the first performance measure shown in Table 5.2 and means that the
data is spread out more in comparison to the baseline approach. Hence the exploration
covered a greater area of the space. Additionally we can observe that the autoencoder
has a smaller density mean than the PCA variant. This tells us that the autoencoder per-
formed better than the PCA, which corresponds to the observations from the first per-
formance measurement.

Now we can compare the results of the two performance measurements mentioned

—23—

5 Results

Co'mpregsed Episode || Autoencoder PCA Baseline - AE | Baseline - PCA
Dimension
1 50 9.15 +0.014 9.12 +0.003 5.49 +0.000 8.80 £0.000
2 50 9.40 +0.007 | 8.05+0.005 6.62 +0,009 7.01+0.023
3 50 8.93 +0.034 8.28 +0.006 | 6.09 +0,002 7.39£0.043
4 50 8.98 £0.139 8.08 +0.031 6.69 +£0.000 6.86 £0.063
5 50 9.52+0.000 8.02 £0.012 8.55+0.000 7.15 +0.003
1 100 9.31+0.000 | 9.20+0.002 | 5.67+0.000 8.86 +0.001
2 100 9.51 +0.014 8.22 +£0.001 6.68 +0.002 6.94 +0.000
3 100 8.90+0.029 | 8.44 +0.000 | 5.92 +0.000 7.42 +£0.015
4 100 9.23 +0.016 8.05 +0.007 6.72 +0.002 6.88 £0.034
5 100 9.55 +0.001 8.13 +0.005 8.68 +0.000 7.17 £0.007
1 150 9.37 +0.004 9.24 +0.002 5.74 +0.000 8.88 £0.002
2 150 9.46 £0.003 8.28 £0.001 6.73 £0.000 6.95 +0.001
3 150 8.87+0.004 | 8.52+0.000 | 5.93+0.000 7.40 £0.004
4 150 9.06 £0.036 | 8.09 £0.004 | 6.82+0.002 6.87 £0.007
5 150 9.49 +0.015 8.17 +0.006 8.74 +£0.000 7.16 £0.005
1 200 9.32 +0.006 9.28 £0.002 5.74 +0.000 8.90 £0.001
2 200 9.42 +0.014 8.35+0.001 6.77 £0.000 6.97 £0.002
3 200 8.86 +0.015 8.44 +0.000 5.95 +0.000 7.37 £0.001
4 200 9.05 +£0.023 8.15+0.003 6.87 £0.001 6.89 +£0.003
5 200 9.45 +0.000 8.17 +0.007 8.80£0.000 7.21+£0.000

Table 5.2: Mean and variance of the entropy of the baseline of approach, as well as of the
autoencoder and the PCA variant after 50, 100, 150 and 200 episodes each for the 1., 2.,
3., 4., and 5. dimension. The “Autoencoder” column is evaluated using the autoencoder
and the “PCA” column using PCA. The baseline approach is evaluated on both the autoen-
coder (columns “Baseline - AE”) and PCA (column “Baseline - PCA”). The best (highest)
entropy value per row is marked bold. Since the number of samples is constant at 1000
for all episodes, the maximum entropy is log(1000) = 9.966.

above to the plots of the absolute position of the endeffector. Figure 5.4 shows the plots
for the autoencoder, PCA and baseline after 50, 100, 150 and 200 episodes. We can see
that the explored space of the baseline approach does not seem to significantly increase
for more episodes. When we compare Figure 5.41) and]) we can see that the exploration is
focusing on the same area of the search space, while the autoencoder and the PCA variant
explore the space more broadly (compare Figure 5.4 d), h) and). This is confirming the
observations we have made so far. The baseline approach performs worse in exploring
the search space than the autoencoder and PCA variant. The same can be observed for
all other joints (see Appendix B Figure B.2 for the autoencoder variant, Figure B.3 for the
PCA variant and Figure B.1 for the baseline variant).

Figure 5.5 shows the plots of the density of the compressed representation after 200
episodes exemplary for the third dimension. The autoencoder data was compressed us-
ing an autoencoder (see Figure 5.5 a)), the PCA data was compressed using the PCA (see

24—

5 Results

Episode | AEonAE PCA on AE BLon AE
50 0.0695 +3.214E-05 | 0.200 +1.155E-33 | 0.236 +6.784E-05
100 0.062 +8.509E-05 0.196 +0.00 0.232 +1.240E-05
150 | 0.0667+7.118E-05 | 0.192+0.00 | 0.230+3.288E-06
200

0.069 +6.137E-05 0.187 +0.00 0.229 +4.054E-06
Episode | AE on PCA PCA on PCA BLon PCA
50 0.001 +1.735E-09 | 0.005 +5.773E-19 | 0.035+1.861E-05
100 || 0.001+8.919E-09 | 0.003 +4.513E-19 | 0.0327 +4.940E-06
150 || 0.001+9.991E-08 | 0.003 +3.411E-19 | 0.0323 +4.783E-07
200 || 0.001+1.444E-06 | 0.003 +2.948E-19 | 0.032+7.072E-08

Table 5.3: Mean and variance of the density of the compressed representation of the three
approaches. Since two different compression methods are used, the results are of a dif-
ferent magnitude. The first table shows the result, when the autoencoder has been used
for dimensionality reduction, i.e. autoencoder data compressed by autoencoder (column
“AE on AE”), PCA data compressed by autoencoder (column “PCA on AE”) and baseline
data compressed by autoencoder (column “BL on AE”). The second table shows the results
for the PCA dimensionality reduction, i.e. autoencoder data compressed by PCA (column
“AE on PCA”), PCA data compressed by PCA (column “PCA on PCA”) and baseline data
compressed by PCA (column “BL on PCA”). Both sub tables show the results after 50, 100,
150 and 200 episodes. The best (lowest) result per row is marked bold.

Figure 5.5 ¢)) and the baseline data was compressed using both methods, autoencoder
(see Figure 5.5 b)) and PCA (see Figure 5.5 d)). When we compare the compressed rep-
resentation of autoencoder variant (Figure 5.5 a)) to the baseline approach compressed
with the autoencoder (Figure 5.5 b)), we can see that the data of the autoencoder variant
is spread out more in the available space than the baseline approach data, which results
in a higher entropy and a lower mean density. The maximum density of the baseline
approach data is also higher than that of the autoencoder variant data. The same ob-
servations can be made, when we compare the compressed representation of the PCA
(Figure 5.5 c)) to the baseline approach compressed using PCA (Figure 5.5 d)). The PCA
variant data is spread out more than the baseline approach data and has a lower maxi-
mum density, which again results in a higher mean entropy and a lower mean density.
So the plots of the density of the compressed representation of the three approaches are
confirming the results from performance measurement one and two.

— 25—

5 Results

) i) k))

Figure 5.4: Comparison of the absolute position of the endeffector of the autoencoder
and PCA variant as well as the baseline approach. The position of autoencoder variant is
shown in the first row after 50 a), 100 b), 150 c) and 200 d) episodes. The position of the
PCAvariant is shown in the second row after 50 €), 100 e), 150 f) and after 200 g) episodes.
The third row shows the position of the baseline approach after 50 i), 100 j), 150 k) and
after 200 1) episodes.

6 " 0.75 15
> > > >
= 2 30.50 B1.0
g g g g
a, a1o B0.25 Cos
0 0 055 0.2 0005500 255 3
Compressed Value Compressed Value Compressed Value Compressed Value
a) b) 0) d)

Figure 5.5: Comparison of the density of the compressed representation of the autoen-
coder variant, the PCA variant and the baseline approach after 200 episodes for the third
dimension. The compressed representation of the autoencoder data (a)) was obtained
compressing all state-action pairs gathered through the autoencoder version and com-
pressing it with the autoencoder. The compressed representation of the PCA data (c))
was obtained compressing all state-action pairs gathered through the PCA version and
compressing it with PCA. There are two plots for the compressed representation of the
baseline data, one where the state-action pairs, which were gathered by the baseline ap-
proach are compressed with the autoencoder (c)) and one were it was compressed using

PCA (d)).

26—

5 Results

5.3 Dimensionality Reduction

The two methods for dimensionality reduction used in this thesis are autoencoder
and PCA. To ensure that the compressed representation still accurately reflects the key
information of the original data, the recreational loss is computed using following Equa-
tion 5.3:

1 n
LX) = " Z(xi —y)?% forx; € Xandy, e YVi=1,..n (5.3)
i=1

where X € R" denotes the the input and Y € R” the recreated input.

The parameters, which were used for the autoencoder are listed in Appendix A in
Table A.3. The autoencoder in Python was realized with the PyTorch package [(Paszke
et al., 2019)]. The parameters, which were used for the PCA are listed in Appendix A in
Table A.5. The PCA was realized in Python with the Scikit-Learn package [(Pedregosa et
al., 2011)].

Table 5.6 shows the mean and variance of the loss of the autoencoder and PCA after
50, 100, 150 and 200 episodes. The best (lowest) value of each row is marked bold. It is
observable that the recreational error is low for each episode for both variants. Hence, it
can be concluded that the compressed representation of the data still accurately reflects
the key information of the original data.

Episode | Autoencoder | PCA
50 0.096 +2.304E-05 | 0.0377 +0.000
100 0.0927 +7.453E-06 | 0.0375+0.000
150 0.0983 +5.470E-05 | 0.038 +0.000
200 0.100 +0.000 0.0404 +0.000

Table 5.6: Mean and variance of the loss of the autoencoder (column labeled “Autoen-
coder”) and PCA (column labeled “PCA”) variant. The best (lowest) value per row is
marked bold.

Figure 5.7 furthermore shows the mean and variance of the autoencoder learning
process after different episodes. It can be seen in Figure 5.7 a) and Figure 5.7 b) that
the tendency of the loss quickly decreases in the first episodes, thus showing that the
learning process has been successful. In later episodes the loss is more stable and the
leaning process converges (see Figure 5.7 ¢) and d)).

—27—

5 Results

1.4 1.4
1.2 1.2
1.0 1.0
)])]
0 0.8 0 0.8
Sos Sos
0.4 0.4
0.2 0.2
0.0 0 5 10 15 0.0 0 5 10 15
Epoch Epoch
a) b)
1.4 1.4
1.2 1.2
1.0 1.0
)])]
on 08 Vos
Sos Sos
0.4 0.4
0.2 0.2
0.0 0 5 10 15 0.0 0 5 10 15
Epoch Epoch
c) d)

Figure 5.7: Comparison of the mean and variance of the loss of the autoencoder after 1
a), 2 b), 150 ¢) and 200 d) episodes.

—28—

Conclusion

The general problem in continuous state-action space is that traditional exploration
strategies for discrete state-action space such as the e-greedy algorithm cannot be di-
rectly applied. Furthermore, popular exploration strategies for continuous state-action
spaces like stochastic sampling explore in an uninformative manner, i.e. it is possible
that the exploration clusters around the initial state. This thesis presented a novel explo-
ration strategy for continuous state-action space, which performs well in exploring the
state-action space. The general idea is to determine the action based on the novelty of
the state-action pair. The novelty of the state-action pair is evaluated using the density
estimation of its compressed representation. The optimal action, which minimizes the
density is then determined by an optimizer. In this thesis the CMA-ES was used.

The novel exploration approach presented in this thesis has two variants, which dif-
fer in the method of how they reduce the dimensions of the search space, namely via
autoencoder and PCA. The novelty was twofold. One the one hand, instead of just en-
coding the state, like other exploration methods, the state-action pair was encoded. The
second novelty is that the best action for each decision point is actively searched by an
optimizer. The exploration itself was conducted on a simulated robot with seven degrees
of freedom in the simulation program CoppeliaSim.

Two performance measurements were used to evaluate the efficiency of both vari-
ants. The results of these measurements were compared to each other as well as to a
baseline approach. The first performance measurement regarded the entropy of the en-
coded state-action pairs. The results were as expected. Both the autoencoder and the
PCA variant had a higher mean entropy score than the baseline approach, which means
that their exploration range was wider than that of the baseline approach and thus their
exploration was more efficient. Additionally it was observable that the autoencoder vari-
ant had a greater entropy than the PCA variant, so the autoencoder is even more effi-
cient in the exploration. The second performance measure regarded the mean of the
exponentiated density of the Kernel Density Estimation. Again the results matched the
expectation that the novel exploration strategy is more effective. The autoencoder and
the PCA both had a smaller mean density than the baseline approach, which means that
their exploration covered a greater area than that of the baseline approach. It was also

—29—

6 Conclusion

observable that the PCA had a greater mean density than the autoencoder, which con-
firms again that the PCA performed worse than the autoencoder in exploration.

6.1 Potential Future Work

Future research could investigate further, which part of the novel exploration strategy
presented in this thesis had which effect. For example, it could be examined, which effect
the size of the data has, which was used for PCA and by the autoencoder and whether
this size should be fixed or flexible. It would be also interesting to see how influential
the structure of the autoencoder has been, i.e. whether an autoencoder with more layers
or a different activation function could yield better results. It would also be interesting
to see, which influence the CMA-ES had, i.e. whether the search process would yield
better results, when the (initial) mean, the population size and the maximum number of
iterations is changed.

—30-—

Bibliography

Abdi, H. and Williams, L. J. (2010). Principal component analysis. Wiley interdisciplinary
reviews: computational statistics 2, 433-459.

Baldi, P. (2012). Autoencoders, unsupervised learning, and deep architectures. In Pro-
ceedings of ICML workshop on unsupervised and transfer learning, pp. 37-49.

Bellemare, M., Veness, J., and Talvitie, E. (2014). Skip context tree switching. In Interna-
tional Conference on Machine Learning, pp. 1458-1466.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. (2016).
Unifying count-based exploration and intrinsic motivation. In Advances in neural infor-
mation processing systems, pp. 1471-1479.

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge uni-
versity press.

Chen, M,, Shi, X., Zhang, Y., Wu, D., and Guizani, M. (2017). Deep features learning for
medical image analysis with convolutional autoencoder neural network. IEEE Transac-
tions on Big Data.

Chou, P.-W., Maturana, D., and Scherer, S. (2017). Improving stochastic policy gradients
in continuous control with deep reinforcement learning using the beta distribution. In
International conference on machine learning, pp. 834-843.

Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved techniques for grid map-
ping with rao-blackwellized particle filters. IEEE transactions on Robotics 23, 34—46.

Hansen, N. (2016). The CMA evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772.

Hansen, N., Akimoto, Y., and Baudis, P. (2019). CMA-ES/pycma on Github. Zenodo, doi
10.

Hansen, N., Miiller, S. D., and Koumoutsakos, P. (2003). Reducing the time complexity
of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary computation 11, 1-18.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026-1034.

31—

Bibliography

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kusner, M. J., Paige, B., and Hernandez-Lobato, J. M. (2017). Grammar variational au-
toencoder. arXiv preprint arXiv:1703.01925.

Lillicrap, T. P, Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and Wier-
stra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recurrent neural net-
works. arXiv preprint arXiv:1601.06759.

Ostrovski, G., Bellemare, M. G., Oord, A. v. d., and Munos, R. (2017). Count-based explo-
ration with neural density models. arXiv preprint arXiv:1703.01310.

Paraschos, A., Daniel, C., Peters, J. R., and Neumann, G. (2013). Probabilistic movement
primitives. In Advances in neural information processing systems, pp. 2616-2624.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information processing systems, pp. 8026—
8037.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven exploration by
self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 16-17.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning
in Python. the Journal of machine Learning research 12, 2825-2830.

Rohmer, E., Singh, S. P., and Freese, M. (2013). Coppeliasim (formerly V-REP): a versatile
and scalable robot simulation framework. In Proceedings of The International Confer-
ence on Intelligent Robots and Systems (IROS),(Tokyo). Available online at: www. cop-
peliarobotics. com,

Schaal, S. (2006). Dynamic movement primitives-a framework for motor control in hu-
mans and humanoid robotics. Adaptive motion of animals and machines, Springer,
pp. 261-280.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust region policy
optimization. In International conference on machine learning, pp. 1889-1897.

Stachniss, C., Grisetti, G., and Burgard, W. (2005). Information gain-based exploration
using rao-blackwellized particle filters. In Robotics: Science and Systems, vol. 2, pp. 65—
72.

—32—

Bibliography

Stadie, B. C., Levine, S., and Abbeel, P. (2015). Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814.

Sutton, R. S.and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Wang, Z., Bapst, V., Heess, N.,, Mnih, V., Munos, R., Kavukcuoglu, K., and Fre-
itas, N. de (2016). Sample efficient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224.

Wold, S., Esbensen, K., and Geladj, P. (1987). Principal component analysis. Chemomet-
rics and intelligent laboratory systems 2, 37-52.

—33—

Experimental Setups

This chapter presents the setup of the experiments. The first section explains which
software was used and which robot was simulated. The second Section shows how the
exploration task can be expressed as a RL problem. The following sections present what
settings have been used for the autoencoder variant, the PCA variant, the baseline ap-
proach, the density estimation, the algorithms and the robot.

A.1 Details of the Environment

The robot which was used throughout this thesis is the KUKA LBR iiwa 7 R800 fab-
ricated by the company KUKA AG (its settings are shown in Table A.7). To simulate the
behavior of the aforementioned robot, the software CoppeliaSim [(Rohmer, Singh, and
Freese, 2013)] by Coppelia Robotics was used. The initial position of the robot arm within
the simulation environment is shown in Figure A.1. The code itself is written in Python.

Figure A.1: The initial position of the robot arm within the simulation environment Cop-
peliaSim.

—34—

A Experimental Setups

A.2 TaskformulationasaRL problem

Astate S, is defined as S,, = (6,,, w,,), where 6,, = (p,, ..., p,) refers to the position
in rad for each joint of the robot arm and w,, = (v, ..., v,) refers to the velocity in rad/s
for each joint of the robot arm while m is denoting the current decision step. The initial
state S, is defined as S, = (6,, w,). AnactionA,, is defined asA,, = (a, ..., a,) and refers
to the new desired velocity in rad/s for each joint of the robot arm. Together the state
S,, and A, form the state-action pair for later compression, which is often mentioned in
this thesis.

One second in the simulation consists of 20 50 millisecond steps. In this thesis this
is referred to as one decision step. At the start of each decision step a new action 4, is
chosen and at the end of the decision step the state velocity w,, should be equal to the
action 4,,, as is shown in Figure 4.2 b). Since an entire decision step consists of 20 inter-
mediate time steps, 18 of them have to be interpolated, based on the state velocity w;, at
the beginning of the decision step and the action A as is explained in Chapter 4.1.

A.3 Covariance Matrix Adaptation Evolution Strategy Settings

Parameters

In this thesis, a new action A, is chosen by the CMA-ES in the exploration variant I
4.2 and IT 4.2. Since the performance of the CMA-ES can vary based on what parameters
were used for the initialization, the following paragraph briefly states the parameters,
which were used in the experiments in this thesis. All further information refers to the
Python package pycma [(Hansen, Akimoto, and Baudis, 2019)]. The settings of the CMA-
ES are shown in Table A.2.

Mean | Standard Deviation | Population Size | Maximum of Iterations
Current state velocity | 0.25 | 16 | 50

Table A.2: Parameters used for the CMA-ES.

Objective Function

CMA-ES is supposed to choose the best action A, which is available at a certain de-
cision step. The metric for evaluating the “quality” of an action is done by the objective
function.

The objective function takes in all actions A,, which were proposed in this iteration
by the CMA-ES, each concatenated with the current state S,. These state-action pairs

A Experimental Setups

are then reduced in their dimensionality either by the autoencoder or by the PCA. After-
wards, a density estimation is performed on every state-action pair and evaluated on the
density estimation of the compressed representation of the entire data (in the case of the
autoencoder) or of the last L data points (in the case of the PCA). The action, whose state
action pair yielded the lowest density is then returned. The equation for this is shown in
Equation A.1L:

B+la—a] ifa>a,

) . (A1)
densityEstimation(s,a) else

f(s,a) = {

where s refers to the state, a to the (seven-dimensional) action and a, to the action con-
straint. B is the penalty value which is assigned, when the action exceeds the constraint.
In this thesis, B is set to 10 and a, to 10 degree (both for seven dimensions).

A.4 Autoencoder Settings

A two layer network architecture was chosen. The encoder reduces the input from
21 dimensions to 16 and the second layer reduces the dimension further to 5. Since the
autoencoder is symmetric, the decoder increases the dimensions subsequently from 5
to 16 to 21 dimensions. For the optimizer the Adam Optimization Algorithm [(Kingma
and Ba, 2014)] was chosen (see the settings of Adam in Table A.4) and for the activation
function PReLU [(He et al., 2015)] was used. The loss is calculated with the mean squared
error and the learning rate is set to 0.001. This is also shown in Table A.3.

The autoencoder itself is trained at the end of each episode for 20 epochs with all the
data, which has been acquired up to this point.

Layers | Nr. of Hidden Layers | Optimizer
2| 16 and 5 | Adam Optimization Algorithm
Act. Function ‘ Nr. of Epochs ‘ Loss Calculation
PReLU | 20 | Mean Squared Error

Table A.3: Parameters used for the Autoencoder.

Epsilon | Betas | Learning Rate
1E-08 | (0.9,0.999) | 0.001

Table A.4: Default settings of the Adam Optimization Algorithm.

—36—

A Experimental Setups

A5 PCA Settings

The PCA in this thesis was realized with the Scikit-learn package for Python [(Pe-
dregosa et al., 2011)]. The only parameters changed from their standard settings were
whitening, which was set on true and the number of components, which set to five (as in
the autoencoder). The (standard) settings can be seen in Table A.5.

Nr. of components | Whiten | SVD Solver
5 | True | Auto

Table A.5: The settings used for the PCA.

A.6 Baseline Settings

To evaluate the efficiency of the autoencoder and PCA variant, we compare it to the
baseline approach, which is simply randomly sampling an action from a normal distri-
bution X ~ A (#,0). The mean y is set to zero and the variance ¢ is set to -=, where w

2)
refers to the joint velocity constraint, which is set to 10 deg/sec.

A.7 Density Estimation Settings

To evaluate the novelty of a new state-action pair, density estimation is performed.
Thisis done using the Kernel Density Estimation of the Scikit-learn Python Package [(Pe-
dregosa et al.,, 2011)]. The settings, which were used in this thesis are shown in Table A.é6.

Kernel ‘ Bandwidth
Gaussian ‘ 0.5

Table A.6: Kernel density estimation settings.

A.8 Algorithm Settings

In the pseudo-pseudos the parameters N, M, L and K are used. The parameter N de-
notes the number of episodes per experiment and is set to 200, M denotes the number of
decision points per episode and is set to N, L denotes the number of previous episodes of
which the data is used for fitting the PCA and is set to 50 and K is the number of previous
episodes of which the data is used to fit the Kernel Density Estimator and is set to 20.

A Experimental Setups

A.9 Other Settings

In this thesis the agent, which conducted the exploration was the robot Kuka LBR
iiwa 7 R800 fabricated by the company KUKA AG. Its joint and velocity constraints are
shown in Table A.7. However, in this thesis the velocity constraint was set to 10 deg/sec
for each joint.

Joint 1 2 3 4 5 6 7
Joint constraint [deg] 170 | 120 | 170 | 120 | 170 | 120 | 175
Velocity constraint [deg/s] || 98 | 98 | 100 | 130 | 140 | 180 | 180

Table A.7: Constraints of the robot Kuka LBR iiwa 7 R800.

—38—

Position Plots

B.1 Baseline Exploration

Figure B.1: Position of 2. a), 3. b), 4. ¢), 5. d) and 6. e) joint after 200 episodes for one run
of the experiment of the baseline approach.

B.2 Autoencoder Exploration

39—

B Position Plots

— ﬂ/&%ﬂss
02005 Gy

—0.1995
X

a)

Figure B.2: Position of 2. a), 3. b), 4. ¢), 5. d) and 6. e) joint after 200 episodes for one run
of the experiment of the autoencoder variant.

B.3 PCA Exploration

L 0755
-0.2000 —0.0745y
X —0.1990

a)

Figure B.3: Position of 2. a), 3. b), 4. ¢), 5. d) and 6. e) joint after 200 episodes for one run
of the experiment of the PCA variant.

— 40—

	1 Introduction
	1.1 Motivation and Challenges
	1.2 Outlook

	2 Preliminaries
	2.1 Markov Decision Process
	2.2 Reinforcement Learning
	2.3 Dimensionality Reduction
	2.4 Density Estimation
	2.5 Optimization Problems
	2.6 Movement Primitives
	2.7 Exploration by Stochastic Sampling in Continuous State-Action Space

	3 Related Work
	3.1 Exploration Strategies in continuous State-Action Space
	3.2 Characterization of Robot Arm Trajectories

	4 State-Action Novelty-Based Exploration in MDP
	4.1 Trajectory Blending between two Decision Steps
	4.2 Exploration by Searching for the Minimal State-Action Pair Density

	5 Results
	5.1 Performance Measure for Exploration
	5.2 Effectiveness of the Exploration Strategy
	5.3 Dimensionality Reduction

	6 Conclusion
	6.1 Potential Future Work

	Bibliography
	A Experimental Setups
	A.1 Details of the Environment
	A.2 Task formulation as a RL problem
	A.3 Covariance Matrix Adaptation Evolution Strategy Settings
	A.4 Autoencoder Settings
	A.5 PCA Settings
	A.6 Baseline Settings
	A.7 Density Estimation Settings
	A.8 Algorithm Settings
	A.9 Other Settings

	B Position Plots
	B.1 Baseline Exploration
	B.2 Autoencoder Exploration
	B.3 PCA Exploration

