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Abstract

Based on the intention to build an autonomous lawn mower robot, this work
examines the viability of a sensor and microprocessor for onboard plant clas-
sification using machine learning. Usually, some sort of fencing is required to
keep the robot in its intended processing area, so such a sensor would allow
the robot to differentiate between grass and e.g. flowers. Also, the drive and
blade speed can be adjusted for certain species or plant densities, etc.

For this, a data set was collected utilizing a specific method called chloro-
phyll fluorescence induction. A series of narrowband LEDs are used to drive
this process, while a spectrometer measures the spectral intensity. The plant
will fluoresce in specific wavelengths when sufficiantly illuminated. With this
data, machine learning algorithms are trained to explore if they are capable
to classify these plants without further information.

With accuracies up to 98% for three plants commonly present on a lawn
and up to 86% for eight plants, the results show that chlorophyll fluorescence
is a viable method for classification, even under sunlight using the random
forest machine learning algorithm.

Abstrakt

Basierend auf der Absicht einen autonomen Rasenmähroboter zu konstru-
ieren, wird in dieser Arbeit die Umsetzbarkeit eines Sensors und Mikro-
prozessors zur Pflanzenklassifikation untersucht. Für gewöhnlich wird eine
Form von Abzäunung benötigt, damit der Roboter im beabsichtigtem Bear-
beitungsareal bleibt. So ein Sensor würde es dem Roboter erlauben zwis-
chen Gras und z.B. Blumen zu unterscheiden. Außerdem kann die Fahr- und
Schnittgeschwindigkeit der Messerbalken an die Pflanzenspezies, -dichte usw.
angepasst werden.

Deswegen wurde ein Datensatz unter der Verwendung von Chlorophyllflu-
oreszenzinduktion aufgenommen. Eine Reihe von Schmalband-LEDs führen
diesen Prozess herbei, während ein Spektrometer die spektrale Intensität
misst. Ausreichend beleuchtet fluoresziert die Pflanze in speziellen Wellenlängen.
Mit diesen Daten werden Algorithmen des maschinellen Lernens trainiert um
zu untersuchen ob sie dazu in der Lage sind diese Pflanzen ohne weitere In-
formationen zu klassifizieren.

Mit Genauigkeitsgraden bis zu 98% für drei gewöhnliche Pflanzen präsent
auf einem Rasen und bis zu 86% für acht Pflanzen, zeigen die Ergebnisse
das Chlorophyllfluoreszenz zur Klassifizierung realisierbar ist, selbst unter
Sonnenlicht.
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Chapter 1

Introduction

Automatically classifying plants or evaluating their condition is of great in-
terest in many fields such as environmental protection, medicine and agri-
culture (e.g. detection of disease and weed for removal, which is crucial for
effective harvesting). Therefore, it has to be determined which methods of
data collection, feature extraction, and evaluation are of practical use.

The goal in this work is to explore the possibility of a plant classification
sensor for a lawn mower robot and the eventual development of this sensor.
Under these circumstances, specifically the ability to differentiate between
grass, dandelion and moss, which are frequently found together. Such a
sensor should consist of standard low-cost electronics, such as narrowband
phototransistors and LEDs, as it is to become a consumer product, eventu-
ally. Also, only limited computational power is available, hence the technique
for classification should be simple and fast. With such a sensor, the robot
can adjust its driving speed corresponding to the plant, stop or turn around
to stay in its designated area and differentiate between species to be cut and
those (e.g. flowers) that are not to be damaged. By creating a map [Fig. 1.1],
it can also calculate optimal driving paths.

1.1 Related Work

Most related work approaches use visual properties such as texture-based
and morphological features (e.g. leaf shape, size, aspect ratio) as criteria for
classification with machine vision algorithms.
These features are usually pre-defined and chosen arbitrarily or determined
by botanists and cannot always be automatically extracted. Using princi-
pal component analysis (PCA) for automatic feature separation, accuracies
greater than 90% can be achieved [Wu et al., 2007, Elhariri et al., 2014],
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CHAPTER 1. INTRODUCTION

Figure 1.1: Diagram showing a possible map cerated by the lawn mower
robot using a plant classification sensor.

but demand certain prerequisites such as leaves not overlapping each other
or not changing their color due to environmental influences like the weather,
otherwise making them either difficult or impossible to classify.
This can possibly be augmented with efficient image segmentation techniques
to remove cluttered background, but in turn requires certain conditions such
as uniform illumination.

For these reasons, either standardized images from existing, publicly avail-
able data sets are used or they were taken inconsistent and by the groups
themselves, like single leaves placed on a white background sheet. That way,
precisions above 96% can be accomplished [Saleem et al., 2019].

Another procedure relies on the recording of reflectance spectra. Over-
lapping leaves or clutter barely interfere with spectral features, but ambient
light, plant age, growth condition, and health may affect the results and
complicate classification. Moreover, a large number of species proved to be
difficult to distinguish [Moshou et al., 2001], so the preferable application is
to compare pairs or single species statuses.

Methods to receive data based on electromagnetic wavelengths have been
implemented using active and passive broad- or narrowband spectrometer,
fluorometer and combinations of both. They have been used effectively to
detect diseases, stress or metabolic deficiencies [Kusnierek and Korsaeth,
2015, Peteinatos et al., 2016]. For analysis and feature extraction, multivari-
ate statistical techniques and PCA are employed, but classification accuracy
varies extensively depending on chosen plant species, data sets, evaluation
methods, and their combinations.
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1.1. RELATED WORK

An alternative method is to use chlorophyll a fluorescence (CF), which is
specific to plants and emitted by basically all photosynthetically active parts
of the plant, including the stem and the abaxial side of leaves.
Thereby, treating the leaf with a series of different colors and intensities
induces the dissipation of a very small amount of excess light energy (about
0.5-10% of absorbed light) emitted by chlorophyll molecules (more specifically
Photosystem II) [Atherton et al., 2014].

Originally, it was recommended to keep the plant in the dark for two hours
before placing it under actinic light. Then the changes of CF intensity are
monitored as a function of time, giving a fluorescence induction curve that
is similar in all plants, reaching its maximum after 200-300 ms following the
exposure to light [Johnson and Maxwell, 2000, Rosenqvist and Baker, 2004].
This fluorescence fingerprinting has shown to be species-specific and stable
enough to classify plants. Still, the results were of diverse accuracy depend-
ing on plant species, genetic uniformity, and signal length, but it was found
that even reducing the dark period to one second or having the plant under
naturally variable ambient illumination had no significant impact. Neither
had varying weather conditions, showing that this method is based on fairly
stable characteristics.
CF has also been used to measure stress levels in plants or to detect a de-
structive disease in citrus plants [Cen et al., 2017] through machine learning.

Classification using CF is invariable to previously mentioned problems
like cluttered backgrounds, leaves overlapping each other or changing ambi-
ent light. It provides a high number of structural photosynthetic characteris-
tics, making it difficult to determine which are connected to their calculable
foundations and suitable for interpretation.
The underlying biophysical and physiological processes and their connection
to the various collectible parameters are inherently complicated and not fully
understood [Banks, 2017]. Still, computational pattern recognition was al-
ready able to yield promising results, showing potential to further study this
concept.
Self-evidently, using multiple procedures at once for data collection can be
beneficial and successful [Simko et al., 2015], but will increase complexity
and requires more equipment and space.
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CHAPTER 1. INTRODUCTION

1.2 Contribution and Organization

In this work, the focus is to find an effective but minimal setup of one chro-
matic LED and different narrow bandwidth phototransistors to achieve real-
time plant detection with the help of machine learning algorithms runnable
on a microprocessor. Thereby, different learning techniques are evaluated
in regard to efficiency and complexity, especially those that allow for quick
evaluation on a trained model (e.g. decision trees).
In chapter 2, basic principles used throughout this thesis are described, most
notably the functionality behind chlorophyll a fluorescence, which is the main
component probed for viability in plant classification. Chapter 3 introduces
the general concepts, benefits and drawbacks of the machine learning algo-
rithms chosen for evaluation. The following chapter explains the experimen-
tal setup and reasoning behind the method used for data collection. Also,
first examples are interpreted. The 5th chapter further discusses the results,
followed by the conclusion.
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Chapter 2

Basics

In this chapter, the underlying principles this thesis is based on are intro-
duced. First, the general biochemical functionalities of photosynthesis are
addressed, followed by the key mechanism used in this thesis, the fluores-
cence of chlorophyll a and b. The third and fourth points are the techniques
applied in modern optical spectrometers and the principal concept of photo-
transistors.

2.1 Photosynthesis

Most green plants and certain bacteria possess chlorophyll, a molecule essen-
tial for the process called photosynthesis. These organisms (called photoau-
totrophs) are able to absorb energy from light with chlorophyll pigments.
The energy is then stored in carbohydrates (e.g. sugars) synthesized from
carbon dioxide and water, while creating oxygen as a waste product. The
general equation can be written as follows:

6CO2 + 6H2 → C6H12O6 + 6O2 (2.1)

As chlorophyll primarily absorbs blue and red, it reflects the remaining wave-
lengths and thus is perceived as green [Fig. 2.1].

One chlorophyll molecule absorbs one photon and in turn transfers a
single electron down an electron transport chain. This ultimately leads to
the reduction of nicotinamide adenine dinucleotide phosphate (NADP) to
NADPH, a cofactor vital for all cellular life [Spaans et al., 2015]. The lost
electron is regained when water is split in a process called photolysis, releas-
ing dioxygen.
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CHAPTER 2. BASICS

Figure 2.1: Due to chlorophyll strongly absorbing the red and blue wave-
length, plants are perceived as green.1

The primary photochemical process takes place in units of structural pro-
tein complexes, the photosystem. Two of these can be differentiated: Photo-
system I (PSI) and Photosystem II (PSII). Both are required for photosyn-
thesis, but the types of chlorophyll used in each photosystem have distinct
functions and spectral properties.
The primary pigment and reaction center in PSII is chlorophyll a, also called
P680. The number represents the wavelength (680 nm) of its correponding
absorbtion maximum in the light spectrum [Fig. 2.2].
After giving away an electron, the oxidized chlorophyll a requires an external
source of electrons. In green plants, two water molecules are oxidized by sev-
eral successive reactions in PSII, yielding four hydrogen ions and a diatomic
oxygen molecule. The gained electrons are then used to reduce the oxidized
P680, resetting its ability to absorb another photon. The overall equation
for this non-cyclic reaction, where the electron does not return to PSII, is
[Raven et al., 2005]:

2H2O + 2NADP+ + 3ADP + 3Pi → 2NADPH + 2H+ + 3ATP + O2 (2.2)

Photosystem I (PSI) works in series with PSII and usually reduces its
charged reaction center P700 by electrons coming from PSII. It can also
be cyclic, as the displaced electron from the photosystem ultimately returns
to PSI, which is not possible in PSII. This will only generate ATP and no
NADPH.

1(a) Licence: CC BY-SA 3.0, available at https://upload.wikimedia.

org/wikipedia/commons/thumb/a/a3/Why\_are\_plants\_green.svg/1280px-

Why\_are\_plants\_green.svg.png

6 Alexander Walter



2.2. CHLOROPHYLL FLUORESCENCE

Figure 2.2: The absorbtion spectrum of chlorophyll a and chlorophyll b.2

2.2 Chlorophyll fluorescence

The energy of an excited molecule of chlorophyll can be used in three different
ways. It can be passed down to the photochemical reaction centers (PSI
and PSII) and drive the photosynthesis, as mentioned above or it can be
used in two processes necessary for the plant’s protection. As light intensity
increases, its absorption increases as well, but the capacity for photosynthesis
is limited and will eventually get saturated [Fig. 2.3].

An excited chlorophyll is in a singlet state, where all electrons are quan-
tummechanically paired. Their overall angular momentum is zero, meaning
s = 0, which is the net spin quantum number. This state has a chance to
form long-lived chlorophyll triplet states (two electrons are unpaired, s = 1),
which in turn can produce singlet oxygen that may damage pigments, pro-
teins, and other molecules through oxidation.
Therefore, the excited state can return to the ground state by emitting en-
ergy as heat (called non-photochemical quenching) or by emitting a photon
(called fluorescence) in the far-red spectrum. These three processes are com-
peting with one another, which means a change in the efficiency of one will

2(a) Licence: CC BY-SA 3.0, available at https://upload.wikimedia.org/

wikipedia/commons/thumb/2/23/Chlorophyll\_ab\_spectra-en.svg/1024px-

Chlorophyll\_ab\_spectra-en.svg.png
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CHAPTER 2. BASICS

Figure 2.3: The plants ability to assimilate carbon saturates (red), while its
absorption of light (blue) increases linearly.3

affect the efficiency of the other two.

This changing yield in fluorescence was first observed by [KAUTSKY
et al., 1960] and is called the Kautsky Effect. A major contributor to the
fluorescence is PSII through its high ratio of chlorophyll a (P680), while the
impact of PSI is low and comparably constant. This also means that we
expect a peak around 680 nanometers, as these were the most absorbed and
then emitted by chlorophyll a [Fig. 2.4].

The most common application is to use flashes of light and measure flu-
orescence intensity over time. The values of the initial fluorescence minima
F0 and maxima FM following an increase in the first 1-2 seconds are used to
calculate PSII efficiency, the impact of photochemical quenching and several
other parameters. Plotting the intensity over time gives a fluorescence in-
duction curve that can hold additional information [Kalaji et al., 2017].

Having to measure several seconds using flashes of light on the same spot
is barely a decent option for a moving robot. Thus, we induce chlorophyll
a fluorescence with a short exposure to a LED light source and measure the
emitted light. As can be seen in Fig. 2.5, this is enough to receive a proper
answer from the plant.

3(a) Licence: CC BY-SA 3.0, available at https://upload.wikimedia.org/

wikipedia/commons/7/74/Photosynthetic\_parameters\_of\_plants.png
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2.3. SPECTROMETER

Figure 2.4: The relative spectral contributions of PSI and PSII fluorescence
to the total emission spectrum in barley leaves at the F0 (A) and FM (B)
levels.4

2.3 Spectrometer

Optical spectrometers are instruments to separate the wavelengths or fre-
quencies of light and measure its intensity. This is either done by refraction
using a prism or diffraction, which is the method modern spectrometers ap-
ply.

These instruments usually measure the properties of certain portions of
the electromagnetic spectrum, which includes non-visible wavelengths such

4Source: [Atherton et al., 2014]. Redrawn after Franck F, Juneau P, Popovic R. 2002.
Resolution of the photosystem I and photosystem II contributions to chlorophyll fluores-
cence of intact leaves at room temperature. Biochimica et Biophysica Acta 1556, 239–246.
Copyright Elsevier 2002.
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CHAPTER 2. BASICS

Figure 2.5: An example scan from dandelion scan 256, using the 5th LED
without ambient light. The first spike at roughly 428 nm is the reflected
light from the LED itself. The following hill matches with the expected
fluorescence, having its maximum at around 685 nm.

as gamma rays, X-rays and infrared. Thus, spectrometers find use in a wide
variety of fields.

For example, it allows astronomers to determine the chemical composition
of stars or the atmospheres of planets. Atoms or molecules absorb specific
wavelengths, leaving a unique fingerprint in the reflected light. Most notably,
this method is completely passive, as long as the object emits enough light.
Otherwise, a light source can be used, such as LEDs or lasers of specific
wavelengths and electromagnetic range [Fig. 2.6].

The standard technique used is diffraction grating, applying the Huygens-
Fresnel principle. It states that every point on a wavefront acts as a new
point-source. The grating of the spectrometer is a repeating pattern of slits
or a mirror with grooves. Each groove then acts as a new point-source from
which the light propagates. The path length to each groove varies, changing
the phases of the emanating waves [Fig. 2.7]. Through additive and de-
structive interference, the resulting diffracted light is composed of peaks and
valleys.

With the light coming in at an angle Θi and the diffracted light going out
at angle Θm, the optical path length can be calculated.

d(sin Θi + sin Θm) = mλ;m ∈ Z
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2.4. PHOTOTRANSISTOR

Figure 2.6: The general schematics of a spectrometer applying grating.5

Figure 2.7: Diffraction grating diagram with spacing d, angle Θi for the
incident beam and angle Θm for the diffracted beam.

If the path from adjacent grooves is λ
2
, the waves cancel each other out.

Comparably, at a path difference of λ, the waves are in phase and create
maxima. Arrays of photodetectors are then able to measure the intensities
of the deriving spectra and their wavelengths.

2.4 Phototransistor

A phototransistor (or photodiode) is a semiconductor device that generates
an electric current when photons are absorbed. Its primary functionality is
achieved through a p-n junction, a crystal with a ”p” (positive) side con-

5(a) Licence: CC BY-SA 3.0, available at https://upload.wikimedia.org/

wikipedia/commons/f/f6/Spectrometer\_schematic.gif
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CHAPTER 2. BASICS

taining an excess of electron holes and an ”n” (negative) side containing an
excess of electrons in the outer shells of its electrically neutral atoms.

This structure is elemental to many powerful electronic devices, such as
LEDs and transistors. In the case of photodiodes, it creates a current when
struck by a photon through the photoelectric effect. Holes move toward the
anode and electrons toward the cathode, producing a photocurrent measured
in electrons per photon or amps per watt. The energy of a photon is inversely
proportional to its wavelength. The detected range of wavelengths for a
phototransistor can be manipulated by using filters and different materials,
e.g. silicon or germanium as its semiconductor.

12 Alexander Walter



Chapter 3

Machine Learning

Reducing the effort and complexity of a task has always been of major in-
terest. In recent years, machine learning has become a new powerful tool,
as programmable computers and the necessary computational power have
become readily available. Section 3.1 gives a general overview of machine
learning, while sections 3.2, 3.3, and 3.4 go into more detail for three specific
machine learning algorithms.

3.1 Machine Learning Techniques

Nowadays, the field of Machine Learning can be divided into three subareas:

Supervised Learning
teaches machines the relationship between certain variables to a tar-
get variable and then extrapolate for new input data. They are most
commonly applied in:

• Classification

• Regression

Unsupervised Learning
applies algorithms that learn by themselves. No target variables are
given, so it is able to find hidden relations and patterns in the given
data. The main principles are:

• Dimensionality reduction

• Clustering

13



CHAPTER 3. MACHINE LEARNING

Reinforced Learning
gives one or more agents feedback from the environment. They adapt
their decisions on their own and are given either a positive or nega-
tive reward. Based on this reward, the agent reevaluates its decisions,
steadily improving its performance over time.

There exist many options to implement and use machine learning al-
gorithms. In this work, the more than sufficient functionalities and tools
provided by MatLab’s libraries (version R2019a) are utilized.

3.1.1 Bias and Variance

There is always a tradeoff between bias and variance in machine learning.
These properties are sources of error and can prevent machine learning algo-
rithms from generalizing for new data. Thus, their impact should be mini-
mized.

• Selection bias causes the algorithm to miss the important relations
between features and target variables due to erroneous assumptions
(underfitting).

• Variance causes the algorithm to rather learn the random noise dur-
ing training. This leads to strongly differentiating results due to high
sensibility to flucatuations in the input (overfitting).

A high-bias algorithm is susceptible of overrepresenting features from the
training set, but will therefore often give similiar results (low variance). In
turn, learning algorithms with high-variance may overfit and learn the noise
in the training data itself, leading to drastically different results if the input
is slightly changed (low bias).

3.1.2 Cross-Validation

To assess a model’s ability to predict new data from the testing set, cross-
validation is a common analysis technique. Its goal is to detect selection
bias or overfitting by partitioning the data set into complementary training
and testing sets. Repeating this process while changing different partitions,
variance can be reduced by averaging over the results of every iteration.

One such method is called k -fold cross-validation, which randomly par-
titions the data into k equal sized subsamples [Fig. 3.1]. One is retained
for validation, while the remaining k -1 subsets are used for training. This is

14 Alexander Walter



3.2. DESCISION TREE

Figure 3.1: Diagram of k -fold cross-validation with k = 4. Generally, k can
be chosen freely.6

repeated k times with every subset becoming the testing set once. By com-
bining the results, a single outcome can be gained for which all observations
were used for validation exactly once.

3.2 Descision Tree

A binary decision tree is a structure built on a sequential decision process.
It consists of three components.

Nodes
where the value of a certain feature is tested.

Edges
that connect to the next node or leaf depending of the tests outcome.

Leaves
which represent the terminal nodes and prediction.

It is a supervised learning algorithm that uses trainig examples to pick ap-
propriate tests. The feature that maximizes information gain is placed at the
top, from which the decision tree is built hierarchically [Fig. 3.2]. Then new
examples are submitted to a series of tests to determine their class label. It

6(a) Licence: CC BY-SA 3.0, available at https://upload.wikimedia.org/

wikipedia/commons/1/1c/K-fold\_cross\_validation\_EN.jpg
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CHAPTER 3. MACHINE LEARNING

Figure 3.2: Example of a decision tree trained in MatLab. The tree was
trained with the spectral answers of one LED and ambient light for lawn
grass, dandelions and moss. The resulting structure reached an accuracy of
over 93% consistently.

works for categorical and continuous input and output and is mostly used in
classification problems.

Finding optimal splits using entropy

The key to decision tree is to construct it from the given data alone. The
best feature to split the data needs to be determined so that the resulting
data subsets are as homogeneous as possible. A quantitative way to measure
such quality is the Shannon entropy.
For a discrete probabilty distribution D with (p1, p2, ..., pn) the Shanon en-
tropy is:

E(p1, ..., pn) = −
n∑
i=1

pi log(pi) (3.1)

There are n possible outcomes and the probability that an instance drawn
from D results in the outcome k is pk. The Shannon’s entropy function
calculates a numerical value that describes how well the data is split into
its classes. In the worst case each subset is uniformly distributed across all
classes, resulting in an entropy of 1. The best scenario is a perfect split where
every subset only has data from one class.

To construct a proper decision tree, the change in entropy needs to be
quantified, so it can be minimized. With a data set S, a feature A with

16 Alexander Walter



3.3. RANDOM FORREST

values v ∈ V and Shanon’s entropy function E, the gain of a split along the
feature A, denoted G(S,A) can be calculated.

G(S,A) = E(S)−
∑
v∈V

|Sv|
|S|

E(Sv) (3.2)

where Sv denotes the subset of S for which the feature A has value v.
The entropies of each part with an appropriate weight depending on each

piece’s size is subtracted off the entropy before the split. If the entropy
increases the value will be small. Should the split separate the classes appro-
priately, each subset Sv will possess little entropy and G(S,A) will be large.
Once the decision tree is constructed, exactly one terminal leaf with a unique
path of rules exists for every single input. Also, classifying new data by check-
ing the rules at every node until a leaf is reached is simple and very fast.

3.3 Random Forrest

Random Forest (RF) is a frequently used technique in data science to solve
various problems. It uses an ensemble of decision trees [Fig. 3.3], which tend
to have high variance and low bias, making them unstable. Averaging over
multiple decision trees minimizes the variance, making it superior to other
techniques such as logistic regression, which has low variance, but very high
bias. The trees are trained on different parts of the same data set and since
RF averages over multiple decision trees that might overfit, it lowers the
variance of the final result. Generally, it improves the resulting model’s per-
formance, but the bias increases slightly and some of the interpretability is
lost.

The basic functionality of RF is a technique called bootstrap aggregation
(bagging). From a training set X = x1, ..., xn with response Y = y1, ..., yn
a random sample with replacement (elements may appear multiple times) is
selected B times from the training set. For every sampleXb, Yb a classification
(or regression) tree is trained as described in the previous section. After
training, a majority vote on all the individual predictions of the individual
classification trees is taken to decide the final prediction.

While a single tree’s prediction might be sensible to noise in its training
set, the average over many uncorrelated trees is not. The number of trees
B can be chosen freely. Depending on the nature and size of the data set,
hundreds or thousands of trees may be required. Using cross-validation, an
optimal number can be found.
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Figure 3.3: General architecture of the random forest model. It trains a
number of B decision trees and votes or averages over their collective results.

3.4 Neural Network

Neural networks (NN) are inspired by biological brains and their networks of
neurons. They can be used as a supervised, unsupervised or reinforced learn-
ing system for many different tasks. A NN consists of layers, typically an
input and an output layer of nodes (called artificial neurons) and a number
of hidden layers in between [Fig. 3.4]. These layers and nodes are connected
by edges (representing the synapses of a brain) that transmit information if
a node is activated. These edges have weights, that represent the impact of
the signal passing through them. Thus, activations in one layer determine
the activations of the next layer. As an information processing mechanism,
the important detail is how those activations are propagated from one layer
to the next so that it reaches an intelligent conclusion.
The intuitively understandable concept is that the input layer of nodes con-
sists of many single or small datapoints of fixed size and position. Specific
values activate the neuron, which leads to a signal being sent to the next layer
of nodes. In turn, these add up all incoming signals and if their threshold
is reached (called bias), they will be activated. This adds complexity with
every layer until the output nodes are reached. These then activate according
to the confidence in the prediction, usually measured as a probability. For
classification, the output nodes are labeled with the possible classes.
In case of a fully connected NN in which information travels forward-only, it
is called a feedforward neural network.
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3.4. NEURAL NETWORK

Figure 3.4: A neural network has a single input and output layer with an
arbitrary number of hidden layers.

3.4.1 Activation Function

If a neuron is to activate above a threshold and do nothing below it, a function
with the same properties is required. The most basic would be the step
function, which can only put out two values, 0 or 1. In case of continuous
input, a continuous function is required.
A first approximation of the step function is the sigmoid function, but the
softmax or rectifier linear unit (ReLU) activation functions are the most
commonly used. In the following example

aLk = softmax(zLk ) =
ez

L
k∑
c e

zck

is used for the last layer L and

alk = relu(zlk) = max(0, zlk)

for a hidden layer annotated with l. The indices k,j and i denote neurons in
the layers l, l − 1 and l − 2 respectively.
Basically, these functions calculate a value for any given node by taking the
weighted sum zlk from all the nodes in the previous layer and a bias b specific
to it.

zlk = blk +
∑
j

W l
kja

l−1
k (3.3)

This is done for every node until the last layer is reached and the networks
output determined.
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CHAPTER 3. MACHINE LEARNING

3.4.2 Cross-Entropy Loss

With the network having reached an arbitrary output, it requires a method
to identify its accuracy. With a labeled data set, it is possible to compare the
networks conclusion with the correct answer. Starting with the output layer,
the degree of every node’s inaccuracy is calculated through an error function
E. For regression problems, the mean squared error (MSE) is usually taken,
which simply squares the difference between the networks result and the
actual label for a given input.
For classification, cross-entropy loss is common practice and also the default
algorithm in MatLab.

ECross-Entropy = −
∑
d

td log(aLk ) = −
∑
d

td(a
L
d − log

∑
c

ez
L
c )

with tk as a binary indicator (1 or 0) for the correct classification of the kth

neuron in the output layer.
(3.4)

Gradient Descent

With a method to measure the loss, the weight metric W l
kj can be updated.

This is done by negating the derivative of E with respect to the weights using
a gradient descent algorithm. With a learning rate α to control the step size
the derivatives can be calculated as

∆W l
kj = −α ∂E

∂alk
= −α ∂E

∂alk

∂alk
∂zlk

∂zlk
∂W l

kj

3.4.3 Backpropagation

The update ∂E
∂alk

is calculated for the last layer first. It determines the impor-

tance of every weight and bias of every node in the previous layer in relation
to an output node.
This is done for every node, which allows for the weights and biases to be
adjusted relative to their impact on this neuron. That is then incrementally
propagated back for every previous layer with a recursive definition of δlk and
δl−1k , which is why it is called backpropagation.

Updating the last layer

We simplify gradient descent to

∂E

∂WL
kj

=
∂E

∂zLk

∂zLk
∂WL

kj
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3.4. NEURAL NETWORK

to calculate the derivation. For this, we use the definition of E in formula
3.4. For the first half:

∂E

∂zLk
= −

∑
d

td(1d=k −
1∑
c e

zLc
ez

L
k )

= −
∑
d

td(1d=k − aLk )

=
∑
d

tda
L
k −

∑
d

td1d=k

= aLk − tk

(3.5)

with 1d=k as the indentity function

1d=k =

{
1 if d = k

0 otherwise

For aLk softmax gives a normalized probability for every output node, rep-
resenting the networks prediction. tk gives the value 1 for the correct label
and 0 otherwise. With this, we receive a loss value for the node holding the
correct label depending on the networks calculated probability.
We define this as δLk

δLk =
∂E

∂zLk
= aLk − tk

The second half of the equation remains to be solved. With the definition of
zLk in formula 3.3, this is trivial.

∂zlk
∂W l

kj

= aL−1j

This propagates the loss in the final layer to the activations in the previous
one. Thus, the resulting updates for the last layers weights are:

∂E

∂WL
kj

=
∂E

∂zLk

∂zLk
∂WL

kj

= δLk a
L−1
j

The derivation for the bias is similar.

∂E

∂bLkj
=
∂E

∂zLk

∂zLk
∂bLkj

= δLk (1) = δLk
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CHAPTER 3. MACHINE LEARNING

Updating the previous layer

We can get the equations to calculate the adjustments for the second to last
layer in similar fashion.

∂E

∂W l−1
ji

=
∂E

∂al−1j

∂al−1j

∂zl−1j

∂zl−1j

∂W l−1
ji

(3.6)

The derivations of the three components

∂E

∂al−1j

=
∑
k

∂E

∂zlk

∂zlk
∂al−1j

=
∑
k

δlkW
l
kj

(3.7)

∂al−1j

∂zl−1j

= f ′(zl−1j ) (3.8)

∂zl−1j

∂W l−1
ji

= al−2i (3.9)

give us the equation

∂E

∂W l−1
ji

= al−2i f ′(zl−1j )
∑
k

δlkW
l
kj. (3.10)

By defining δl−1j = ∂E

∂al−1
j

∂al−1
j

∂zl−1
j

= f ′(zl−1j )
∑

k δ
l
kW

l
kj

we can write 3.10 as
∂E

∂W l−1
ji

= δl−1j al−2i .

And for the bias

∂E

∂bl−1j

=
∂E

∂al−1j

∂al−1j

∂zl−1j

∂zl−1j

∂bl−1j

= δl−1j (1) = δl−1j

Using these derivatives, every layer can be updated accordingly.
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Chapter 4

Experiment Setup and
Measurement

The general setup consists of eight LEDs with different wavelenghts that il-
luminate the plant and a spectrometer to measure the fluorescence induced
by the light. To figure out if chlorophyll induction is a viable approach for
plant detection for a robot working outside, data collection for training was
intentionally not done under laboratory conditions. A robot would not be
able to guarantee prerequisites such as constraints on lighting and angle or
distance to plant matter in a real world scenario.
Hence, the plants fluorescence was mostly measured in sunlight with occa-
sional changes in the angle to the plant. The distance was roughly kept
approximately at 10 cm, but since leaves and stems grow in 3 dimensions,
primary focus was to ensure that enough surface of the plant could be prop-
erly illuminated by the LEDs. The ambient light was artificially reduced in
varies degrees by shading. Also, data was collected on several days. Detailed
information about changes to lighting condition and plants can be found in
the respective protocol on the CD attached to the thesis.

To measure the fluorescence, a highly sensitive, broad spectrum spec-
trometer was used. The CCS200/M from Thorlabs has a wavelength range
of 200 - 1000 nm and outputs two arrays with 3648 values each. One contains
the measured light intensity and the other the corresponding wavelength for
every value. It is connected to an adjustable lense via a fiber patch cable and
a computer. Around the lense are the eight LEDs, which are also connected
to the same computer [Fig. 4.1].

Through a custom written C# assembly, both can communicate with each
other and be accessed in MatLab. A single scan consists of nine measure-
ments, of which eight are a scan for each LED and one without to measure
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CHAPTER 4. EXPERIMENT SETUP AND MEASUREMENT

Figure 4.1: The general setup used for data collection. The plant’s position
was changed regulary, but the distance was kept around 10 cm and the green
should receive sufficient light from every LED.

the ambient light. This concludes one measurement, with 9 x 3648 data
points for intensity, doubled for the corresponding wavelength array. Over
200 such scans were taken for several plants each, especially for those of great
interest, such as lawngrass, dandelions, and moss. An example scan can be
seen in Fig. 4.2.

Measuring process

As soon as a scan is started through MatLab, it uses the custom assembly to
initiate the spectrometer. Then, a signal is send to the microprocessor, ac-
tivating the first LED until the spectrometer confirms that it has completed
its measurement for the given integration time, which is the time frame for
measurement. All scans used a consistent integration value of 0.5 (500 ms).
Following this, it receives the two arrays containing the spectral intensities
with their corresponding wavelengths. This is repeated for every LED, fol-
lowed by a final scan for ambient light intensity and is then saved to an
innumerated file for the corresponding plant by MatLab. One such complete
scan takes about 25 seconds.
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Figure 4.2: An example of a complete scan circle with 8 LEDs and one
without (lawngrass scan 4).
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Chapter 5

Classification Results

To evaluate the recorded data, the three machine learning methods described
in chapter 3 are used and evaluated: Random Forest (RF), Decision Tree
(DT), Neural Network (NN), Neural Network using Cross-Validation (NN
CV) and Random Forest using Cross-Validation (RF CV). The goal is to
find and use available phototransistors instead of a broadband spectrometer.
Therefore, the relative spectral sensitivities of 24 reasonable phototransistors
were aquiered.

Before the machine learning algorithms are trained, the scan data is mul-
tiplicated with the spectral sensitivities of the chosen phototransistors. This
is to simulate the real world capabilities of these components, rather then the
sensitivity of a broadband spectrometer. Then it is integrated over the re-
sulting, interpolated intensity curve. Also, an option to subtract the ambient
light is provided.

5.1 Selecting LED

The first goal is to reduce the search space by reducing the number of con-
sidered parameters. Since the sensor should need a minimal amount of LEDs
the most relevant ones are determined in this step. Training a random forest
with all LEDs, a single phototransistor and all plants, we can extract the
feature importance from the tree [Fig. 5.1].

5.2 Finding best Phototransistors

LED 5 is picked and the three main plants to search for the most promising
phototransistors. The complete tables with all results can be found in the
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CHAPTER 5. CLASSIFICATION RESULTS

Figure 5.1: LED relevance in a trained random forest model according to
its out-of-bag permuted variable delta error. LED number 5 and 8 were the
most significant.

document Classification Evaluation.gsheet on the CD attached to this the-
sis. The five best performing phototransistors, averaged over four training
sessions once with ambient light and once without can be seen in table 5.1
containing the missclassification probabilities. The phototransistors 12, 5, 1,
8 and 2 reach best average accuracies below 66%. To improve the results,
combinations of three out of all 24 are evaluated.
The three best performing combinations were then used for training, further
confirming that the phototransistor with designation 12 is the most valuable
candidate [Table 5.2]. Transistor 12 was part in 80 of the 100 best combi-
nations. These considerably increased performance, with RF and RF CV
consistently achieving about 94% accuracy. Thus, the classification for all
plants (plant numbers 2,3,5,7,8,9,10,13) was tested [Table 5.3]. As expected,
performance decreased with the higher number of plants to 80%. We can
also see that the neural network was barely effected by any of the previous
changes. The main observation is that for the data that does include the
ambient light, RF and RF CV remain the best methods. For the data that
removes it, NN CV is significantly better.

28 Alexander Walter



5.2. FINDING BEST PHOTOTRANSISTORS

Single Phototransistor with LED 5 and plants 3, 7, 8.
LED 5 5 5 5 5

Plants 3,7,8 3,7,8 3,7,8 3,7,8 3,7,8
Phototransistors 12 5 1 8 2

RF no AL 0.32967 0.39560 0.39011 0.41978 0.43681
DT no AL 0.30165 0.38736 0.37747 0.39835 0.38901
NN no AL 0.28834 0.27684 0.29299 0.29857 0.31831

NN CV no AL 0.23780 0.28256 0.28122 0.29236 0.30355
RF CV no AL 0.33239 0.39281 0.38347 0.41970 0.43348

RF & AL 0.45963 0.39533 0.42243 0.41869 0.40657
DT & AL 0.42128 0.37860 0.38639 0.39937 0.38466
NN & AL 0.33167 0.31610 0.29071 0.31334 0.31951

NN CV & AL 0.29823 0.27023 0.27433 0.27924 0.27877
RF CV & AL 0.45241 0.39708 0.42448 0.42332 0.40803

Avg 0.34530 0.34925 0.35236 0.36627 0.36787

Table 5.1: Table showing the training evaluations for Random Forest (RF),
Decision Tree (DT), Neural Network (NN), Neural Network using Cross-
Validation (NN CV) and Random Forest using Cross-Validation (RF CV).
Top half are the results when Ambient Light (AL) was removed, while it was
kept for the bottom half. Best candidate is number 12 and coloured red.

3 best performing combinations of 3 phototransistors.
LEDs 5 5 5
Plants 3,7,8 3,7,8 3,7,8

Phototransistors 1,12,24 2,12,24 9,12,16
RF no AL 0.05330 0.04670 0.04890
DT no AL 0.08956 0.08022 0.07253
NN no AL 0.25467 0.24805 0.22007

NN CV no AL 0.15616 0.06348 0.05712
RF CV no AL 0.05166 0.04740 0.04343

RF & AL 0.05421 0.05450 0.05940
DT & AL 0.08881 0.08939 0.08679
NN & AL 0.28801 0.32136 0.28458

NN CV & AL 0.19906 0.20660 0.19613
RF CV & AL 0.05965 0.05997 0.06142

Avg 0.12951 0.12177 0.11304

Table 5.2: On average over all ML methods, best performances were reached
with phototransistors 9,12 and 16.
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3 best performing combinations of 3 phototransistors.
LED 5 5 5

Plants all all all
Phototransistors 1,12,24 2,12,24 9,12,16

RF no AL 0.31426 0.29669 0.28636
DT no AL 0.38740 0.37851 0.36839
NN no AL 0.2832 0.28458 0.27633

NN CV no AL 0.18334 0.22240 0.18735
RF CV no AL 0.31529 0.30372 0.28781

RF & AL 0.20190 0.20079 0.17730
DT & AL 0.29810 0.29092 0.28511
NN & AL 0.28533 0.28415 0.28742

NN CV & AL 0.22403 0.22602 0.23163
RF CV & AL 0.21067 0.20524 0.18608

Avg 0.27035 0.26930 0.25738

Table 5.3: Phototransistors 9, 12 and 16 remained best combination for all
plants

Finding best LEDs

With the best values merely reaching 80% accuracy, we will try to further im-
prove this by adding additional LED data, as some plants showed detectable
fluorescence for other LEDs. That is done in similar fashion as with the
phototransistors. First, every LED is evaluated on its own, followed by com-
binations of the best performing. Looking at the averages in table 5.4, we see
that LEDs 5, 8 and 4 are the best performing. Furthermore, the data shows
a big differences between ambient light (AL) and no AL, with all LEDs giv-
ing considerably better performance with AL. Probing combinations of these

Single LEDs
LED 2 3 4 5 6 7 8

Plants all all all all all all all
Photos 2,12,24 2,12,24 2,12,24 2,12,24 2,12,24 2,12,24 2,12,24

Avg 0.4818 0.3507 0.3254 0.2675 0.3616 0.4180 0.3190

Table 5.4: LED number 5 achieved best values. LED 1 and 2 proved to be
equally insignificant.

LEDs, it is found that LEDs 5 and 8 give the best result [Table 5.5]. Adding
LED 4 results in a minor improvement of around 15%. Since NN does not
show promising results in any setup, it will not further be evaluated. DC will
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also be discarded, as it gives decent result for small number of plants only,
but never better than RF or RF CV. Occasionally, NN CV achieves similiar
values as RF and RF CV, but most of the time its error is way higher.

Combinations of best performing LEDs
LED 4,5 5,8 4,5,8 5,8 4,5,8

Plants all all all 3,7,8 3,7,8
Photos 2,12,24 2,12,24 2,12,24 2,12,24 2,12,24

RF no AL 0.27913 0.21136 0.19835 0.028022 0.023077
NN CV no AL 0.17051 0.20589 0.18948 0.11165 0.047753
RF CV no AL 0.27851 0.21446 0.20248 0.030254 0.021969

RF & AL 0.16939 0.14021 0.13699 0.02278 0.030565
NN CV & AL 0.21607 0.24494 0.20973 0.24435 0.2413
RF CV & AL 0.17928 0.14627 0.14145 0.030289 0.032886

Avg 0.2155 0.1939 0.1797 0.0779 0.0663

Table 5.5: LEDs 5 and 8 are the best pair and LEDs 4, 5 and 8 the best
3-tuple.

5.3 Final Parameter Setup

Thus, LEDs 5 (432 nm) and 8 (520 nm) are the most effective pair, with
LED 4 (415 nm) as an optional addition for slight improvement. After test-
ing the three previously determined combinations of phototransistors as well
as several others, the already best achieving tuple of numbers 9, 12 and 16
[Fig. 5.2] consistently gave the best results. Other phototransistors that of-
ten appeared in well performing groups were numbers 1, 2, 11, 17 and 24.
Adding one or more of them might improve the results, but testing revealed
only minor enhancement or even decrease in accuracy. With all parameters
optimized, it is trained again [Table 5.6].

Through this, classification for the plants 3 (dandelion), 7 (lawngrass)
and 8 (moss) achieved 96-98% accuracy with slightly better results if the
ambient light was removed from the data. If the algorithms are trained for
all eigth plants, 86% accuracy is reached for data including AL, a significant
difference to the 81% without.
Using the minimalistic setup with one LED, another 4-5% of accuracy are
lost for the Random Forest methods and NN CV achieved the best results
across all methods with 85% without AL. Additionally, it can be trained for
the ninth LED, which would be all LEDs deactivated, meaning sunlight only.
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Figure 5.2: The spectral densities of phototransistors 9 (blue), 12 (red) and
16 (yellow).

Evaluation applying best parameters
LED 4,5,8 4,5,8 5

Plants 3,7,8 2,3,5,7,8,9,10,13 2,3,5,7,8,9,10,13
Photos 9,12,16 9,12,16 9,12,16

RF no AL 0.020192 0.18719 0.28905
NN CV no AL 0.067992 0.18187 0.15041
RF CV no AL 0.024725 0.19163 0.28926

RF & AL 0.030277 0.13684 0.17458
NN CV & AL 0.248760 0.22721 0.24704
RF CV & AL 0.032437 0.13972 0.18571

Table 5.6: With three LEDs, RF and RF CV are the most robust methods.
With only one LED, NN CV outperformed all other methods.

This still achieved up to 80% accuracy for the three main plants and 60% for
all eight.
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Chapter 6

Conclusion

The results show that using chlorophyll a fluorescence induction and ML
algorithms is a viable approach for plant detection. Achieving 98% accuracy
for three common plants present on a lawn and 86% for six more and rather
arbitrary species is promising, even though these values dropped when the
sensor complexity was reduced.

Sources of Error

The target setup of one LED and three phototransistors (PT) only achieved
about 84% accuracy for eight plants. One possible reason for this can be
found in the small data sample. Plants had to be changed regulary, as a
noticable decline in fluorescence was noticed after using a plant and angle
for a while. This can be explained by non-photochemical quenching, which
starts later than the photon emitting process, as mentioned in section 2.2.
Thus, either an area not used was illuminated or a new member of the same
species was taken.

Generally, this is advantageous to the learning process and improves ro-
bustness for changes in age, size and health of individual plants, which can
not be controlled in nature. But this necessitates a huge training set to avoid
miss-classifications and confusions with other plants. Further proof can be
found when we consider that the data for lawngrass and dandelions was col-
lected separately from the other plants. Their fluorescence was measured on
the same days, switching between the two species after 50 scans. Through
this, the data would contain less fluctuations. Therefore, classification for
these two plants is expected to be better than for the rest, but less applica-
ble to the real world as the data lacks natural anomalies, while the data for
the other plants lacks the necessary data quantity for the machine learning
algorithms to learn all the details properly.
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Figure 6.1: Confusion chart for the minimal setup of LED 5, PTs 9,12,16 for
all 8 plants. Lawngrass and dandelion had the fewest miss-classifications.

The confusion chart [Fig. 6.1] further supports this argument. Indicated
through the color and respective numbers, we see that lawngrass and dan-
delion had the best results and fewest miss-classifications across all eight
species. Other sources of error are reflections from background objects and
the plants itself. Reflecting background was avoided as much as possible,
especially white or generally reflective surfaces. But some plants have con-
siderable stronger reflecting, shiny leaves than others. This can be considered
as just another feature that will positively reflect the data, but the major con-
cern here is that the spectrometer can get ”blinded” by this, meaning overly
saturated at the LED’s wavelength, resulting in a decreasing sensibility for
the wavelengths of interest. An example of such a plant with ”waxy” leaves
is plant number 5, the european daisy (Bellis perennis) [Fig. 6.2]. The spec-
trometer maxed out over a span of wavelengths. If compared to a scan with
an adjusted, more advantageous position of the same plant, the difference is
clearly noticable [Fig. 6.3]. Adding to this is the fact that we scan for the
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Figure 6.2: Example of an erroneous scan for a daisy (scan 4). Fluorescence
is measurable and barely visible for LED 5 (432 nm) only.

ambient light only once. The entire scan beginning with the first LED and
ending with the final AL measurement takes roughly 25 seconds. During this
time, light conditions can easily change drastically (e.g. due to clouds). This
can be improved by measuring AL before or after every LED, which would
double the scan time. Alternatively, a second, identical spectrometer could
be used in parallel with a slightly changed setup to guarantee consistency.

The Machine Learning Algorithms

Since the collected data is labeled with the corresponding plant, supervised
learning algorithms were chosen for evaluation. The methods come with dif-
ferent benefits and drawbacks that need to be considered.

A decision tree is an intuitive and fast predictor even capable of handling
unnormalized datasets, as its internal structure is not influenced by the val-
ues assumed by each feature. They perform well for few variables and are
easy to interpret and explain. Also, they are easy to implement on a mi-
croprocessor. But without proper constraints, the decision tree might grow
until only a small sample number is properly represented in its nodes. This
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Figure 6.3: Example of an improved scan for the same daisy (scan 10).
Fluorescence is clearly visible for LEDs 4, 5 and 6 and still measurable for
LEDs 3 and 7.

is called overfitting and the structure will no longer be able to generalize
correctly.
For the purpose of this thesis, DT classification accuracy rapidly declined
with parameter numbers and proved inadequate. Unless only a few plants
need to be detectable, it will not be able to consistently classify accurately.

Therefore, random forest was implemented. As it averages over many
trees, variance is reduced. To lower bias we also used a RF variant that
applied k -fold cross-validationl. Each tree is trained independently, using a
random sample of the data. This makes the algorithm robust and also makes
parallel computing very effective. They have a lower classification error than
decision trees, can easily handle high dimensional spaces and a large number
of training examples. In exchange, some of the interpretability is lost.

Both RF and RF CV showed the most promising and consistent results.
Across all evaluations, they performed equally well, with a minor edge to
RF without CV. An explanation might be that RF CV was more prone to
fluctuation in the performance of the system it was trained on, as it would
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requiere more ressources.

To add an unrelated machine learning method, we used neural networks
for classification as well. They excell in finding non-linear data with many
input features and are widely used in the industry. Generally, NNs are able
to learn almost any function, even if the type of function or data isn’t known
beforehand. But this comes at the complete loss of interpretability. It can
be regained, but requieres additional effort. Also, it is difficult to tell if
they will generalize well to new data, trained models depend crucially on
initial parameters and they are difficult to troubleshoot if they do not work
as intended.
In context of this work, NN can be discarded. NN CV on the other hand
showed rather anomalous behavior. It underperformed most of the time,
but just small changes to the parameters drastically improved classification.
As mentioned in this paragraph, it is inherently difficult to determine the
origin of this behavior. There are many possible explanations, two of which
we will discuss. First, the network could generally be able to classify the
plants, potentionally even better than RF (as can be seen in the final data
table). But the sample size is simply too small and all the other, above
mentioned sources of error and the sensible nature of NNs lead to many miss-
classifications. Another possibility could be that under certain conditions the
NN with CV managed to memorize the entire data set including noise, as
discussed in [Arpit et al., 2017].

Recommendation

The recommended and best LED is number 5 with a wavelength of 432 nm.
To this, a tuple of phototransistors consisting of number 9, 12 and 16 is
suggested. Using these components, a low-cost sensor can be designed and
used to collect new spectral data. The recommended classifier is RF with
CV, since it proved to be the most reliable and robust method.
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