
Stochastic Optimal Control
on a Real Humanoid Robot
Stochastische Optimale Regelung auf einem Echten Humanoiden Roboter
Studienarbeit von Mike Smyk aus Offenbach am Main
Juli 2016

Stochastic Optimal Control on a Real Humanoid Robot
Stochastische Optimale Regelung auf einem Echten Humanoiden Roboter

Vorgelegte Studienarbeit von Mike Smyk aus Offenbach am Main

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Dr. Elmar Rückert
3. Gutachten:

Tag der Einreichung:

Abstract
For controlling high-dimensional robots, most stochastic optimal control algorithms use approximations of the system

dynamics and of the cost function (e.g., using linearizations and Taylor expansions). These approximations are typically

only locally correct, which might cause instabilities in the greedy policy updates, lead to oscillations or the algorithms

diverge. To overcome these drawbacks, we add a regularization term to the cost function that punishes large policy up-

date steps in the trajectory optimization procedure. We applied this concept to the Approximate Inference Control method

(AICO), where the resulting algorithm guarantees convergence for uninformative initial solutions without complex hand-

tuning of learning rates. We evaluated our new algorithm on two simulated robotic platforms. A robot arm with five

joints was used for reaching multiple targets while keeping the roll angle constant. On the humanoid robot Nao, we show

how complex skills like reaching and balancing can be inferred from desired center of gravity or end effector coordinates.

The results of the Nao are also evaluated on the real robotic platform, whereas most of the stochastic optimal control

methods are only evaluated in simulations.

Zusammenfassung
Um Roboter mit vielen Freiheitsgraden zu Regeln benutzen die meisten stochastischen optimale Regelungsalgorithmen

Näherungen der System Dynamik und der Kostenfunktion (zum Beispiel mit Hilfe von Linearisierung und Taylor Entwick-

lung). Allerdings sind diese Näherungen nur lokal korrekt und können zu Instabilitäten in den greedy policy updates,

Oszilationen oder Divergenz des Algorithmus führen. Um dies zu Umgehen wird ein Regularisierungsterm eingeführt.

Dieser grenzt die Größe der Updateschritte während der Optimierung der Trajektorie ein. Dieses Verfahren wird auf die

Approximate Inference Control Methode (AICO) angewendet. Der resultierende Algorithmus konvergiert auch für schlech-

te initiale Lösungen ohne komplexes manuelles anpassen von Lernraten. Der neue Algorithmus wird auf zwei simulierten

Roboterplatformen evaluiert. Mit einem Roboterarm mit 5 Freiheitsgraden werden mehrere Ziele angefahren, während

der Rollwinkel konstant bleibt. Auf dem humanoiden Roboter Nao werden komplexe Bewegungen gelernt, wie einen

Endeffektor Punkt anzufahren während die balance gehalten wird, mit Hilfe eines gewünschten Center of Gravity oder

der Endeffektor Koordinaten. Die Ergebnisse der Simulaiton des Nao Roboter werden zusätzlich auf der realen Plat-

form überprüft, wohingegen die meisten stochastischen optimalen Regelungsansätze lediglich in Simulationen überprüft

wurden.

i

Contents

1 Contribution 2
1.1 Implementation . 2

2 Related Work 4
2.1 Overview Table . 5

3 Stochastic Optimal Control (SOC) Methods 7
3.1 Bayesian inference for control . 7

3.2 Approximate inference control with Gaussians (AICO) . 7

3.3 Regulating the policy updates in AICO . 10

4 Experiments 11
4.1 Simulation Results . 11

4.2 Real Robot Results . 12

5 Conclusion 15
5.1 Future Work on Nao Experiments . 15

Bibliography 17

ii

Figures and Tables

List of Figures

2.1 A 5-degree-of-freedom robot arm has to reach for a via-point (the posture on the left in A) and return to its

initial pose (the posture on the right in A). The reaching task is encoded in four task objectives, i.e., three

Cartesian coordinates and the roll angle of the end effector. The inferred trajectories for the y coordinate

and the roll angle, including the objectives, are shown in (B). 4

3.1 Comparison of the convergence properties of iLQG, AICO and our robust variant, where the rate of con-

vergence is controlled via the parameter α. In the top row (A-B), the model of the forward dynamics was

approximated by a pseudo dynamics model [1]. In the bottom row, an analytic forward dynamics model

of a 5-degree-of-freedom robot arm was used. The panels in the first column denote the costs of the plan-

ning algorithms applied to a simple task, where the robot arm has to reach for an end effector target and

return to the initial state. In the second column (B,D), the robot has to keep additionally the roll angle

constant (at π/2). Shown are the mean and the standard deviations for 10 initial states ‘q0 sampled from

a Gaussian with zero mean and a standard deviation of 0.05. 8

4.1 Reaching task with the humanoid robot Nao. The robot has to reach a desired end effector position with

the right arm while maintaining balance. Eight snapshots of the inferred movement are shown in (A). In

(B), the convergence of the costs of the optimization procedure is shown, where we compare iLQG, the

standard implementation of AICO and the regularized variant. The mean and the standard deviations for

10 initial states ‘q0 are sampled from a Gaussian with zero mean and a standard deviation of 0.05. The

movement objectives for the right arm are shown in the left panel in (C). To counter balance, the robot

moves its left hand and the head. 11

4.2 Balancing task in the humanoid robot Nao. The robot should swing its hips, which is encoded by adding

an offset scalar to the x-coordinate of the center of gravity vector. In (A) 10 snapshots of the resulting

movement for an increasing planning horizon are shown for α = 1. The convergence properties of iLQG,

the standard AICO and its regularized variants are shown in (B). The mean and the standard deviations

for 10 initial states ‘q0 are sampled from a Gaussian with zero mean and a standard deviation of 0.05. In

(C) the x-coordinate of the center of gravity of the Nao is illustrated. The large dots denote the objectives. 12

4.3 Resulting end-positions of the learned movements applied to the real robotic platform Nao. The upper

body is not moving, except of the desired movements, as the comparison to the initial position shows. . . . 13

1

1 Contribution
This "Studienarbeit" is part of a journal submission that builds on a robotics conference paper [2]. Therefore, parts of the

work in [2] was replicated in this document with the permission of the authors. Section 3, Section 4.1 and Section 5 are

fully adopted from [2], as some parts of Section 2. Section 1.1, Section 4.2 and Section 5.1 are new.

1.1 Implementation

During this project a Command Line Interface for the Nao robot was developed, at the beginning of the project present

implementation of the Nao SL simulation was fixed, the present implementation of the RSOC was fixed, different cost

functions for the RSOC algorithm were implemented and evaluated, it was tried to integrate the SL simulation into the

RSOC optimization loop and the trajectories learned by the stochastic optimal controller were evaluated on the real

robotic platform Nao. In the following the parts are shortly explained.

1.1.1 Nao Hardware Interface

The first part of the project was to develop an interface to the real humanoid robot Nao. For this, a Command Line Inter-

face (CLI) was developed to execute planned trajectories directly on the robot. In the following the planned trajectories

are called movements. The movements have to be available as csv files. The CLI enables to choose different movement

sets, execute specific movements, setting the execution time of the movements and in case of a failure reconnect to the

robot.

The main challenges were first to understand how to communicate with the robot and then to figure out how the

coordinate systems of the joints are arranged, since they are different to the coordinate systems used in SL. Therefor, a

script was implemented which prints the values of the joints to the console with 10 Hz.

All the code is provided in the sl_nao Git repository of IAS1.

1.1.2 Fix Nao SL

When the project started the present version of the SL simulation of the Nao robot was not working, since the IAS version

of SL is under active development in contrary to the Nao SL project. The robot was not standing on the ground after

spawning. It appeared that there was a major problem with the CMakeLists.txt file of the sl_nao project and some small

things in other files, which have been fixed, such that the sl_nao project can now be used within the present version of

the IAS implementation of SL again.

1.1.3 Fix Provided Code Base

In the beginning the main idea of this project was to use a given implementation of the RSOC algorithm and optimization

loop, develop some cost functions and apply the results on the real robot. Since the present code was not working, the

next challenge was to get the present code base to run.

With the fixed code the evaluation of the cost functions and target positions could begin.

1.1.4 Integrate SL Simulation in RSOC

During evaluation of different cost functions it turned out there is a problem with the base coordinate system. Since the

goal was to control the robot by getting to a target position with the Center of Gravity (CoG) it is required to have the

current CoG in world coordinates. When the a control input is applied to the robot the CoG is moving. A problem occurs

if due to the movement also the base coordinate system of the robot moves. The dynamic model of the robot that is used

during trajectory optimization does not take the current state of the base coordinate system into account. So in case the

base coordinate system is moving during the trajectory the world coordinates of the CoG used in the optimization differ

1 https://git.ias.informatik.tu-darmstadt.de/

2

https://git.ias.informatik.tu-darmstadt.de/

to the real ones when the learned trajectory is applied to the robot. The resulting trajectory will not have the desired

behavior of the CoG. Since appending the state of the base coordinate system to the state vector in the optimization loop

failed in a previous project an other approach was tried.

To get the base coordinate system moved when applying controls to the robot the current trajectory that was calculated

by the optimization algorithm was applied and executed in the SL simulation instead of just using the dynamics model

provided by SL. The advantage is on one hand to get a more realistic trajectory that is learned in the end and on the other

hand with this approach also falling of the robot can be included in the cost function. Before falling was not modeled by

the dynamics model.

To get the SL simulation integrated in the RSOC algorithm a new SL task was implemented, which is able to get trajec-

tories from Matlab using the shared memory library and reset the robot in case it fell down. The new task executes the

received trajectory and saves the trajectories of the CoG and the endeffectors. This data is used to calculate the costs of

the trajectory.

Two major problems occurred using this approach. The current implementation of SL simulation is much too slow to use

it inside the optimization loop. More precisely there is a problem when it is tried to initialize an episode out of Matlab. SL

is waiting for a semaphore to be freed, which can take from several seconds up to minutes. Since the simulation would

have to be called multiple times in every iteration it would not be practical to use it.

But even if the time of initializing the robot could be shortened there would be an other problem. When using the

simulation to evaluate a certain joints state of the robot it is required to get the robot directly to the desired position. In

SL it is only possible to apply states the robot should go to from its initial position or its position it is currently in. So

when a position is applied to the robot it should go to, the robot can overshoot, destabilize itself and fall even if it would

not in this position.

In summary it can be said that using the simulator instead of the dynamics model is not practicable, at least not with SL.

1.1.5 Evaluation on Real Robot Nao

Most stochastic optimal control approaches are only evaluated in simulations, with the exception of e.g. [3] (7-DoF

robotic arm) and [1, 4] (7-Dof robotic arm with an attached hand). Hence, as last part of this project the resulting

trajectories were evaluated on the real robot Nao, using the CLI mentioned earlier. Even though, there were problems

with the base coordinate system it was possible to learn movements without moving the base. The experiments and the

results are discussed in more detail in Section 4.2.

3

2 Related Work
Typical whole body motor control tasks of humanoids, like reaching for objects while walking, avoiding obstacles during

motion, or maintaining balance during movement execution, can be characterized as optimization problems with multiple

criteria of optimality or objectives. The objectives may be specified in the robot’s configuration space (e.g., joint angles,

joint velocities and base reference frame), in task space (where objectives such as desired end effector coordinates or

center of gravity positions are specified), or in combinations of both. In this paper, we consider control problems in

nonlinear systems with multiple objectives in combinations of these spaces.

A common strategy to whole body motor control is to separate the redundant robot’s configuration space into a task space

and an orthogonal null space. Objectives or optimality criteria of motion are implemented as weights or priorities [5] to

the redundant solutions in the null space. While these approaches have been successfully applied to a variety of tasks,

including reaching, obstacle avoidance, walking and maintaining stability [6, 7, 8, 9], the application of these methods is

typically limited to motor control and can not be directly used for motor planning. It is also unclear how these methods

can be applied to motor control problems in nonlinear systems like compliant robots.

Alternatively, in Stochastic Optimal Control (SOC) problems [10], a movement policy is optimized with respect to a

cost function, which combines the different criteria of optimality with different weightings. For nonlinear systems, SOC

methods use approximations of the system dynamics and of the cost functions, e.g., through linearizations and 2nd order

Taylor expansions. These approximations are only locally correct and the updates of the policy may become unstable if

the minima is not close to the points of the linearizations, or may oscillate in the case of multiple solutions.

Many SOC methods address this issue and implement regularizations on the algorithmic level. E.g., in the iLQG method

[11] a diagonal regularization term is added to the control cost Hessian1, and in an extension [12], it was suggested

to penalize deviations from the state trajectory used for linearization rather than controls. In [12] this approach is

shown to work for a 22-DoF humanoid robot in simulation to perform complex tasks like getting up from ground. In

[3] iLQG is used to learn a compliant optimal feedback controller for a real 7-DoF robot arm to solve reaching tasks.

A drawback of this approach is that the additive regularization term needs rapid re-scaling to prevent divergence and

accurate fine-tuning of a learning rate to find good solutions, which is challenging and increases the computational time

of the algorithm.

Probabilistic planning methods that translate the SOC problem into an inference problem, typically implement learning

rates in their belief updates [13] or in the feedback controller [14]. In [13] the approximate inference control (AICO) is

used to control a 39-DoF humanoid robot in simulation performing several reaching tasks. In [1] a real 14-DoF Schunk

arm is controlled to perform a real world blocks world scenario, by using AICO. However, in nonlinear systems, both

strategies are suboptimal in the sense that even with a small learning rate on the beliefs the corresponding control

updates might be large (and vice-versa, respectively).

Figure 2.1: A 5-degree-of-freedom robot arm has to reach for a via-point (the posture on the left in A) and return to its

initial pose (the posture on the right in A). The reaching task is encoded in four task objectives, i.e., three

Cartesian coordinates and the roll angle of the end effector. The inferred trajectories for the y coordinate and

the roll angle, including the objectives, are shown in (B).

1 The update step in the trajectory optimizer corresponds to a Gauss-Newton Hessian approximation [12].

4

Instead of using one linearization of the system the SOC problem can be linearized in each iteration around a current

minimal cost state [15]. In contrast to the AICO approach there is no need of a additional line search to ensure conver-

gence. For systems with imperfect sensing this approach can also be extended to work in the robots belief space [16]. A

drawback of those approaches is the requirement of the inverse stochastic dynamics.

All of the introduced approaches depend on the quality of the used model and on the linearizations. A model-free

approach for learning a controller is Pi2 introduced in [17]. It is a reinforcement learning approach that is derived from

SOC methods. Pi2 is used to learn full-body motor skills on a 34-DOF humanoid robot [17] and to perform reaching and

pick-and-place tasks for a real 7-Dof robotic arm with a three fingered 4-DoF hand [4]. However, applying reinforcement

learning to real robotic platforms is time-consuming and costly. The learning phase can be done in simulation, but then

the approach again depends on the simulation model of the robot and the benefit of the reinforcement learning approach,

being model-free, is lost.

2.1 Overview Table

Method Experiments Notes Diff to RSOC Year Ref.

RSOC • 5-DoF robot arm (sim)

• Nao (sim and real)

• Forward and backward propa-

gation (AICO)

• Uses AICO and applies regular-

ized cost function to it

• Computes a controller

2014 [2]

iLQG • Inverted Pendulum

(sim)

• Model of human arm

(sim)

• 22-DoF humanoid model

(sim)

• Locally-optimal feedback con-

trol of constrained nonlinear

stochastic systems

• No noise compensation

• Dynamic programming method

that use quadratic approxima-

tions to the optimal cost-to-go

function

• Only for fully observable system

regularization on

algorithmic level

[“diagonal regu-

larization term is

added to the control

cost Hessian”]

2005

2012

[11]

[12]

iLQG • 7-DoF robot arm (real) • Applied iLQG to real rootic plat-

from to achive a compliant op-

timal feedback controler

• Had to specify real robot con-

traints like effects of coriao-

lis and centripedal effects, joint

friction and gravity loading de-

pending on joint angles

For Nao the effects

of the forces (e.g.

coriolis) can be ig-

nored, since torques

on joints occur from

those are small. For

barrett more impor-

tant.

2010 [3]

AICO • 39-DoF humanoid robot

(sim)

• Local approximate solution to

the SOC problem that is fast to

compute

• Generlaize algorithms like iLQG

to non-LQG problems

Regularization on al-

gorithmic level

2009 [13]

5

ELQR • iRobot Create

differential-drive robot

(sim)

• Quadrotor helicopter

(sim)

• Applies to non-Linear dynam-

ics and non-quadratic cost func-

tions

• Linearizes dynamics and

quadratizes cost function in

each iteration around current

min-cost state

• Uses ”LQR-smoothing” to

search for state which produces

minimal total cost

• No line search needed

No line search

(AICO); Uses “LQR-

smoother”; Not used

for humanoid robots

2013 [15]

SELQR • Car-like Robot in a 2-D

Environment (sim)

• Quadrotor in a 3-D Envi-

ronment (sim)

• Medical Needle Steering

for Liver Biopsy (sim)

• Can optimize in state space and

in belief space (if states are not

observable or hard to observe

because of noise)

• “LQR-smmothing” based on

Kalman smoother

• Extension to POMDPs (to plan

in belief space)

Not used for hu-

manoid robots

2015 [16]

Pi2 • 34-DOF Robot (sim) • Model free reinforcement learn-

ing

• Only forward roll-outs

• Computes a DMP

No regulariza-

toin of roll-outs;

Concentrates on

manipulation tasks;

Drawback model-

free: Necessary to

interact with robot

in every iteration

2010

2012

[17]

[4]

6

3 Stochastic Optimal Control (SOC) Methods

We consider finite horizon Markov decision problems1. Let qt ∈ Q denote the current robot’s state in configuration space

(e.g., a concatenation of joint angles, joint velocities and reference coordinates in floating base systems) and let vector

x t ∈ X denote task space features like end effector positions or the center of gravity of a humanoid (these features will be

used to specify a cost function later). At time t, the robot executes the action ut ∈ U according to the movement policy

π(ut |qt).

The chosen action at the current state is evaluated by the cost function Ct(qt , ut) ∈ R
1 and results in a state transition

characterized by the probability P(qt+1|qt , ut). In Stochastic Optimal Control (SOC), the goal is to find a stochastic policy

π∗ that minimizes the expected cost

π∗ = argmin
π
〈CT (qT) +

T−1
∑

t=0

Ct(qt , ut) 〉qπ , (3.1)

where the expectation, denoted by the symbols 〈·〉, is taken with respect to the trajectory distribution

qπ(q0:T , u0:T−1) = P(q0)

T−1
∏

t=0

π(ut |qt)P(qt+1|qt , ut) , (3.2)

where P(q0) is the initial state distribution.

3.1 Bayesian inference for control

An interesting class of algorithms to SOC problems have been derived by reformulating the original Bellman formulation

in (3.1) as an Bayesian inference problem [20, 21, 22, 23]. Instead of minimizing costs, the idea is to maximize the

probability of receiving a reward event (rt = 1) at every time step

p(rt = 1|qt , ut)∝ exp{−Ct(qt , ut)} . (3.3)

Note that the idea of turning the cost function in Eq. (3.1) into a reward signal was also used in operational space control

approaches [24, 25].

In the probabilistic framework, we want to compute the posterior over state and control sequences, conditioning on

observing a reward at every time step,

pπ(q0:T , u0:T−1|r0:T = 1) = exp{−CT (qT)}qπ(q0:T , u0:T−1)

T−1
∏

t=1

p(rt = 1|qt , ut) . (3.4)

For efficient implementations of this inference problem, a number of algorithms have been proposed that apply iterative

policy updates assuming that all probability distributions can be modeled by an instance of the family of exponential

distributions [13, 26, 27]. We will restrict our discussion on the Approximate Inference Control (AICO) algorithm with

Gaussians [13].

3.2 Approximate inference control with Gaussians (AICO)

We consider system dynamics of the form qt+1 = f (qt , ut) + ε with ε denoting zero mean Gaussian noise. In AICO (with

Gaussians), the system dynamics are linearized through 1st order Taylor expansions, i.e., P(qt+1|qt , ut) =N (qt+1|Atqt+

at + Bt ut ,Q t), where the state transition matrix At , the linear drift term at and the control matrix Bt are often computed

with derivatives simulated through finite differences methods. The numerical stability of AICO also depends on the

accuracy of the linearized model, we will therefore additionally compare to an approximation of the system dynamics,

1 Note that the same principle of regulating the update steps in trajectory optimization can also be applied to planning algorithms in infinite

horizon problems such as [18, 19]

7

Figure 3.1: Comparison of the convergence properties of iLQG, AICO and our robust variant, where the rate of con-

vergence is controlled via the parameter α. In the top row (A-B), the model of the forward dynamics was

approximated by a pseudo dynamics model [1]. In the bottom row, an analytic forward dynamics model of

a 5-degree-of-freedom robot arm was used. The panels in the first column denote the costs of the planning

algorithms applied to a simple task, where the robot arm has to reach for an end effector target and return

to the initial state. In the second column (B,D), the robot has to keep additionally the roll angle constant (at

π/2). Shown are the mean and the standard deviations for 10 initial states ‘q0 sampled from a Gaussian with

zero mean and a standard deviation of 0.05.

where controls ut correspond directly to joint accelerations2. We will refer to this approximation as pseudo-dynamic

model.

We propose to add a regularization term to the cost function. Before explaining the regularization term in more detail,

we briefly discuss how different objectives are implemented in AICO. In the simplest case, the task-likelihood function in

(3.3) can be split into separate state and a control dependent terms, i.e.,

p(rt = 1|qt , ut) =N [qt |rt , Rt]N [ut |ht , Ht] , (3.5)

where, for analytical reasons, the Gaussians are given in canonical form, i.e.,N [ut |ht , Ht]∝ exp(−1/2 uT
t

Ht ut + uT
t

ht).

Note that the vector rt in (3.5) denotes the linear term for the Gaussian distribution and must not be confused with the

auxiliary variable rt = 1 in (3.3) denoting a reward event. By inserting (3.5) in (3.3) we obtain the quadratic costs,

Ct(qt , ut) = q T
t

Rtqt − 2r T
t

qt + uT
t

Hut − 2hT
t
ut . (3.6)

The state dependent costs, encoded by N [qt |rt , Rt], can be defined in configuration space3, in task space4, or even in

combinations of both spaces [22].

On the algorithmic level, AICO combines forward messages and backward messages to compute the belief over trajec-

tories. We represent these Gaussian forward message by N[qt |st , St], the backward message by N[qt |vvv t , Vt], and the

belief by N[qt |bt , Bt]. The recursive update equations are given in [13] and in [14] where an implementation which

additionally implements control constraints (otherwise ht = 0) is given.

We can also compute the most likely action given the task constraints. By doing so, in the case of AICO with Gaussians,

we obtain a time varying linear feedback controller

u
[n]
t = ot +Otqt , (3.7)

where ot is an open loop gain and Ot denotes the feedback gain matrix (n denotes the iteration).

2 For a single joint with q = [q, q̇]T , the matrix A=
�

1 τ
0 1

�

, a =
�

0
0

�

, and B =
�

τ2

τ

�

, where τ denotes the time step.
3 Reaching a goal state g ∗ ∈ Q in configuration space can be encoded by rt = Rt g

∗ where the precision matrix Rt scales the importance of

different dimensions.
4 Let x ∗ ∈ X denote a desired end effector position and let x = f (q) be the forward kinematics mapping and J(qt) = ∂ f /∂ q |q = qt its

Jacobian. We can now obtain a Gaussian task likelihood by approximating the forward kinematics by its linearization through the Jacobian,

i.e., x ≈ f (q0) + J(q − q0). The parameters of the Gaussian are then given by rt = J T C
�

f (q0)− x ∗
�

and Rt = J T CJ , where the diagonal

elements of the matrix C specify the desired precision in task space.

8

Algorithm 1: Approximate Inference Control with Regularized Update Steps

1 Input: initial state q0, parameter α[0], threshold θ

2 Output: feedback control law o0:T−1 and O0:T−1

3 initialize q
[0]

1:T
= q0, S0 = 1e10 · I, s0 = S0q0, n= 1

4 while not converged do

5 q
[n−1]

0:T
= q

[n]

0:T

6 for t ← 1 to T do

7 linearize model: At , at , Bt

8 compute: Ht , ht , Rt , rt

9 update: st , St , vvv t , Vt , bt , and Bt

10 if ‖bt − q
[n]
t ‖> θ then

11 repeat this time step

12 t ← t − 1

13 q
[n]
t = B−1

t
bt

14 for t ← T − 1 to 0 do

15 ..same updates as above...

16 for t ← 0 to T − 1 do

17 compute feedback controller: ot , Ot

18 u
[n]
t = ot +Otqt

19 q
[n]

t+1
= Atq

[n]
t + at + Bt u

[n]
t

20 n= n+ 1

21 α[n] = α[n−1]γ

22 return o0:T−1 and O0:T−1

3.2.1 Evaluation of the convergence properties of AICO

To investigate the convergence properties of AICO, we use a simulated light-weight robot arm [28] with five joints. The

robot has to reach a desired end effector position in Cartesian space and subsequently has to return to its initial pose.

To increase the complexity, we define a second task, where the robot should additionally keep the roll angle of the end

effector constant. For this task, we used the cost function

Ct(qt , ut) =

¨

104(x i − x t)
T (x i − x t) if t = T i

10−2uT u else
, (3.8)

where x i denotes the desired robot postures in task space at times T 1 = 500 and T 2 = 103 (the planning horizon is

2 seconds with a time step of 2ms) with x 1 = [1,−0.4,0, 0,π/2, 0]T and x 2 = [1,0, 0,0,π/2,0]T . Note that we do not

assume any initial solution to initialize the planner, solely the initial posture of the robot in configuration space is used

as initial ‘trajectory’. An example movement is shown in Figure 2.1.

Using the pseudo-dynamics approximation of the system dynamics, the convergence rate of the costs per iteration of both

tasks are shown in Figure 3.1A,B. For the simple task in Figure 3.1A the inferred cost values converge fast for all algo-

rithms, with the standard AICO algorithm showing the best performance. However, the fast convergence also comes with

the costs of a reduced robustness of the policy update as can be seen from the results in the second scenario illustrated in

Figure 3.1B, where AICO is unstable and cannot infer solutions with low costs. When we used the analytic forward dy-

namic model (where the linearizations are computed through finite differences) instead of the pseudo dynamics model,

computing the messages in AICO became numerically unstable and no solutions could be inferred. Therefore, the panels

in Figure 3.1C,D do not include results of AICO. We also evaluated the iLQG method [11] that implements an adaptive

regularization schedule and line search to prevent divergence [12]. While the iLQG algorithm performed well for the

pseudo dynamics model, the learning rate was automatically decreased to almost zero for the analytical dynamics model.

Our regularization method for AICO, that we will present in the next section, considerably outperformed both competing

methods.

9

3.3 Regulating the policy updates in AICO

To regularize the policy update steps in (3.1), we add an additional cost term to the task-likelihood function, i.e.,

p(rt = 1|q
[n]
t , u

[n]
t)∝ exp{−Ct(q

[n]
t , u

[n]
t)−α

[n](q
[n]
t − q

[n−1]
t)T (q

[n]
t − q

[n−1]
t)} , (3.9)

which punishes the distance of the state trajectories of two successive iterations of the algorithm (n denotes the iteration).

The parameter α controls the size of the update step. For large α, the trajectory update will be conservative as the

algorithm will stay close to the previous trajectory that has been used for linearization. For small α values, the new

trajectory will directly jump to the LQG solution given the linearized dynamics and the approximated costs. Hence, α

is inverse proportional to the step size. The value of α is updated after each iteration according to α[n] = α[n−1]γ. For

α[0] ≥ 1 and γ > 1, convergence is guaranteed as the regularization term will dominate with an increasing number of

iterations.

The algorithms is listed in Algorithm 1. An interesting feature of this algorithm is that no learning rate is needed as α is

used directly to implement a step size. In the original formulation of AICO the learning rate is either applied to the state

update (in Line 13 in Algorithm 1) [13] or to the feedback controller (in Line 18 in Algorithm 1) [14]. However, neither

implementation can guarantee convergence in nonlinear systems or in tasks with costs inducing a nonlinear mapping

from Q to X.

10

4 Experiments
We evaluate the resulting algorithm on the same robot arm reaching tasks. For both tasks, the Cartesian planning task

in Figure 3.1A,C and the extension with the additional roll angle objective in Figure 3.1B,D, we evaluated AICO with the

regularization parameter α ∈ {1,10} (we did not increase α and γ = 1). For both models of the system dynamics, the

pseudo-dynamics approximation (shown in Figure 3.1A,B) and the analytic model (illustrated in Figure 3.1C,D), AICO

benefits from the regularization term and the costs decay exponentially fast. Interestingly, without “good” initial solutions,

the differential dynamic programming method iLQG [12] that implements a sophisticated regularization scheme cannot

generate movement policies with low costs when using the analytic model. This is shown in Figure 3.1C,D.

4.1 Simulation Results

We evaluated the proposed planning method in simulation with the humanoid robot Nao. The Nao robot has 25 degrees-

of-freedom. In first experiments, we investigated the performance of the planner with a pseudo-dynamics model of the

robot.

The humanoid had to reach for an end effector target using the right arm while maintaining balance. In a second

experiment, Nao had to shift the x-coordinate of the center of gravity while maintaining balance.

4.1.1 Arm reaching with a humanoid robot

The humanoid has to reach for the end effector target x ∗ = [0, 0.2,0.06]T , where only the y- and the z- Cartesian

coordinates are relevant. Additionally, the robot has to maintain balance, which is implemented as deviation of the center

of gravity vectors from its initial values xCoG(t = 0), i.e., we specify the desired center of gravity as x ∗CoG = xCoG(t = 0).

The same cost function as in the experiments for the light weight robot arm in (3.8) is used. For this task, however, only a

single via-point is defined that is used for the desired end effector target and the center of gravity, i.e., x 1 = [x ∗T
, x ∗CoG

T]T .

Only by specifying two scalars in x ∗ (the scaling parameters in (3.8) are constants that take the values 104 or 10−2),

the planning algorithm infers 50-dimensional state trajectories (the state qt at time t encodes the joint angles and the

joint velocities, ignoring the base frame). This is shown in Figure 4.1A for the proposed planning algorithm with the

regularization parameter α= 1. As in the robot arm experiments, the Approximate Inference Control (AICO) algorithm

Figure 4.1: Reaching task with the humanoid robot Nao. The robot has to reach a desired end effector position with

the right arm while maintaining balance. Eight snapshots of the inferred movement are shown in (A). In (B),

the convergence of the costs of the optimization procedure is shown, where we compare iLQG, the standard

implementation of AICO and the regularized variant. The mean and the standard deviations for 10 initial

states ‘q0 are sampled from a Gaussian with zero mean and a standard deviation of 0.05. The movement

objectives for the right arm are shown in the left panel in (C). To counter balance, the robot moves its left

hand and the head.

11

Figure 4.2: Balancing task in the humanoid robot Nao. The robot should swing its hips, which is encoded by adding an

offset scalar to the x-coordinate of the center of gravity vector. In (A) 10 snapshots of the resulting movement

for an increasing planning horizon are shown for α = 1. The convergence properties of iLQG, the standard

AICO and its regularized variants are shown in (B). The mean and the standard deviations for 10 initial states

‘q0 are sampled from a Gaussian with zero mean and a standard deviation of 0.05. In (C) the x-coordinate of

the center of gravity of the Nao is illustrated. The large dots denote the objectives.

benefits from the regularization. As can be seen in Figure 4.1B, AICO cannot infer movement solutions with low costs

without regularization.

Interestingly, to maintain balance, the humanoid utilizes its head and its left arm for which no objectives were explicitly

specified. This effect is a feature of model-based planning methods that consider the coupled dynamics and is best

illustrated in Figure 4.1C, where the end effector trajectories of both arms and the desired target values are shown.

4.1.2 Balancing with a humanoid

In this task the humanoid has to balance on one foot by moving its center of gravity. In this experiment, we specify three

desired via-points for the center of gravity, i.e., x i = x i
CoG with i = 1, ..., 3. The last via-point is set to the initial center

of gravity xCoG(t = 0). The first via-point has an offset of 0.1m in the x-coordinate of xCoG(t = 0) to force the robot to

move its center of gravity to the right. The second via point has the same negative offset in the x-direction to exhibit

a movement to the left. The planning horizon was three seconds (T 1 = 100,T 2 = 200 and T 3 = 300 with τ = 10ms)

and the distance matrix C in (3.8) was scaled with the importance weights [106, 10, 10]T for the x,y, and z coordinate of

x i
CoG.

For α = 1, the resulting movement is illustrated in Figure 4.2A. Illustrated are 10 snapshots. Nao first moves its hip to

the right (with respect to the robot frame) and thereafter to the left. This movement is the result of an inference problem

encoded in mainly two scalars, i.e., the offsets.

The standard implementation of AICO was not able to infer successful balancing solutions, which is illustrated in Figure

4.2B. In contrast, the regularized variant using α ∈ {1, 10} converged after 25 iterations of the trajectory optimization

procedure. For α= 1, the x-coordinate of the center of gravity and the implemented objectives are shown in 4.2C.

4.1.3 Computational time

The computational time of the proposed planning algorithm is the same as for the standard implementation of AICO. If

the algorithm is implemented in C-code it achieves real time performance in humanoid planning problems [13]. However,

for our experiments we used a Matlab implementation on a standard computer (2.4GHz, 8GB RAM), where, e.g., the

computation of the balancing movements in Figure 4.2 took less then 50 seconds (which includes all 25 iterations of the

optimization process). The movement duration of the executed trajectory was three seconds.

4.2 Real Robot Results

Most stochastic optimal control approaches are only evaluated in simulations, with the exception of e.g. [3] (7-DoF

robotic arm) and [1, 4] (7-Dof robotic arm with an attached hand). Hence, our planning method was also evaluated

12

(a) Initial position (b) Arm Reaching Task

(Video: https://goo.gl/S7FRz1)

(c) Joint Space Task

(Video: https://goo.gl/C7pxWW)

Figure 4.3: Resulting end-positions of the learned movements applied to the real robotic platform Nao. The upper body

is not moving, except of the desired movements, as the comparison to the initial position shows.

with the real robotic platform Nao to show the results gained in simulation also work in a real environment. Therefor,

the planner is first trained with the pseudo-dynamics model of the robot and then evaluated on the real robot. As the

simulated robot, the real Nao has 25 degrees-of-freedom.

The first task is the same as in 4.1.1, where the robot has to reach an end effector target using his right arm. In an

additional experiment the Nao has to reach a given position in joint space while keeping balance.

4.2.1 Arm reaching with a humanoid robot

As a first experiment the results from 4.1.1 are applied to the real robot Nao. Again the robot has to reach for the

end effector target x ∗ = [0,0.2, 0.06]T , while maintaining balance. In Figure ?? the resulting movement is shown in

comparison to the simulated movement. Without additional information, like friction models, the movement, shown in

simulation, can be replicated on the real platform using the same planner. A video of the movement can be watched

under https://goo.gl/9Ic0qS.

4.2.2 Joint Space Task

In this task the robot has to reach a certain position in joints space without moving its center of gravity (CoG). The robot

has to raise both of his arms while turning the head and fixing the CoG. As joint position targets the following joint

angles were specified as targets: The right shoulder pitch (RShoulderPitch) has to turn 1.2 rad, the right shoulder roll

by 0.2 rad, the right elbow yaw turns 0.5 rad, the right elbow roll by −0.95 and the right wrist yaw by 1 rad and the left

shoulder pitch has to turn 0.8 rad. The CoG should stay at its zero position during the whole movement, the difference

of the CoG is weighted with 102 in every dimension. The cost function is similar to Equation 3.8

Ct(qt , ut) =

¨

104(q i − qt)
T (q i − qt) if t = T i

10−2uT u else
, (4.1)

where q i denotes the desired robot postures in joint space at times T 1 = 100 (the planning horizon is 1 second with a

time step of 1ms), whereas only the joint angles are considered in the cost function for which target positions are defined.

13

https://goo.gl/S7FRz1
https://goo.gl/C7pxWW
https://goo.gl/9Ic0qS

For the joints which have no defined target the current position is not considered in the cost function. The regularization

parameter α is set to 1.

Figure 4.3c shows the resulting end position of the trajectory. A video of the movement can be watched in https://goo.

gl/C7pxWW, where the simulation and the real robot is shown in parallel. For comparison here https://goo.gl/xpmHE1

is the same target state of the robot but applied buy the SL goto funtion, without any constraints of the CoG. It can be

seen that the robot is leaning forward, since the weight of the arms is pulling it. The optimization algorithm is preventing

this behavior.

4.2.3 Computational time

For learning the showed trajectory with a duration of one second the Matlab implementation of the algorithm on a

2.6GHz Computer with 16GB RAM took about 3 minutes for 25 iterations.

14

https://goo.gl/C7pxWW
https://goo.gl/C7pxWW
https://goo.gl/xpmHE1

5 Conclusion
Stochastic Optimal Control (SOC) methods are powerful planning methods to infer high-dimensional state and control

sequences [11, 12, 13, 26]. For real time applications in humanoids, efficient model predictive control variants have

been proposed [12]. However, the quality of the generated solutions heavily depends on the initial movement policy and

on the accuracy of the approximations of the system dynamics. Most methods use regularization to prevent numerical

instabilities, but typically greedily exploit the approximated system dynamics model. The resulting trajectory update

might be far from the previous trajectory used for linearization.

As the linearizations are only locally valid, we explicitly avoid large jumps in the trajectories by punishing large devi-

ations from the previous trajectory. We demonstrated in this paper that SOC methods can greatly benefit from such a

regularization term. We used such regularization term for the Approximate Inference Control (AICO) algorithm [13].

Due to the regularization term, which implicitly specifies the step size of the trajectory update, no learning rate as in

the standard formulation of AICO is needed. Our experiment shows that the used regularization term considerably out-

performs existing SOC methods that are based on linearization, in particular if highly non-linear system dynamics are

used.

An interesting open question is if the proposed regularization parameter facilitates a combination of SOC and model

learning approaches. Typically, inaccurate model predictions have catastrophic effects on the numerical stability of SOC

methods. In particular, if the model predictions are poor, the SOC method should not further explore but collect more

data around the current trajectory. Such idea could be implemented by modeling the regularization parameter as a

function of the model uncertainty.

5.1 Future Work on Nao Experiments

As future work it should be tried again to implement the previously failed approach mentioned in Section 1.1.4, i.e.

appending the position and orientation of the base coordinate system to the state vector inside the optimization loop. As

shown, using the SL simulation for computing the costs is not applicable. Providing the dynamics model with the base

state vector seems to be the most promising approach in combination with SL. Because of the many other issues arisen

during the project there was no time to implement and test this approach again.

As described in Section 1.1 there have been many problems posed by using SL. Consideration should be given using an

other simulation software, with an active development of the community or some company and with a direct connection

to Matlab, as for example V-Rep1 or Webots2, which both already have an integrated Nao model.

1 http://www.coppeliarobotics.com/index.html
2 https://www.cyberbotics.com/

15

http://www.coppeliarobotics.com/index.html
https://www.cyberbotics.com/

Bibliography
[1] M. Toussaint, N. Plath, T. Lang, and N. Jetchev, “Integrated motor control, planning, grasping and high-level rea-

soning in a blocks world using probabilistic inference,” in ICRA, pp. 385–391, 2010.

[2] E. Rueckert, M. Mindt, J. Peters, and G. Neumann, “Robust policy updates for stochastic optimal control,” in 2014

IEEE-RAS International Conference on Humanoid Robots, pp. 388–393, Nov 2014.

[3] D. Mitrovic, S. Nagashima, S. Klanke, T. Matsubara, and S. Vijayakumar, “Optimal Feedback Control for anthropo-

morphic manipulators,” in 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 4143–4150,

May 2010.

[4] F. Stulp, E. Theodorou, and S. Schaal, “Reinforcement Learning With Sequences of Motion Primitives for Robust

Manipulation,” IEEE Transactions on Robotics, vol. 28, pp. 1360–1370, Dec. 2012.

[5] P. Baerlocher and R. Boulic, “Task-priority formulations for the kinematic control of highly redundant articulated

structures.,” in IROS, pp. 13–17, 1998.

[6] S. I. Choi and B. K. Kim, “Obstacle avoidance control for redundant manipulators using collidability measure,”

Robotica, pp. 143–151, 2000.

[7] T. Sugihara and Y. Nakamura, “Whole-body cooperative balancing of humanoid robot using cog jacobian,” in IROS,

pp. 2575–2580, 2002.

[8] M. Gienger, H. Janssen, and C. Goerick, “Task-oriented whole body motion for humanoid robots,” in IEEE-RAS,

pp. 238–244, 2005.

[9] K. Nishiwaki, M. Kuga, S. Kagami, M. Inaba, and H. Inoue, “Whole-body cooperative balanced motion generation

for reaching,” IJHR, pp. 437–457, 2005.

[10] R. F. Stengel, Stochastic optimal control: theory and application. John Wiley & Sons, Inc., 1986.

[11] E. Todorov and W. Li, “A generalized iterative lqg method for locally-optimal feedback control of constrained non-

linear stochastic systems,” in ACC, pp. 300–306, 2005.

[12] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex behaviors through online trajectory opti-

mization,” in IROS, pp. 4906–4913, 2012.

[13] M. Toussaint, “Robot trajectory optimization using approximate inference,” in ICML, pp. 1049–1056, 2009.

[14] E. Rueckert and G. Neumann, “Stochastic optimal control methods for investigating the power of morphological

computation,” Artificial Life, pp. 115–131, 2013.

[15] J. van den Berg, “Extended LQR: Locally-optimal feedback control for systems with non-linear dynamics and non-

quadratic cost,” in Proc. Int. Symp. on Robotics Research, 2013.

[16] W. Sun, J. v. d. Berg, and R. Alterovitz, “Stochastic Extended LQR: Optimization-Based Motion Planning Under

Uncertainty,” in Algorithmic Foundations of Robotics XI (H. L. Akin, N. M. Amato, V. Isler, and A. F. v. d. Stappen,

eds.), no. 107 in Springer Tracts in Advanced Robotics, pp. 609–626, Springer International Publishing, 2015.

[17] F. Stulp, J. Buchli, E. Theodorou, and S. Schaal, “Reinforcement learning of full-body humanoid motor skills,” in

2010 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids), pp. 405–410, Dec. 2010.

[18] M. Toussaint and A. Storkey, “Probabilistic inference for solving discrete and continuous state markov decision

processes,” in ICML, pp. 945–952, 2006.

[19] M. D. Hoffman, N. D. Freitas, A. Doucet, and J. R. Peters, “An expectation maximization algorithm for continuous

markov decision processes with arbitrary reward,” in AISTATS, pp. 232–239, 2009.

17

[20] M. Toussaint and C. Goerick, “Probabilistic inference for structured planning in robotics,” in Int. Conf. on Intelligent

Robots and Systems (IROS 2007), pp. 3068–3073, 2007.

[21] T. Furmston and D. Barber, “Variational methods for reinforcement learning,” in AISTATS, pp. 241–248, 2010.

[22] M. Toussaint and C. Goerick, “A bayesian view on motor control and planning,” in From Motor Learning to Interaction

Learning in Robots, pp. 227–252, Springer, 2010.

[23] H. J. Kappen, V. Gómez, and M. Opper, “Optimal control as a graphical model inference problem,” JMLR, pp. 159–

182, 2012.

[24] J. Peters and S. Schaal, “Learning operational space control,” in Proceedings of Robotics: Science and Systems,

(Philadelphia, USA), August 2006.

[25] J. Peters and S. Schaal, “Reinforcement learning by reward-weighted regression for operational space control,” in

ICML, pp. 745–750, 2007.

[26] K. Rawlik, M. Toussaint, and S. Vijayakumar, “An approximate inference approach to temporal optimization in

optimal control,” in NIPS, pp. 2011–2019, 2010.

[27] J. Van Den Berg, S. Patil, and R. Alterovitz, “Motion planning under uncertainty using iterative local optimization

in belief space,” IJRR, pp. 1263–1278, 2012.

[28] T. Lens, J. Kunz, O. v. Stryk, C. Trommer, and A. Karguth, “Biorob-arm: A quickly deployable and intrinsically safe,

light-weight robot arm for service robotics applications,” in ISR/ROBOTIK, pp. 1–6, 2010.

18

	Contribution
	Implementation

	Related Work
	Overview Table

	Stochastic Optimal Control (SOC) Methods
	Bayesian inference for control
	Approximate inference control with Gaussians (AICO)
	Regulating the policy updates in AICO

	Experiments
	Simulation Results
	Real Robot Results

	Conclusion
	Future Work on Nao Experiments

	Bibliography

