
HIBO: Hierarchical Acquisition Functions for Bayesian
Optimization

HIBO: Hierarchische Akquisitionfunktionen für Bayessche Optimierung

Masterarbeit

verfasst am
Institut für Robotik und Kognitive Systeme

im Rahmen des Studiengangs
Informatik
der Universität zu Lübeck

vorgelegt von
Franz Johannes Michael Werner

ausgegeben und betreut von
Prof. Dr. Elmar Rückert

mit Unterstützung von
M.Sc. Nils Rottmann

Lübeck, den 14. November 2019



Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich diese Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Die
Arbeit wurde in dieser oder ähnlicher Form noch keiner Prüfungskommission
vorgelegt.

Franz Johannes Michael Werner

– ii –



Zusammenfassung

Bayessche Optimierung ist eine mächtige Methode zur Optimierung von Black-
Box Funktionen, mit unbekannten Ableitungen und hohen Auswertungskosten.
Anwendungen können beispielsweise in dem Bereich der Robotik, der Anima-
tionsgestaltung oder dem Entwurf von Molekülen gefunden werden. Allerdings
skaliert Bayessche Optimierung nicht in höhere Dimensionen, wenn mehr als
20 Parameter optimiert werden müssen. Die vorliegende Arbeit stellt mit HIBO
einen neuen hierarchischen Algorithmus in Bereich der hochdimensionalen Bayes-
schen Optimierung vor. Der Algorithmus nutzt eine automatische Featuregene-
rierung. Die Feature werden zur Konditionierung der Parameter verwendet, um
eine schnellere Optimierung zu ermöglichen. Die Performanz von HIBO wird mit
bereits existierenden Erweiterungen für hochdimensionale Bayessche Optimie-
rung auf drei gebräuchlichen Benchmarkfunktionen verglichen. Zusätzlich wird
eine Airhockey Simulation verwendet, um die Leistungsfähigkeit in aufgabenbe-
zogenen Szenarien zu untersuchen. Die durchgeführten Experimente zeigen, dass
HIBO, unabhängig von der Dimensionalität des Problems, ähnliche Ergebnisse
erzielt, wie der grundlegende Algorithmus der Bayesschen Optimierung. Daher
ist HIBO nicht in der Lage Bayessche Optimierung in höheren Dimensionen zu
ermöglichen.

Abstract

Bayesian Optimization is a powerful method to optimize black-box derivative-free
functions, with high evaluation costs. For instance, applications can be found in
the context of robotics, animation design or molecular design. However, Bayesian
Optimization is not able to scale into higher dimensions, equivalent to optimiz-
ing more than 20 parameters. This thesis introduces HIBO, a new hierarchical
algorithm in the context of high dimensional Bayesian Optimization. The algo-
rithm uses an automatic feature generation. The features are used to condition
the parameters, to enable faster optimization. The performance of HIBO is com-
pared to existing high dimensional extensions of Bayesian Optimization on three
common benchmark functions. Additionally, an air hockey simulation is used to
examine the capability in a task-oriented setting. The conducted experiments
show that HIBO performs similar to the basic Bayesian Optimization algorithm,
independent from the dimensionality of the given problem. Hence, the proposed
HIBO algorithm does not scale Bayesian Optimization to higher dimensions.

– iii –



Acknowledgements

I would like to express my gratitude to Prof. Dr. Elmar Rückert and to
Nils Rottmann, from the Institute for Robotics and Cognitive Systems at Uni-
versity Lübeck, for the useful comments, remarks and engagement through the
process of this master thesis. Furthermore I would like to thank my partner
Lena Rieckmann for proofreading this thesis and her support throughout the
whole process of this thesis and my studies at University Lübeck. Finally I
would like to thank my parents, for making possible and supporting my entire
scientific education.

– iv –



Contents

1 Introduction 1

2 Background Methods 5
2.1 Artificial Neural Networks 5

2.1.1 Artificial Neuron 5
2.1.2 Artificial Neural Network 7

2.2 Bayesian Optimization 8
2.2.1 Acquisition Functions 8

2.3 Gaussian Process Regression 11
2.3.1 Kernel functions 13
2.3.2 Hyperparameter tuning 14

2.4 Manifold Gaussian Process 15
2.5 Multi Output Gaussian Process 16

2.5.1 Intrinsic Coregionalization Model 17
2.5.2 Multi Task Gaussian Process 17

3 Bayesian Optimization in High Dimensional Spaces 19
3.1 Bayesian Optimization with Dropouts 20
3.2 Bayesian Optimization with Random Embedding 21
3.3 Manifold Bayesian Optimization 22
3.4 Hierarchical Acquisition Functions for Bayesian Optimization 25

4 Experiments 27
4.1 Synthetic Benchmark Functions 27

4.1.1 Branin function 29
4.1.2 Schwefel function 30
4.1.3 Ackley function 32

4.2 Robotic Air Hockey Task 33
4.2.1 Simulation 33
4.2.2 Results 36

5 Discussion and Future Work 40

6 Summary 45

Bibliography 46

A Appendix 50

– v –



List of abbreviations

ANN Artificial Neural Network

BO Bayesian Optimization

DBO Bayesian Optimization with Dropouts

EI Expected Improvement

GP Gaussian Process

HIBO Hierarchical Acquisition Functions for Bayesian Optimization

ICM Intrinsic Coregionalization Model

MBO Manifold Bayesian Optimization

mGP Manifold Gaussian Process

MTGP Multi Task Gaussian Process

PCA Principal Component Analysis

PI Probability of Improvement

REMBO Bayesian Optimization with Random Embedding

UCB Upper Confidence Bound

– vi –



1
Introduction

In recent years, robots were able to increasingly support humans, by taking care of various
tasks. For example humanoid robots are responsible for transporting plates on construction
sides [23], or service robots gain the capability to help cleaning up a kitchen [47]. An
important factor is the ability to manipulate objects. Since there is a large variety in size,
form and firmness, gripping objects is challenging. An example for a gripper, suitable for
service robot tasks, is the Schunk SVH five-finger hand [38], which can be seen in Fig. 1.1.
The hand consists of 9 servo motors and 20 joints. The position of the hand is controlled
by a PID controller. In order to perform movements and solving tasks, such a robot has
to sense its environment and decide which action has to be performed next. Thereby, the
decision process is mostly parameterized, since hard coded solutions are extremely complex
and are not able to adapt to new situations. An example are the parameters of the PID
controller for the Schunk SVH five-finger hand, with which predetermined waypoints can
be approached. Hence, finding proper parameters, leading to optimal strategies for solving
given tasks, is an important and challenging task in robotics.

One popular approach for finding optimal parameters is reinforcement learning [42], with
policy and non-policy variations. Within a non-policy setting, the robot performs an action,
based on the current state and receives a reward. By maximizing the reward an optimal
action for a given state can be learned. Policy reinforcement learning requires the robot
to perform actions, leading to a reward in the future. Therefore, the parameters of the

Figure 1.1: The Schunk SVH five-finger hand. Image from [41].

– 1 –



1 Introduction

Figure 1.2: (left) Exhaustive fitness landscape in a simulation. (right) Interpolation of the
fitness landscape in reality based on about 5500 evaluations. The parameters p1 and p2 are
used to control the legs of a quadrupedal walking robot. The fitness is the distance (mm)
traveled by the robot within 10 seconds. Image from [24].

policy, leading to corresponding actions, have to be learned. For example, catching a ball
with a 5-finger hand requires multiple actions, summarized as moving towards the ball
and closing the hand. The reward is only provided in the end, when the ball is caught. By
repeating the task, the robot will learn proper policy parameters, solving the task according
to receiving optimal reward. Another approach are evolutionary algorithms, imitating basic
evolutionary processes, like mutation and recombination [36]. A pool, called population,
of genetic representations of the parameters or the decision process are applied to the
given task. A fitness function measures the performance. By modifying and combining
representations with high fitness values, a new generation is created. Repeating the process
of measuring the fitness and creating new generations, leads to better solutions over time.
Both approaches have in common, that the robot has to repeatedly perform the task, in
order to learn the task.

Performing the tasks can be realized in several ways: with a real environment and robot,
in a simulation or by combining simulation and the execution on a real robot. However,
applying parameters, optimized in a simulation, to a real world situation, often does not lead
to corresponding behaviors [5]. This is called reality gap. Due to differences in sensing and
actuation, parameters can work well in a simulation, but fail in the real world. Additionally,
the physics of a simulation may allow solutions, that can not occur in the real world,
especially in a dynamic environment [28]. An example for the reality gap can be seen in
Fig. 1.2, where the performances of a controller in a simulation and in reality are compared.
The simulation computes high fitness values for some solutions, failing in reality. In addition,
there are solutions that achieve good results in reality, but are marked as bad by the
simulation. Hence, to ensure valid solutions, the optimization of the parameters has to
be performed in the real world. This requires more human resources and time, compared
to simulated experiments. The experimental setup has to be prepared for each parameter
evaluation and the experiment itself has to be supervised. Additionally, replacements for
the robot itself are required, as inappropriate parameters can cause damage. All in all,
testing a set of parameters is an expensive process. Therefore, it is desirable, to find proper
parameters within a few evaluations.

– 2 –



1 Introduction

t=1

0 1 2 3 4
-5

0

5

10

0 1 2 3 4

E
I

t=2 t=3 t=4

Figure 1.3: BO applied on a one-dimensional function f(x) = sin(x) · x (dashed red line).
Black dots marks previous evaluations of the parameter x and the red dot the position of
the last evaluation. The blue line and area shows the belief over the target function created
by the model. The green area shows the acquisition function, determining the next value
for the parameter x, marked by the red asterisk.

For finding optimal solutions within few iterations, Bayesian Optimization (BO) can be
applied. BO is a machine-learning-based method, for black-box derivative-free global opti-
mization [12]. BO can be applied on value based problems but also to policy optimization
by optimizing the parameters of the policy. Based on previous evaluations, a model of the
objective function is build. This model is used by an acquisition function, which suggests
a new parameter set for evaluation. By repeatedly updating the model, the prediction for
good parameters is improved. In Fig. 1.3 an exemplary progress of BO on a one-dimensional
function is shown. BO is not only restricted to robotics, like in [2, 8, 30, 32], but can be
applied in various domains, like animation design [4], molecular design [17] or environmen-
tal monitoring [31]. Most successful applications of BO have about 20 or less parameters
to optimize [12, 43]. However, optimization problems can easily exceed the number of 20
parameters. Learning the parameters of the PID controller on the SVH hand, results in 27
parameters in total, since controlling a single motor requires three parameters. This can be
extended by additional parameters. For example when gripping objects, different materials
requires different forces applied to the object. Additionally, the posture of the hand plays
an important role. Another example is the design of molecules regarding certain properties.
In [17] the encoding of the molecules consists of up to 120 characters.

This leads to research, where BO is extended, in order to perform well in higher dimensions.
If an appropriate amount of data is available, an auto encoder can be trained as in [17].
However, since the evaluation of parameters is associated with high costs, access to such data
is generally not possible. This leads to approaches which only rely on the few evaluations
performed during the optimization process. In [50, 51] the optimization is performed in a
lower dimensional embedding. A randomly created matrix is used to project the embedding
into the parameter space. The work in [29], inspired by the Dropout algorithm for neural
networks, optimizes only a smaller and randomly chosen subset of parameters per iteration.
In [34] the hyper parameters for a neural net are jointly learned with the model of the BO.

– 3 –



1 Introduction

On the feature space, created by the neural net, a acquisition function is used to compute
a new feature. Using a Multi Output Gaussian Process the feature is mapped back into the
parameter space.

Within this thesis, a new approach, called Hierarchical Acquisition Functions for Bayesian
Optimization (HIBO), is examined. Two acquisition functions are used in a hierarchical
manner. In a first step, an acquisition function is applied on a feature space. In a second
step, the parameter and the feature space are combined. The feature, computed by the first
acquisition function, is then used to condition the search space, while applying a second
acquisition function on the combined space. This approach has been successfully tested
with a handcrafted feature generation and additional modifications of the BO algorithm.
Therefore, this thesis addresses the automatic feature generation for the HIBO algorithm.
Additionally, the performance of HIBO alone is investigated.

Thesis Organization
In Chapter 2 basic methods and techniques are covered. This includes Artificial Neural
Networks, Bayesian Optimization, Gaussian Processes and extensions of Gaussian Pro-
cesses. Extensions of Bayesian Optimization, including HIBO, are introduced in Chap-
ter 3. The HIBO algorithm will be compared to BO and three other extensions, called
Bayesian Optimization with Random Embedding (REMBO), Bayesian Optimization with
Dropouts (DBO) and Manifold Bayesian Optimization (MBO). Chapter 4 describes and
evaluates experiments to investigate the performance of the algorithms. At first three com-
mon benchmark functions are used to compare the algorithms. Additionally, an air hockey
simulation is used, to learn to score a goal from a fixed point. In Chapter 5 the results are
discussed and suggestions for future work are given. In the end, the thesis is summarized
in Chapter 6.

Mathematical Notation
In the following, the mathematical notation used throughout this thesis is introduced.
Scalar values are written as lower-case letters (e.g. a, s). Vectors are depicted as small bold
lower-case letters (e.g. a,µ) and matrices as bold capital letters (e.g. A,Σ). A single scalar
value from a matrix placed in row i and column j is written as (A)ij . The identity matrix
is written as I where the size is chosen appropriate to the usage.

Sets are written as blackboard bold (e.g. D). Please note that labels for number cate-
gories, like R, keep there general meaning. Spaces are denoted as calligraphic capital letters
(e.g. X ).

A function µ(x) can be shortly written as µx. The exponential function is denoted with
exp(x) or ex with exp(x) = ex. The variance of a variable x is written as var(x), the co-
variance between the variables x and y as cov(x, y) and the expectation value of a variable
x as E(x).

– 4 –



2
Background Methods

This chapter describes the basic methods and techniques, used in this thesis. It starts with
a brief introduction to Artificial Neural Networks in Section 2.1, which are used as customiz-
able nonlinear transformation function. Section 2.2 addresses Bayesian Optimization, an
efficient approach for optimizing functions with high evaluation costs. In Section 2.3 Gaus-
sian Process Regression is covered, which is used as non-parametric model for Bayesian
Optimization. Sections 2.4 and 2.5 introduce extensions of Gaussian Process Regression,
Manifold Gaussian Process and Multi Output Gaussian Process respectively. Manifold
Gaussian Processs use a feature space created by an Artificial Neural Network and Multi
Output Gaussian Processes enable the modeling of functions with multiple output dimen-
sions.

2.1 Artificial Neural Networks

In recent years, Artificial Neural Networks (ANNs) and variations, like Deep Neural Net-
works or Convolutional Neural Networks [27, 13] were successfully applied to image classifi-
cation [25], face recognition [52] and speech to text transformation [18]. ANNs are inspired
by the functionality of the human brain. Similar to a biological neural net an ANN consists
of artificial neurons, which are arranged within a layered structure. Due to parameterized
connections between the artificial neurons, the ANN is able to adapt to training data. In
the first part artificial neurons are introduced. In the next step ANNs are briefly covered.

2.1.1 Artificial Neuron

In 1949 McCulloch and Pitts [33] published a mathematical approach to model biological
neurons. Thereby the neurons complexity is distinctly reduced and also some components
and processes of a biological neuron are not considered. A schematic representation of a
biological neuron with its basic components can be seen in Fig. 2.1. The model of McColloch
and Pitts captures the following processes within a biological neuron. Input signals are
weighted by the efficiency of their synapses. Based on accumulated signals and a trigger
threshold an output signal emerges. Physical and chemical processes are not considered
by the model. The model consist of an input vector x, weights w, a threshold θ and an

– 5 –



2 Background Methods

Dendrites

Nucleus

Soma

Axon hillock

Axon

Axon terminals

Figure 2.1: Schematic representation of a biological neuron from [10]. A neuron consists
of the soma with the nucleus, dendrites, the axon and axon terminals. Within the nucleus
the signals received via the dendrites are processed. If a certain voltage level is exceeded,
an action potential emerges in the axon hillock. It is then headed via the axon towards
the axon terminals. The axon terminals are linked to the dendrites of other neurons by
synapses. Due to different synapse efficiencies, the signals arriving at the dendrites have
different effects on the behavior of the corresponding neuron.

activation function ϕ. The output y of a single neuron is computed as

y = ϕ
(
wT · x− θ

)
.

Common choices for the activation function ϕ are the Rectified Linear Unit

relu(x) = max(0, x)

and sigmoid functions like

sig(x) = ex

1 + ex
,

as shown in Fig. 2.2.

−4 −2 2 4

2

4

x

relu(x) = max(0, x)
sig(x) = ex

1+ex

Figure 2.2: Plots of the Rectified Linear Unit and a sigmoid function in the range of
[−5, 5].

– 6 –



2 Background Methods

x1

x2

x3

i1

i2

i3

h1

h2

h3

h4

o1

o2

y1

y2

Input layer

Hidden layer

Output layer

Figure 2.3: Schematic representation of a simple ANN. The network consists of an input
layer with three neurons (i1, i2 and i3), a hidden layer with four neurons (h1, h2, h3 and h4)
and an ouput layer with two neurons (o1 and o2). Mathematically this ANN is a function
f : R3 → R2, (x1, x2, x3) 7→ (y1, y2).

2.1.2 Artificial Neural Network

An ANN consists of multiple connected artificial neurons. The arrangement of the artificial
neurons corresponds to a graph, where the neurons are the nodes and the synapses are the
edges. Typically an ANN is structured in layers. Every ANN consists of an input and an
output layer. Between both layers an arbitrary number of hidden layers can be placed.
Within this thesis feed forward ANNs with fully connected layers are used. In feed forward
ANNs with fully connected layers, a neuron is connected to all neurons of the previous layer.
Additionally, the output of a neuron can only be passed to a following layer and not to the
own or previous layers. In Fig. 2.3, a simple ANN with three input neurons, four hidden
neurons and two output neurons is shown. An ANN is parameterized by the weights and
thresholds of its artificial neurons.

Very common applications of ANNs are classification and regression. Both applications
need a dataset of inputs x and target outputs or labels s. After propagating the input x
through the ANN the output y can be compared to the labels s. The gradient of the error
function with respect to the parameters can be used to update the parameters. This is
called backpropagation [39]. This approach requires a large dataset of known inputs and
target outputs. Within this thesis ANNs are applied in the context of Bayesian Optimiza-
tion where functions with high evaluation costs are optimized. Thus, in a typical case there
is no access to a huge amount of data. As a consequence backpropagation can not be used
to tune the parameters of an ANN. Instead the parameters are integrated into a Gaussian
Process, which will be introduced in Section 2.4.

– 7 –



2 Background Methods

2.2 Bayesian Optimization

Consider the optimization of an objective function f : X → R:

x∗ = argmaxx∈X f(x),

where fx has the following properties [12]. Due to relatively high costs to obtain the value
of fx, the number of evaluations is limited. This is the case for evaluations performed by hu-
man, time consuming tasks or monetary expensive evaluations. fx is a black-box-function.
Thus, there is no knowledge about structural properties of fx which could simplify the
optimization. Additionally, only fx can be observed. Knowledge about the derivatives of
fx is not accessible. Due to this properties, neither gradient based methods nor grid- or
randomsearch can be applied. A solution is given by Bayesian Optimization.

Bayesian Optimization (BO) is a machine-learning-based optimization approach, designed
for black-box derivative-free global optimization [12]. It consists of two main components:
a probabilistic model and an acquisition function. The model is used to build a prior belief
over the possible objective function fx. The model is sequentially updated with new results
of evaluating the true objective function for known parameters. The acquisition function
uses the prior belief to determine the next candidate for evaluating the objective function.
For each evaluation in the optimization process we store the observed point x ∈ X and the
obtained objective value y = f(x) in a dataset D = {X ,R}. Initially the objective function
is evaluated at a small number of randomly chosen points. In following iterations the model
is updated based on all observations in D. In a second step the acquisition function uses the
model to find a new point x where the objective function fx is evaluated. The observation
is then stored in D as well. See Alg. 2.1 for the pseudo-code of this framework.

Typically the parameter space X is often a compact subset of Rd. But also more unusual
search spaces that involve categorical or conditional inputs, or even combinatorial search
spaces with multiple categorical inputs are suitable to BO [43]. BO has been successfully
applied to a variety of tasks. For example in robotics BO has been used to learn gates of a
dynamic bipedal walker [8] or quadruped robots [30], for trajectory planing in the context of
robot soccer [2], or to train a humanoid robot to balance an inverted pendulum [32]. Other
applications are for example in pharmaceutical product development [40], environmental
monitoring [31], sensor networks[14], rail network optimization [20] or animation design [4].
However, most successful applications require only 20 or less parameters to be optimized
[12, 43].

One can choose from different approaches to model the objective function. Next to Gaussian
Process (GP) regression, Sparse spectrum Gaussian Processes and Random Forest have been
successfully applied in the context of BO [43]. Within this thesis GP regression is used to
model the objective function. In the following section common choices for acquisition func-
tions will be discussed.

2.2.1 Acquisition Functions

Acquisition functions are used to compute the next parameters for evaluating the objective
function. Therefor an acquisition function α : X → R is maximized. Unlike the unknown

– 8 –



2 Background Methods

Algorithm 2.1: Pseudocode Bayesian Optimization. The goal is to find an almost optimal
parameter x∗ for the blackbox function f with N evaluations in total. At first the dataset
D is initialized with n0 entries. In a second step new solutions are computed using the
acquisition function α and the dataset is updated.

algorithm Bayesian Optimization
input fx // target function

n0 // number of initial observations
N // total number of evaluations

output x∗ // optimized parameter
// Initialize dataset with n0 observations
for n = 1 to n0 do

xn ← random(X )
Dn ← {Dn−1, (xn, fx(xn))}

// Optimize with Bayesian Optimization
for n = n0 + 1 to N do

xn ← argmaxx∈X α(x;Dn−1)

Dn ← {Dn−1, (xn, fx(xn))}
x∗ ← argmaxx∈X α(x;DN )

function fx, the evaluation of α is inexpensive, which enables differed approaches to max-
imize the acquisition function [4, 12]. The sample at argmaxx∈X α(x;D) is suggested for
the next evaluation. BO aims to find a global optimum with a small number of evaluations.
Thus, the trade-off between exploration and exploitation in the search space X has to be
considered. This section presents common choices of α, enabling different strategies. Com-
mon ground of the approaches is that they require a model that predicts a mean value and
a corresponding variance for a given x ∈ X . µn(x) and σn(x) are the predicted mean and
variance computed with GP regression for a certain parameter x given the current dataset
Dn.

Probability of Improvement
An improvement-based approach is Probability of Improvement (PI) [26]. The idea is to
measure the probability that a point x leads to an improvement upon the incumbent target
f(x+) where x+ = argmaxx∈X f(x). Using the Gaussian posterior distribution of the
modeled function f(x) the probability can be computed as

αPI(x;Dn) := P
[
f(x) ≥ f(x+)

]
= Φ

(
µn(x)− f(x+)

σn(x)

)
,

where Φ is the normal cumulative distribution function. αPI can be seen as an exploration
strategy, since points with a high probability to be slightly larger than f(x+) are favored
over points with possible larger gains but with more uncertainty, expressed by σn. The first
section in Fig. 2.4 shows how PI behaves on a one-dimensional toy problem.

– 9 –



2 Background Methods

t=1

0 2 4 6 8

0

5

10

0 2 4 6 8

P
I

t=2 t=3 t=4 t=5 t=6

t=1

0 2 4 6 8

0

5

10

0 2 4 6 8

E
I

t=2 t=3 t=4 t=5 t=6

t=1

0 2 4 6 8

0

5

10

0 2 4 6 8

U
C

B

t=2 t=3 t=4 t=5 t=6

Figure 2.4: Comparison of the acquisition functions PI, EI and UCB on a one-dimensional
toy problem. For each acquisition function BO is applied to the target function f(x) =

sin(x) · x with 5 iterations. In all cases the function is initially evaluated at x1 = 2 and
x2 = 6. In the upper row of each section the objective function fx is shown as a red dotted
line and the predictive mean as a solid blue line. Black dots are marking previous evaluated
points where the red dot marks the last evaluated point. In the lower row the values of the
acquisition functions are shown. The maximum of the acquisition function is marked by a
red asterisk.

Expected Improvement
Instead of only considering the probability of improvement, Expected Improvement (EI)
[35] also considers the magnitude of improvement that a point can possible provide. This
is achieved with

αEI(x;Dn) : =

{
(µn(x)− f(x+)Φ(Z) + σn(x)Φ(Z) if σn(x) > 0

0 if σn(x) = 0,

Z =
µn(x)− f(x+)

σn(x)
,

(2.1)

where Φ is the normal cumulative distribution function and Φ the standard normal prob-
ability density function. The second section of Fig. 2.4 shows the application of EI on a
one-dimensional toy problem.

– 10 –



2 Background Methods

Confidence bound criteria
For minimizing a function Cox et al. [9] provided an algorithm called „Sequential Design
for Optimization“, which selects points for evaluating based on a lower confidence bound

αLCB(x;Dn) = µn(x)− κσn(x),

with a hyperparameter κ ≥ 0, given a random function model. To adapt this algorithm
to maximization of a acqusition function, one can use the Upper Confidence Bound (UCB)
criteria

αUCB(x;Dn) = µn(x) + κσn(x).

With αUCB points where the upper confidence promises high values are preferred. Srinivas
et al. [45] suggest setting κ =

√
vτt, with v > 0 and τt = 2 log

(
td/2+2 + π2/3δ

)
, resulting

in
αGP-UCB(x;Dn) = µn(x) +

√
vτtσn(x).

The behavior of UCB on a toy sample can be seen in the third section of Fig. 2.4.

2.3 Gaussian Process Regression

GP regression is a non-parametric, statistical method to model functions, which are map-
ping a multi dimensional space X ⊆ RD to a one-dimensional value. Thereby it learns a
transformation F : X 7→ Y which aims to model a function f : X 7→ Y , with Y ⊆ R. A GP
is completely specified by its mean function µ0(x) and the covariance function k(x,x′) [37],
which are defined as

µ0(x) = E [f(x)]
k(x,x′) = E

[
(f(x)− µ0(x))

(
f(x′)− µ0(x′)

)]
.

(2.2)

A GP can be used to sample functions f from a prior with mean µ0 and covariance K
computing [37]

u ∼ N (0, I),
f = µ0 + Lu,

where L is the lower triangular matrix obtained from the Cholesky decomposition of K =

LLT . To ensure numerical stability one can add σI to the covariance K, with a noise
variance σ > 0. In addition, GP regression computes samples drawn from a posterior given
training points X ⊂ X and target values y = f(X), with yi ∈ R. For GP regression the
joint distribution of known function values y and test outputs y∗ is obtained by[

y
y∗

]
= N

([
m
m∗

]
,

[
K K∗
KT

∗ K∗∗

])
, (2.3)

where y = f(X) are the known function values for the training points X ⊂ X , y∗ are
the predictions for the test points X∗ ⊂ X . The elements of m and m∗ are defined as
mi = µ0(xi) and m∗i = µ0(x∗i), for xi ∈ X and x∗i ∈ X∗. The covariance matrices
K = k(X,X), K∗ = k(X,X∗) = k(X∗, X)T and K∗∗ = k(X∗, X∗) are based on a
chosen kernel function k. Common choices for k will be discussed later in this section.

– 11 –



2 Background Methods

0 1 2 3 4

x

-6

-4

-2

0

2

4

6

8
y

predicted variance
predicted mean
target function f(x)=sin(x)x
evaluated points

0 1 2 3 4

x

-6

-4

-2

0

2

4

6

8

y

predicted variance
predicted mean
target function f(x)=sin(x)x
evaluated points

Figure 2.5: An example for GP regression applied on the one-dimensional function
f(x) = sin(x) · x in the range of [0, 3π]. The target function is marked with the red
dashed line. For the left image the target function is noise free. In the right image the
evaluation of target function is disturbed with a noise level of σn = 0.5. Thxe x-values for
the evaluation (black dots) are drawn randomly but are identical in both examples. The
predictive mean is drawn as a blue line and the predictive variance is visualized with the
bluish filled area.

By conditioning the prior to only contain functions which agree to the training points, the
prediction for a single data point x∗ ∈ X∗, using GP regression, can be computed as [37]

µ(x∗) = µ0(x∗) + kT
∗ K−1(y−m)

σ(x∗) = k(x∗,x∗)− kT
∗ K−1k∗,

(2.4)

with k∗ = k(x∗, X) as the covariance between x∗ and the training input X. The predictive
mean µ(x∗) represent the prediction at the given point x∗ and the predictive variance σ(x∗)

can be interpret as the uncertainty for that prediction. In Eq. (2.3), it is assumed that the
observation values y are exact. However, in general the observation is corrupted by noise,
such that y = f(X) + ε, with a Gaussian Noise ε ∼ N (0, σ2

n). Therefore, the prior of the
observed data changes to cov(y) = K+ σ2

nI, with a observation variance σn. Now the joint
distribution of the observed data and the function values can be written as[

y
y∗

]
= N

([
m
m∗

]
,

[
K + σ2

nI K∗
KT

∗ K∗∗

])
.

And the prediction using GP regression is then computed as

µ(x∗) = µ0(x∗) + kT
∗
(
K + σ2

nI
)−1

(y−m)

σ(x∗) = k(x∗,x∗)− kT
∗
(
K + σ2

nI
)−1 k∗.

(2.5)

An example for the results of GP regression on a one-dimensional function, with noise
free and noise disturbed evaluation is shown in Fig. 2.5. Rasmussen et al. [37] provide
a practical implementation of the GP regression with zero mean, which can be seen in
Alg. 2.2. Instead of the matrix inversion, Cholesky decomposition is used, since it is faster
and numerically more stable. The prediction is based on the mean function µ0(x) and

– 12 –



2 Background Methods

Algorithm 2.2: Pseudocode Gaussian Process Regression with zero mean

algorithm Gaussian Process Regression
input X // training inputs

y // targets
k // covariance function
σ2
n // noise level

X∗ // test inputs
output µ // predictive mean at X∗

σ // predictive variance at X∗

L ← cholesky(K + σ2
nI)

α ← LT \(L\y)
for x∗ in X∗ do

k∗ ← k(x∗, X)

// predictive mean
append kT

∗ α to µ

// predictive variance
v ← L\k∗
append k(x∗,k∗)− vtv to σ

end

the covariance function k(x,x′), which influence the behavior of the predicted function.
The mean function µ0(x) provides a possible offset [43]. The mean function also offers the
possibility to incorporate expert knowledge of the target function, if available. However,
usually a constant mean µ0(x) = m0 is used, due to missing knowledge about the mean of
the target function. Additionally, the impact of the mean is relatively small, compared to
the impact of the kernel function. The covariance function, or kernel function, dictates the
structure, like the smoothness and amplitude [43]. For example, if the target function fx
is expected to be a periodic function, one can use a periodic kernel function to mimic this
behavior.

2.3.1 Kernel functions

For GP regression stationary kernels are commonly used, which are shift invariant. An
example for a stationary kernel is the squared exponential kernel function

kSE(r) = exp
(
− r2

2l2

)
, (2.6)

where r = ‖x− x′‖ is the distance between the considered points x,x′ ∈ X . This kernel
function leads to smooth behavior, as seen in Fig. 2.6. The squared exponential kernel is a
special case within the class of Matérn kernels

kMatérn(r) =
21−v

Γ(v)
·
(√

2vr

l

)v

·Kv

(√
2vr

l

)
,

where Kv is a modified Bessel function [1], Γ the gamma function and l > 0 a length scale
parameter [37]. The squared exponential kernel is derived by using v →∞. The parameter

– 13 –



2 Background Methods

Figure 2.6: (Left): Visualization of various kernel profiles. The horizontal axis represents
the distance r > 0. (Middle): Samples from GP priors with the corresponding kernels.
(Right): Samples from GP posteriors given two data points (black circles). Note the sharper
drop in the Matérn1 kernel, which corresponds to the exponential kernel, leads to rough
features in the associated samples, while samples from a GP with the Matérn3 and Matérn5
kernels are increasingly smooth. Image from [43]

v > 0 controls the smoothness of the functions drawn from the corresponding GP. This
function is then bv− 1c times differentiable. The influence of v can be seen in Fig. 2.6. The
Matérn kernel function becomes simple for a half integer v = p + 1

2 , where p is a positive
integer. Within machine learning choosing v = 3

2 or v = 5
2 are the most interesting cases:

kMatérn3(r) =

(
1 +

√
3r

l

)
exp

(
−
√
3r

l

)
,

kMatérn5(r) =

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√
5r

l

)
.

For v = 1
2 the exponential kernel

kE(r) = exp
(
−r
l

)
is received, where the GP becames very rough, as seen Fig. 2.6.

2.3.2 Hyperparameter tuning

The kernel and potentially the mean function are parameterized. In order to find good
parameters the log marginal likelihood, given by

log(p(y|X,θ)) =− 1

2
(y−mθ)

T
(
Kθ + σ2

nI
)−1

(y−mθ)

− 1

2
log
∣∣Kθ + σ2

nI
∣∣− n

2
log 2π,

(2.7)

can be maximized. The right hand term in Eq. (2.7) can be split into three parts [43].
The first part quantifies how good the model fits the data. The second term quantifies
the complexity of the model. Smoother covariance matrices will have smaller determinants
and therefore lead to lower complexity penalties. The last term is a linear function of the
number of data points, indicating that the likelihood decreases with a larger dataset.

– 14 –



2 Background Methods

F

Regression

X Y

(a) GP Regression

M G

Input Transformation + Regression

X YH
(b) mGP Regression

M G|M
Input Transformation

Regression
X YH

(c) Seperatly learnd input transformation M and regression

Figure 2.7: Visualization of the differences of using GP Regression (a) and mGP Regres-
sion (b) to fit a function F : X 7→ Y . GP Regression maps directly from input space X
to the observation space Y . mGP jointly learns a input transformation M : X 7→ H and
a regression from the feature space H to the output space Y . Please note that the input
transformation M is not pre-trained as in (c), where the regression is conditioned by M .
Images based on [7].

2.4 Manifold Gaussian Process

In [7], Calandra et al. published the Manifold Gaussian Process (mGP), which jointly learns
a transformation from a multi dimensional input space X ⊆ RD into a multi dimensional
feature space H ⊆ Rd, where d < D and a GP Regression from the feature space H to
the observation space Y ⊆ R. The general goal is to find representations of the input data
in a way that they are helpful for the regression task. The performance of GP Regression
depends on the kernel function k. By choosing k, assumptions about the smoothness of the
target function are made. However, finding an appropriate kernel function k is challenging
for certain kind of functions, like highly non-linear functions. By transforming the input
space X into the feature space H the restriction given by the kernel k can be satisfied
more likely. Within the classical regression setting, like GP Regression a transformation
F : X 7→ Y is learned. Instead of applying a GP on the input space X , mGP decomposes
the transformation F into F = G ◦M , with a deterministic and parameterized function
M : X 7→ H and a GP Regression G : H 7→ Y . The difference is also illustrated in Fig. 2.7.
Using M(X) as input for a GP, mGP is equivalent to a GP for a function F : X 7→ Y with
a covariance function defined as

k̃(xi,xj) = k(M(xi),M(xj)).

Therefor the kernel k̃ only operates on the d-dimensional feature space. Thus, the prediction
for a test input x∗ using a mGP is similar to the prediction of a GP in Eq. (2.5) and is

– 15 –



2 Background Methods

obtained by

µ(M(x∗)) = µ0(M(x∗)) + k̃T
∗

(
K̃ + σ2

nI
)−1

(y−m)

σ(M(x∗)) = k̃(M(x∗),M(x∗))− k̃T
∗

(
K̃ + σ2

nI
)−1

k̃∗,

with K̃ = k̃(X,X), k̃∗ = k̃(x∗, X) and mi = µ0(M(xi)) for each xi ∈ X where µ0 is defined
as in Eq. (2.2). Training a mGP is similar to training a GP. The parameters θM and θG

for the transformations M and G are jointly learned using the log marginal likelihood, like
in Eq. (2.7). Since the Kernel also depends on the transformation M the log marginal
likelihood changes to

log(p(y|X,θmGP )) =−
1

2
(y−mθmGP

)T
(

K̃θmGP
+ σ2

nI
)−1

(y−mθmGP
)

− 1

2
log
∣∣∣K̃θmGP

+ σ2
nI
∣∣∣− n

2
log 2π,

(2.8)

with θmGP = [θM ,θG]. In [7], the transformation M is implemented as a multi-layer ANN,
as introduced in Section 2.1. Thereby two different activation functions are considered.
Using the log-sigmoid function

logsig(x) = 1/(1 + e−x) (2.9)

results into a non-linear transformation M , while the identity function

id(x) = x

creates a linear version.

2.5 Multi Output Gaussian Process

GP Regression can only be used to model a single valued function f : X → R. A simple
approach to extend GP Regression to multi valued functions is to tread each output di-
mension as a single function and model those functions with separate GPs independently.
However, this approach ignores that the different dimensions can be correlated. Formally,
a multi dimensional function f : X → RD is now considered. In general with Multi Output
GP, a prediction g is then drawn from a vector valued GP, such that g ∼ GP(m,K), where
m = {mm}Dm=1 is a vector of mean functions and K is a positive valued matrix, which is
based on a kernel function k, capturing the correlation between dimensions and data points.
The formulation of K can lead to different model assumptions [34]. This sections covers the
Intrinsic Coregionalization Model (ICM) and the Multi Task Gaussian Process (MTGP)
approach, which both emerged from different research-fields and are closely related. Both
methods are using the Kronecker product ⊗ to build K. For a given m× n matrix A and
a p× r matrix B the Kronecker product ⊗ is defined as

A⊗B = (aij ·B) =

 a11B · · · a1nB
... . . . ...

am1B · · · amnB

 ,

resulting in a matrix of size mp× nr.

– 16 –



2 Background Methods

2.5.1 Intrinsic Coregionalization Model

The Intrinsic Coregionalization Model (ICM) [16, 49] uses linear combinations of GP sam-
ples to compute the output functions

gm(x) = aT
mu(x),

for m = 1, . . . , D where u(x) is a P -dimensional vector, containing P functions values
randomly drawn from the GP prior GP(m(·), k(·, ·)), such that ui(x) ∼ N (m(x), k(x,x)).
ICM is parameterized by am ∈ RP , which are learned from the data. The coefficients and
the output functions can be combined to A = [a1, . . . , aD] ∈ RD×P and g(x) = Au(x).
The covariance is then computed as

cov(g(x),g(x′)) = Bk(x,x′),

where B = AAT ∈ RD×D is a positive semi-definite coregionalization matrix. The covari-
ance matrix K can be written as

K = B⊗K, (2.10)

where
(
K
)
ij
= k(xi,xj).

2.5.2 Multi Task Gaussian Process

In [3] Bonilla et al. published the Multi Task Gaussian Process (MTGP), where a task is
equal to an output dimension of f . Let there be N training points x1, . . . ,xN , the vector
y = (y11, . . . , yN1, y12, . . . , yN2, . . . , y1D, . . . , yND)

T contains all target values for the D

tasks, where yil is the response for the l-th task on the i-th input xi. To specify the inter-
task similarities a positive semi-definite matrix Kf ∈ RD×D is learned. The correlation
between tasks is then induced by placing a GP prior over the output functions {fi} with

cov(fi(x), fj(x′)) =
(

Kf
)
ij
k(x,x′),

where k is a kernel function over the inputs. Therefor the kernel matrix K is

K = Kf ⊗K,

where
(
K
)
ij
= k(xi,xj). The prediction of the output values gl can be computed with the

standard GP formulas (see Eq. (2.4) and Eq. (2.5)). Assuming a GP with zero mean, leads
to a mean prediction gl for task l computed as

gl(x∗) =
(

kf
l ⊗ k∗

)T
Σ−1y, with

Σ = Kf ⊗K + σ2ID ⊗ IN ,

where kf
l is the l-th column of Kf and k∗ is the vector of covariances between the test

points x∗ and the training points. ID and IN are a D × D and a N × N identity matrix
respectively. Therefore, Σ is a DN ×DN matrix. Bonilla et al.[3] showed that for the case
of noise-free observations (σ2 = 0), there is no inter-task transfer, since the matrix Kf is
no longer relevant for the task prediction.

– 17 –



2 Background Methods

ICM and MTGP are closely related. Both approaches uses a parameterized matrix, which
aims to captures the relation between the output dimensions of the target function f . ICM
emerges from a geostatistic research field and with MTGP the field of multi-task learning
in the context of GP is addressed. The observation model of MTGP correspond to an ICM
model with two processes: one for f and a noise process [3], since MTGP integrates the
noise σ2. In both cases a matrix is learned, A and Kf respectively, which then is combined
with the kernel matrix K by the Kronecker product. For both approaches the parameters
can be jointly learned with the kernel parameters, by maximizing the marginal likelihood
[3, 34].

– 18 –



3
Bayesian Optimization in High
Dimensional Spaces

BO is a method to tune parameters according to a target function. However, standard BO
only performs well for up to 20 parameters that have to be optimized [12, 43]. However, a
many problems require the optimization of more than 20 parameters, e.g. finding molecules
with certain properties as in [17]. Thus, research in order to adapt BO to perform well in
high dimensional settings emerges. This is a difficult and unsolved problem: to ensure a
global optimum is found, a good coverage of the parameter space X is required. The number
of evaluations needed to cover X increases with an increasing number of dimensions d [43].

This chapter covers different approaches within this research domain. All methods have
in common that they are reducing the dimension by creating a lower dimensional space. In
the following sections an optimization problem f : X → Y with a parameter space X ⊆ RD

and Y ⊆ R is considered, where D is assumed to be high. Additionally, the approaches
discussed within this chapter, define a lower dimensional space H ⊆ Rd, with d < D. In
Section 3.1 Bayesian Optimization with Dropouts is introduced, which is inspired by the
Dropout algorithm for neural networks. Section 3.2 covers Bayesian Optimization with
Random Embedding using a randomly created embedding and a mapping into the input
space X to optimize the target function. Section 3.3 introduces Manifold Bayesian Opti-
mization which combines mGP and Multi-Output GP to create a feature space H and a
corresponding reconstruction of the input space X . In Section 3.4 a new extension of BO,
called Hierarchical Acquisition Functions for Bayesian Optimization, is introduced. Thereby
the feature space H is used to condition the input space X during the optimization process.

Next to the approaches mentioned above, there exits additional work which is not fur-
ther considered within this thesis. For example in [22] it is assumed that the objective
function is the sum of lower dimensional functions and BO is applied on sub spaces of X .
In [48] Principal Component Analysis (PCA) is used to randomly select a subset of dimen-
sions which are optimized. However, PCA requires an appropriate number of training data
to perform well, which is not always accessible in the context of BO. If the transitions
from and to the feature space H are known, H can be incorporated into the kernel of the
underling GP. However, this requires expert knowledge or a suitable amount of data to
train a auto encoder neural net like in [17].

– 19 –



3 Bayesian Optimization in High Dimensional Spaces

Algorithm 3.1: Pseudocode Bayesian Optimization with Dropouts.

algorithm DBO
input fx // target function

N // number of iterations
output x∗// optimized parameter
for n = 1 to N do

randomly select d dimensions
xd
n ← argmaxxd∈X d α(xd;Dn−1)

xD−d
n ← fill_in_strategy()

xn ← [xd
n,xD−d

n ]

Dn ← {Dn−1, (xn, fx(xn))}
randomly select d dimensions
x∗d ← argmaxxd∈X d α(xd;DN )

x∗D−d ← fill_in_strategy()
x∗ ← [x∗d,x∗D−d]

3.1 Bayesian Optimization with Dropouts

Dropout was introduced in [46] as a technique to improve training of artificial neural net-
works. The general idea is to drop randomly chosen artificial neurons and their corre-
sponding weights while propagating training data through the net. Dropouts can be used
to decrease the chance of overfitting and leads to more generalization in an artificial neu-
ral network [46]. Motivated by the dropout algorithm for artificial neural networks, Li et
al. [29] introduced dropout for high dimensional BO. Their algorithm is therefore called
Bayesian Optimization with Dropouts (DBO). At each iteration d out of D dimensions
are chosen randomly. The optimization of the acquisition function in the current iteration
is only performed on the d selected dimensions. The space containing the d selected di-
mensions is denoted as X d and the space with the left out dimensions as XD−d, such that
X = [X d,XD−d]. In Alg. 3.1, the pseudocode of DBO can be seen. In order to evaluate
the objective function, values for the left out dimension are necessary. Therefor Li et al.
provide three fill-in strategies to create xD−d ∈ XD−d. With Dropout-Random a random
value within the domain of XD−d is used, such as

xD−d ∼ U(XD−d),

where U is a uniform distribution. This strategy does not work effectively with a large
number of influential dimensions. But since D−d dimension have to be filled in, it can still
lead to improvements. Dropout-Copy copies the required values from the best solution so
far:

x+ = argmaxx∈Dn
fx(x)

xD−d =
(
x+
)D−d

,

where x+ is the variable of the best found function value after n iterations. With this
approach the currently incumbent solution is improved with each iteration. That leads to

– 20 –



3 Bayesian Optimization in High Dimensional Spaces

x1

x2

x∗

Im
po

rt
an

t

x1

Unimportant x2

x∗

Em
be

dd
in

g

Figure 3.1: This function in D = 2 dimensions only has de = 1 effective dimension:
the vertical axis indicated with the word important on the right hand side figure. Hence,
the one-dimensional random embedding (blue line) includes the two-dimensional function’s
optimizer (green dashed line). It is more efficient to search for the optimum along the
one-dimensional random embedding than in the original two-dimensional space. Based on
[51].

the risk of getting stuck in a local optimum. This is solved by Dropout Mix, which combine
both previous strategies. With a probability p random values are chosen. Otherwise the
values are copied from the best solution so far. Based on the results in [29] it is recommended
to use Dropout-Copy or in high dimensions Dropout-Mix with a small p, like p = 0.1 or
p = 0.2.

3.2 Bayesian Optimization with Random Embedding

Wang et al. [50, 51] present an algorithm called Bayesian Optimization with Random
Embedding (REMBO). They assume that the objective function f has an effective dimen-
sionality de, where the effective dimensionality is defined as follows:

Definition 3.1 (effective dimensionality). A function f : RD → R is said to have
effective dimensionality de, with de < D, if there exits a linear subspace T of dimension
de such that for all x> ∈ T ⊂ RD and x⊥ ∈ T ⊥ ⊂ RD, we have f(x) = f(x>+x⊥) = f(x>),
where T ⊥ denotes the orthogonal complement of T . We call T the effective subspace of
f and T ⊥ the constant subspace.

This means that the value of f only changes along the coordinates x> and remains constant
along the coordinates x⊥. A visual example for the effective and constant subspace can be
seen in Fig. 3.1. Wang et al. [50, 51] also give the proof of Theorem 3.2.

Theorem 3.2. Assume we are given a function f : RD → R with effective dimensionality
de and a random matrix A ∈ RD×d with independent entries sampled according to N (0, 1)

and d ≥ de. Then, with probability 1, for any x ∈ RD, there exists a h ∈ Rd such that
f(x) = f(Ah).

Following Theorem 3.2 the function f(Ah) can be optimized in a lower dimensional space,
instead of being optimized in higher dimensions. If an optimizer x∗ ∈ X exists, then there

– 21 –



3 Bayesian Optimization in High Dimensional Spaces

Algorithm 3.2: Pseudocode Bayesian Optimization with Random Embedding.

algorithm REMBO
input fx // target function

N // number of iterations
H // Embedding

output x∗ // optimized parameter
A ← random(D, d; N (0, 1))
for n = 1 to N do

hn ← argmaxh∈H α(h;Dn−1)

Dn ← {Dn−1, (Ahn, fx(Ahn))}
h∗ ← argmaxh∈H α(h;DN )

x∗ ← Ah∗

is an optimizer h∗ ∈ H with f(x∗) = f(Ah∗). A acts as a mapping form H to X and
is required to be constant during the optimization. Based on Theorem 3.2 REMBO first
draws a random embedding (given by A) and then performs BO in the embedded space H,
as shown in Alg. 3.2. Unlike BO, the dataset Dn = {H,Y} within REMBO contains the
previous visited embeddings and the corresponding values of fx. Like the parameter space
X the embedded space H has to be bounded. Therefor, it is important how the bounds for
H are chosen. Locating the optimum within H is easier if H is small, but if H is chosen
too small it may not contain the global optimizer, which is visualized in Fig. 3.2. Wang et
al. [50, 51] were able to show that for a box-constrained X and an optimizer x∗ ∈ X , with
a probability of at least 1− ε, there exits an optimizer h∗ ∈ H with

‖h∗‖2 ≤
√
de
ε
‖x∗‖2

and f(Ah∗) = f(x∗). For a box constrain of [−1, 1]D the upper bound can be written as

‖h∗‖2 ≤
√
de
ε

√
de =

de
ε
.

Therefore the bounds of H have to be chosen, in a way that a hyper sphere with center
0 and radius de

ε is contained by H. If Ah is outside of X , Ah has to be projected into
X . This is also visualized in Fig. 3.2. Wang et al. choose H = [−

√
d,
√
d]d for all there

experiments.

3.3 Manifold Bayesian Optimization

Manifold Bayesian Optimization (MBO) [34] is a encoder-decoder approach, combining a
mGP, for the encoder part and the modeling of the objective function, with a Multi-Output
GP for the decoder part. Therefor mGP is used to learn a transformation M : X 7→ H
from the input space X into a feature space H ⊆ Rd, also called manifold. Depending on
its implementation the transformation M can be a linear, but also a non-linear function.
The transformation M is jointly learned with a GP Regression G : H 7→ Y . Like BO, MBO

– 22 –



3 Bayesian Optimization in High Dimensional Spaces

H
d
=

1

X D = 2

effective subspace

Embedding

A

A

h
A

x = Ah Convex projection pX (Ah) of Ah to X

Figure 3.2: Embedding from d = 1 into D = 2. The blue box illustrates the 2D constrained
space X , while the thicker red line illustrates the 1D constrained space H . Note that if Ah
is outside X , it is projected onto X . The set H must be chosen large enough so that the
projection of its image AH, onto the effective subspace (vertical green axis in this diagram)
covers the vertical side of the box. Based on [51].

Algorithm 3.3: Pseudocode Manifold Bayesian Optimization.

algorithm MBO
input fx // target function

N // number of iterations
output x∗ // optimized parameter
for n = 1 to N do

hn ← argmaxh∈H α(h; {M(Xn−1),Yn−1}) // apply BO on feature space
xn ← R(hn) // map feature to parameter space
Xn ← {Xn−1,xn}
Yn ← {Yn−1, fx(xn)}

h ← argmaxh∈H α(h; {M(XN ),YN})
x∗ ← R(h)

stores the n previous evaluated parameters Xn and the corresponding values of fx within the
dataset Dn = {Xn,Yn}. In standard BO the parameters for the next evaluation are gained
by maximizing the acquisition function αX : X 7→ R. Instead of optimizing on the parameter
space, MBO uses the lower dimensional feature space H and GP Regression, created by the
mGP. Therefore, MBO maximizes the acquisition function αH : H 7→ R. This results into
a feature h = argmaxh∈H αH(h; {M(Xn),Yn}), with M(Xn) as the feature representation
of Xn. Multi-Output GP is then used to learn a transformation R : H 7→ X̃ from the
manifold back into the parameter space. The next parameter to evaluate fx is computed
with x̃ = R(h). This process is visualized in Fig. 3.3. Additionally, the pseudocode of MBO
can be seen in Alg. 3.3. Similar to [7], Moriconi et al.[34] implement M as a multi layer
ANN. In their experiments an architecture of D− 20− d is used, with a single hidden layer
of 20 units. For the transformation R ICM is used. The parameters for the neural net, GP

– 23 –



3 Bayesian Optimization in High Dimensional Spaces

Objective Function

Feature Generator
MBO

argmaxh∈H αH(h; {H,Yn}) MOGP

BO
argmaxx∈X αX (x;Dn)

fx(x)

H = M(Xn) h

x = R(h)
x

(a) MBO compared to BO

X → M → H → R → X̃→

G

→
Y

(b) Transformations in MBO. Based on
[34].

Figure 3.3: Visualization of MBO. In (a) the general process of MBO is visually compared
to BO (orange). In (b) the relation between the transformation within MBO is visualized.
In total three transformations M : X 7→ H, G : H 7→ Y and R : H 7→ X̃ are jointly learned.
The transformation M (red) creates a manifold H. Using a GP G, BO is applied on the
feature space to find a new feature optimizing the target function (green). The red and
green area correspond to a mGP solving a regression task. In a last step a Multi-Output
GP R is used to map the feature back into the input space (blue).

and ICM are jointly trained by maximizing a joint log marginal likelihood, given by

log(p(y, X̃|X,θ)) =− 1

2
yT
(

K̃ + σ2
nI
)−1

y− 1

2
log
∣∣∣K̃ + σ2

nI
∣∣∣

− 1

2
xT
V K−1xV −

1

2
log |K| ,

with the covariance matrix of the mGP K̃ as defined in Eq. (2.8) and the kernel matrix
of the ICM K as in Eq. (2.10). The vector xV is obtained by stacking all parameters
within Xn and y is the vectored representation of Yn. The reconstructed parameter space
is symbolized with X̃. By jointly learning the parameters, the weights and biases of the
mGP are not only optimized for the regression task, but also consider the reconstruction
of the input space. Since ICM and MTGP are closely related, the decoder part within this
thesis is implemented with a MTGP.

– 24 –



3 Bayesian Optimization in High Dimensional Spaces

3.4 Hierarchical Acquisition Functions for Bayesian
Optimization

Hierarchical Acquisition Functions for Bayesian Optimization (HIBO) aims to condition the
search space using features. The feature generation can incorporate expert knowledge. An
example can be the learning of controller parameters for a certain task in robotics. During
testing proposed parameter settings, properties like velocities or positions can be observed
and used as features. However, there are cases where the creation of handcrafted features is
not achievable. Therefore, in this thesis the simultaneously learning of the features in the
context of HIBO is considered and a mGP is used to generate the feature spaceH. The mGP
provides two transformations. The features are created by the transformation M : X 7→ H,
which can be implemented as an ANN. The second transformation G : H 7→ Y is a GP
solving a regression task from the features to the target values of the objective function.
The dataset Dn = {Xn,Yn}, consist of the n previously evaluated parameters Xn and the
corresponding return values of the objective function Yn = fx(Xn).
In order to condition the search space, two acquisition functions are used in a hierarchical
manner. At first an acquisition function αH : H 7→ R is applied on the feature space,
resulting in a feature potentially optimizing the objective function

hn = argmaxh∈H αH(h; {M(Xn−1),Yn−1}),

where αH uses the GP G from the mGP. The parameter search space is then conditioned,
by concatenating X with the feature hn, resulting in Z = [X ,hn] ⊂ RD+d. To receive
the next parameter xn for evaluation, a second acquisition function αZ : Z 7→ R is used,
resulting in

zn = argmaxz∈Z αZ(z; {[Xn−1,M(Xn−1)] ,Yn−1}).

The first D elements of zn are then used as xn. In the end, the dataset Dn = {Dn−1, (xn, fx(xn))}
is updated. The pseudocode for HIBO can be seen in Alg. 3.4 and a visualization of the
process within HIBO is in Fig. 3.4. Please note that the parameters of the GPs, used by the
acquisition functions αH and αZ , are not jointly learned, since the GP for αZ is conditioned
by M(Xn−1). The parameters for the mGP θmGP , including the transformation M and the
GP regression G are learned by optimizing a log marginal likelihood like in Eq. (2.8) with

log(p(yn|Xn,θmGP )) =−
1

2
(yn −mθmGP

)T
(

K̃θmGP
+ σ2

nI
)−1

(yn −mθmGP
)

− 1

2
log
∣∣∣K̃θmGP

+ σ2
nI
∣∣∣− n

2
log 2π,

where yn is a vectorized version of Yn. The GP Regression G is defined by the mean
function mθmGP

and the kernel K̃θmGP
, which are both influenced by the transformation

M . The GP used for the second acquisition function αZ is trained, similar to Eq. (2.7),
with

log(p(yn| [Xn,M(Xn)] ,θ)) =−
1

2
(yn −mθ)

T
(
Kθ + σ2

nI
)−1

(yn −mθ)

− 1

2
log
∣∣Kθ + σ2

nI
∣∣− n

2
log 2π.

This GP is defined by the mean function mθ and the kernel Kθ.

– 25 –



3 Bayesian Optimization in High Dimensional Spaces

Objective Function

Feature Generator
HIBO

argmaxh∈H αH(h, {H,Yn})
argmaxz∈Z αZ(z, {[Xn,M(Xn−1)] ,Yn})

BO
argmaxx∈X αX (x;Dn)

fx(x)

H = M(Xn) xn = zn [1 : D]

xn

Figure 3.4: Visualization of HIBO compared to BO (orange). A mGP provides the trans-
formation M , which is used to generate features H (red). Based on the mGP a potentially
optimal feature hn for the objective function is computed, by maximizing αH. The feature
hn is used to condition the parameter space X . In a second step the acquisition function αZ
is maximized to receive the next parameter xn for the evaluation of the objective function
(green).

Algorithm 3.4: Pseudocode Hierarchical Acquisition Functions for Bayesian Optimization.

algorithm HIBO
input fx // target function

N // number of iterations
output x∗ // optimized parameter
for n = 1 to N do

hn ← argmaxh∈H α(h; {M(Xn−1),Yn−1})
zn ← argmaxz∈Z α(z; {[Xn−1,M(Xn−1)] ,Yn−1})
xn ← zn [1 : D]

Xn ← {Xn−1,xn}
Yn ← {Yn−1, fx(xn)}

h ← argmaxh∈H α(h; {M(XN ),YN})
z ← argmaxz∈Z α(z; {[XN ,M(Xn−1)] ,YN})
x∗ ← z [1 : D]

– 26 –



4
Experiments

Within this chapter, the performance of the HIBO algorithm is evaluated and compared to
other methods. Therefore HIBO, BO, DBO, REMBO and MBO are applied on different
problems. In Section 4.1 three benchmark functions are used to compare the performance
of these approaches. The benchmark functions are embedded into higher dimensions. The
dimensionality varies, in order to show the capabilities in different high dimensional settings.
In Section 4.2 a simple air hockey simulation is used as a more realistic robotic inspired
problem. The target is to learn the trajectory of the mallet to score a goal from a fixed
position.

For all algorithms the EI acquisition function from Eq. (2.1) is used. The acquisition
functions are sampled at 1000 randomly chosen points, to find a point that maximizes the
acquisition function. The kernel function of the used GP is implemented with the squared
exponential kernel function from Eq. (2.6). The DBO algorithm is used with the Dropout
Mix fill-in strategy and p = 0.15. For REMBO, the embedding is set to H = [−

√
d,
√
d]d,

where d is the number of dimensions of the embedding. The projection AH is clipped
to the range of [−1, 1] and is then scaled to the size of the parameter space X . MBO
and HIBO use a mGP with an ANN. The architecture is set to [D − 20 − d], with fully
connected layers, where D is the dimensionality of the parameter space and d the size of
the feature space. The activation function is implemented with the log-sigmoid function
from Eq. (2.9). Therefor the feature generation for MBO and HIBO is non-linear. The
reconstruction of the parameter space X in MBO is implemented with a MTGP. Therefor
the implementation by Bonilla et al. is used1. The experiments are implemented and
executed with Matlab2. Tuning the hyper parameters, in equal minimizing the log marginal
likelihood is implemented with the fminunc function in Matlab, using the BFGS Quasi-
Newton method [6, 11, 15, 44] with a cubic line search procedure.

4.1 Synthetic Benchmark Functions

Within this section, BO and its extensions are applied on three common benchmark func-
tions: Branin function, Schwefel function and Ackley function. To evaluate the perfor-

1 https://github.com/ebonilla/mtgp
2 https://www.mathworks.com/products/matlab.html

– 27 –

https://github.com/ebonilla/mtgp
https://www.mathworks.com/products/matlab.html


4 Experiments

Table 4.1: Overview of the parameters used for the benchmark experiments. The db-
dimensional benchmark function is embedded in a D dimensional space. Depending on the
algorithm a d-dimensional feature space is created. Each optimization process is performed
for n iterations and is repeated N times.

D d db Branin db Ackley & Schwefel n N

10 2 2 2 20 200
30 5 2 5 30 200
50 10 2 10 30 200

db-dimensional
benchmark Function

X ⊂ RD

XD−db
= [0, 15]

D−db

x
BO

H ⊆ Rd

MBO
DBO

REMBO
HIBO

h

x [1 : db]

Figure 4.1: A db-dimensional benchmark function is used (green). The benchmark function
is embedded into a D-dimensional space X , where D−db dimension have no influence onto
the benchmark function. BO is directly applied to X , while its extensions create a d-
dimensional feature space H (blue). All algorithms return a D-dimensional parameter x.
Only the fist db of x are used to evaluate the benchmark function.

mance in different dimensional situations, the following setting is applied. In the case
of the Ackley and the Schwefel functions, a db-dimensional version is created, resulting
in a parameter space Xdb

. The Branin function is constrained to db = 2 dimensions.
Now Xdb

is embedded into a higher dimensional parameter space X = [Xdb
,XD−db

], with
XD−db

= [0, 15]D−db ⊂ RD−db . The parameter space X consists of D > db dimensions, but
only the first db dimensions are used to evaluate the benchmark function. HIBO, MBO,
DBO and REMBO compute, a d-dimensional feature space H ⊂ Rd, according to the re-
spective procedure. A representation of the setting can be see in Fig. 4.1. Overall three
different settings, regarding the dimensionality, are tested. Tab. 4.1 shows the used pa-
rameters for each setting. Depending on the dimensional size, the algorithms operate over
n = 20 or n = 30 iterations. In order to ensure statistical stability, the optimization process
is repeated N = 200 times for each algorithm and benchmark function. Each optimization
process is initialized with a dataset D, including 2 samples. For each of the N = 200 repe-
titions, distinguish seed points are randomly chosen. All initial samples are taken from the
embedding of the REMBO algorithm and are projected into the parameter space X , using
the random projection matrix A of REMBO. Thereby all algorithms share the same initial
points in the dataset. Since the data set is initialized with two samples, the benchmark
function is evaluated n + 2 times. Due to optimizing the hyper parameters, used by the
GPs and ANNs, the five algorithms hold different running times. To optimize a benchmark
function with d = 10 and D = 50, the implementation used for MBO, endures for about 6
hours. Hence, MBO will not be considered in the evaluation for d = 10 and D = 50.

– 28 –



4 Experiments

(a) Branin function

5 10 15 20

Evaluations

0

20

40

60

80

100

B
ra

ni
n

BO
DBO
HIBO
MBO
REMBO

(b) d = 2 und D = 10

10 20 30
Evaluations

0

50

100

150

200

B
ra

ni
n

(c) d = 5 und D = 30

10 20 30
Evaluations

0

50

100

150

200

B
ra

ni
n

(d) d = 10 und D = 50

Figure 4.2: (a) Plot of the 2D Branin function in the interval of x ∈ [−5, 10] and y ∈ [0, 15].
(b)-(d) Mean and 1

4 standard deviation over 200 trails, optimizing the Branin function.
Thereby the best solution found so far is considered. The vertical line indicates the separa-
tion of the data set initialization and the optimization process.

4.1.1 Branin function

The Branin function is defined as

branin(x, y) = a · (y − bx2 + cx− r)2 + s · (1− t) · cos(x) + s,

where it is recommended to use a = 1, b = 5.1
4π2 , c = 5

π , r = 6, s = 10 and t = 1
8π . A

plot of the Branin function can be seen in Fig. 4.2(a). The Branin function is typically
minimized in the interval of x ∈ [−5, 10] and y ∈ [0, 15]. Within this interval the Branin
function owns three global optima at x∗

1 = (−π, 12.275), x∗
2 = (π, 2.275), x∗

3 = (3π, 2.475),
with branin(x∗

i ) = 0.3978873 [21]. The results are visualized in Fig. 4.2 and data about
the best solution found, is provided in Tab. 4.2. In all settings BO and HIBO are able to
optimize the Branin function the best. Additionally, both algorithms perform at a same
level during the optimization process. However, in average an optimal solution, with value
0 is not found. But the mean value of the solutions found by BO and HIBO varies between

– 29 –



4 Experiments

Table 4.2: Mean and standard deviation of the best parameter value on the Branin func-
tion, found during the optimization process. The values are computed based on 200 repe-
titions.

Algorithm d = 2 D = 10 d = 5 D = 30 d = 10 D = 50

BO 2.97 ± 2.57 2.19 ± 1.74 2.13 ± 1.8

DBO 7.46 ± 5.32 6.18 ± 4.89 5.59 ± 3.6

HIBO 3.14 ± 2.88 2.08 ± 1.61 2.08 ± 1.55

MBO 17.40 ± 15.3 24.71 ± 17.76

REMBO 10.45 ± 5.77 6.54 ± 8.04 6.34 ± 5.17

2 and 3. The results for REMBO improves with higher dimensions, but is not able to reach
the quality of BO and HIBO. The same holds for DBO, whereas DBO performs better
in the low dimensional setting, compared to REMBO. Additionally, the results of DBO
improve with higher dimensions, as seen in Tab. 4.2. MBO only significantly improves in
the beginning. After a few iterations, the quality of the best solutions so far remains equal.
Additionally, MBO has the highest variation within the results.

4.1.2 Schwefel function

In Literature, the Schwefel function is defined as

schwefel(x) = 418.983 · db −
db∑
i=1

xi · sin
(√
|xi|
)
.

In order to ensure the same value range for different db, the Schwefel function can be scaled
to

schwefel(x) = 418.983− 1

db

db∑
i=1

xi · sin
(√
|xi|
)
.

A plot of the 2D Schwefel function can be seen in Fig. 4.3(a). The Schwefel function
is typically minimized in the interval of xi ∈ [−500, 500]. The global minimum of the
Schwefel function is at x∗i = 420.9687 for i = 1, . . . db, with schwefel(x∗) = 0 [21]. The
Schwefel function hold many local optima. Local optima, with similar values to the global
optimum, are spread all over the interval. Hence, there are a lot of local optima, promising
nearly optimal values. However, only one location is optimal. The results of optimizing
the Schwefel function are shown in 4.3 and the mean and standard deviation values of
the final solutions are listed in Tab. 4.3. The performance level of BO and HIBO are
similar across all settings. In the low dimensional setting, with d = 2 and D = 10, both
algorithms performs best. However, REMBO performs superior to BO and HIBO, when
the number of dimensions increases. Overall, the optimization with REMBO obtain the
best results in higher dimensions. DBO always achieves results slightly inferior to BO and
HIBO. The worst performance is achieved by MBO. Improving solutions are only found in
the first iterations. The value level remains equal during the rest of the optimization. For
an increasing number of dimensions, all algorithms have in common, that the overall found
solutions recede further away from the optimal solution and the corresponding variances
decrease.

– 30 –



4 Experiments

(a) 2D Schwefel function

5 10 15 20

Evaluations

100

200

300

400

500

S
ch

w
ef

el

BO DBO
HIBO MBO
REMBO

(b) d = 2 und D = 10

10 20 30
Evaluations

200

300

400

500

S
ch

w
ef

el

(c) d = 5 und D = 30

10 20 30
Evaluations

200

300

400

500
S

ch
w

ef
el

(d) d = 10 und D = 50

Figure 4.3: (a) Plot of the 2D Schwefel function, in the interval of x, y ∈ [−500, 500].
(b)-(d) Mean and 1

4 standard deviation over 200 trails, optimizing the Schwefel function.
Thereby the best solution found so far is considered. The vertical line indicates the separa-
tion of the data set initialization and the optimization process.

Table 4.3: Mean and standard deviation of the best parameter value on the Schwefel
function, found during the optimization process. The values are computed based on 200
repetitions.

Algorithm d = 2 D = 10 d = 5 D = 30 d = 10 D = 50

BO 167.66 ± 68.48 234.15 ± 42.59 270.79 ± 38.96

DBO 228.97 ± 67.96 279.66 ± 53.8 290.57 ± 51.89

HIBO 164.24 ± 64.93 234.47 ± 43.04 270.53 ± 37.83

MBO 324.08 ± 88.8 324.59 ± 68.66

REMBO 195.89 ± 64.73 228.00 ± 23.59 233.73 ± 17.63

– 31 –



4 Experiments

(a) 2D Ackley function

5 10 15 20

Evaluations

0

2

4

6

8

10

A
ck

le
y

BO
DBO
HIBO

MBO
REMBO

(b) d = 2 und D = 10

5 10 15 20 25 30
Evaluations

0

5

10

15

A
ck

le
y

(c) d = 5 und D = 30

5 10 15 20 25 30
Evaluations

0

5

10

15

A
ck

le
y

(d) d = 10 und D = 50

Figure 4.4: (a) Plot of the 2D Ackley function, in the interval of x, y ∈ [−5, 5]. (b)-(d)
Mean and 1

2 standard deviation over 200 trails, optimizing the Ackley function. Thereby
the best solution found so far is considered. The vertical line indicates the separation of the
data set initialization and the optimization process.

4.1.3 Ackley function

The Ackley function is defined as

ackely(x) = −a exp

−b ·
√√√√ 1

db

db∑
i=1

x2i

− exp

(
1

d

db∑
i=1

cos (c · xi)

)
+ a+ exp(1),

where it is recommended to use a = 20, b = 0.2, c = 2π. A plot of the 2D Ackley
function can be seen in Fig. 4.4(a). The Ackley function is typically minimized in the
interval of xi ∈ [−5, 5], for i = 1, . . . , db. The global minimum lies in x∗ = 0, with
ackley(x∗) = 0 [21]. The results of the optimization process on the Ackley function is
shown in Fig. 4.4. The mean and standard deviation values of the best solution found, can
be seen in Tab. 4.4. Overall DBO performs best. For d = 2, D = 10 and d = 5, D = 30

the optimum is found in all repetitions. For d = 10 and D = 50 the results tend towards

– 32 –



4 Experiments

Table 4.4: Mean and standard deviation of the best parameter value on the Ackley func-
tion, found during the optimization process. The values are computed based on 200 repe-
titions.

Algorithm d = 2 D = 10 d = 5 D = 30 d = 10 D = 50

BO 3.99 ± 1.41 6.63 ± 1.1 8.10 ± 0.86

DBO 0.00 ± 0.0 0.00 ± 0.0 0.10 ± 0.42

HIBO 3.93 ± 1.34 6.86 ± 1.1 8.09 ± 0.92

MBO 1.02 ± 1.3 3.30 ± 2.63

REMBO 3.03 ± 1.3 8.11 ± 1.7 11.12 ± 0.99

the optimum. Presumable, the optimum can be approximate more closely with a higher
number of iterations. For BO, HIBO, MBO and REMBO it holds, that with a higher
number of dimensions the results recede more from the optimum value. For d = 2, D = 10

and d = 5, D = 30 MBO outperforms BO, HIBO and REMBO. However, MBO is not
able to approximate the optimal solution as good as DBO. Additionally, the results of
MBO hold the highest variance. BO and HIBO achieve similar results in all three settings.
However, both algorithms do not optimize the Ackley function well. In the low dimensional
experiment, REMBO performs superior to BO and HIBO. However, with higher dimensions
the performance loss of REMBO is higher. Particularly for d = 10 and D = 50 the results
for REMBO improves only slightly compared to the dataset initialization. Overall the
standard deviation is the lowest for d = 10 and D = 50, except for the DBO algorithm,
since it always optimizes the Ackley function in the lower dimensional setting.

4.2 Robotic Air Hockey Task

In this section an air hockey simulation is used to evaluate the performance of the algorithms
on a robotic inspired problem. The task is to learn policy parameters which are used to
create the trajectory of the mallet. In order to score a goal the puck has to be hit by the
mallet, in such a way that the puck reaches the goal area. In Section 4.2.1 the simulation is
descried in detail, along with the experimental settings. Section 4.2.2 presents the results
of the experiments.

4.2.1 Simulation

The airhockey simulation consists of an air hockey field with borders, two goals, a mallet
and a puck. The measurements of the field, puck and mallet can be seen in Tab. 4.5. The
mallet can be moved freely in the lower half of the field. The puck only moves, if it is hit
by the mallet. Each rollout of the experiment is limited to 5 seconds. In order to learn a
policy, the following cost function is applied

c =

N∑
t=1

(am(t) + dp(t))− g · 300, (4.1)

with N as the number of time steps simulated, am(t) as the acceleration of the mallet at
time step t and dp(t) as the distance between the puck and the goal. The value of g is set
to 1 if a goal is scored and is 0 if the puck did not reached the goal. Therefor moving the

– 33 –



4 Experiments

Table 4.5: The parameters of the air hockey simulation, including sizes, weights and a
friction coefficient.

parameter value
width 1
height 2

goal width 0.2
radius mallet 0.08

radius puck 0.05
weight mallet 0.3

weight puck 0.1
friction coefficient 0.1

(a) Setting 1 (b) Setting 2 (c) Setting 3 (d) Setting 4

Figure 4.5: Visualization of the initial air hockey field for different settings. In setting 1
and 3 the mallet (black) is located at (0,−0.5). For the settings 2 and 4 the mallet starts
at (0.25,−0.75). In the settings 1 and 2 the puck (red) is placed in the center (0, 0) and in
the settings 3 and 4 the puck is placed off center at (−0.25, 0).

mallet with less acceleration if favored. If the puck moves towards or into the goal the costs
of the policy are reduced. Due to the design of the cost function, negative costs for a policy
evaluation indicates that a goal is scored. The current position of the mallet x(t) and the
initial position of the puck are known. The initial position of the mallet and the puck remain
equal during the optimization process. In order to vary the task, four different settings are
defined, where the mallet is initially placed at the point (0,−0.5) or (0.25,−0.75) and the
puck starts at (0, 0) or (−0.25, 0). This is visualized in Fig. 4.5.

In a first experiment the policy consists of a P controller, which is used to create the
trajectory of the mallet. A P controller uses the error between the current state x(t) and a
target state to compute an action, reducing the error. In this case the P controller is used
to control the mallets position. Therefore, two way points x1 = (x1, y1) and x2 = (x2, y2)

for the mallet and the proportional gain KP , a parameter for the P controller, are learned.

– 34 –



4 Experiments

The correction u(t) is then computed with

u(t) = KP · e(t) = KP · (xi − x(t)) ,

with xi, i ∈ {1, 2, 3} as the active way point and x3 as the initial position of the puck. The
new position of the mallet is then updated with

x(t+ 1) = x(t) + u(t).

Learning the parameters for the P controller policy is applied to all settings described in
Fig. 4.5.

The second policy uses cubic spline curves to generate the trajectory of the mallet. A spline
consists of piecewise polynomial curves. The elements of a spline curve are defined by a se-
ries of points x0, . . . , xn. These points are used to define n intervals [x0, x1] , . . . , [xn−1, xn].
At the i-th interval the cubic spline matches a polynomial Pi(x) = ai+bi ·x+ci ·x2+di ·x3.
Therefore, a cubic spline is defined as

S(x) =


P1(x) , x0 ≤ x < x1
P2(x) , x1 ≤ x < x2

...
Pn(x) , xn−1 ≤ x < xn.

The parameters ai, bi, ci, di, with i = 1, . . . , n are chosen, such that

Pi(xi) = Pi+1(xi),

∂Pi

∂x

∣∣∣∣
x=xi

=
∂Pi+1

∂x

∣∣∣∣
x=xi

and

∂2Pi

∂2x

∣∣∣∣
x=xi

=
∂2Pi+1

∂2x

∣∣∣∣
x=xi

holds. Therefor a cubic spline is twice continuously differentiable in [x0, xn]. For the air
hockey experiment the policy consists of 10 way points x1, . . . ,x10 ∈ R2 in the lower half
of the game field. Since the initial position of the mallet and the puck are know, a cubic
spline curve with n = 12 way points is used, where x0 and x11 are the initial position
of the mallet and puck respectively. The trajectory is created by two cubic spline curves,
where the path in x and y direction is computed separately. The trajectory is traced within
the first two seconds of the simulation. The time is equally distributed over the defined
intervals. Therefore, the speed of the mallet is defined by the distance between the current
way points. The last three seconds are required to simulate the movement of the puck. The
cost function from Eq. (4.1) is modified with a higher reward for scoring a goal, resulting in

c =

N∑
t=1

(am(t) + dp(t))− g · 500.

This is motivated, as the mallet moves faster and due to more way points the acceleration
increases.

– 35 –



4 Experiments

Table 4.6: Mean and standard deviation of the best P controller policy parameters while
learning to score a goal in the air hockey simulation. The values are computed based on
200 repetitions.

Algorithm Setting 1 Setting 2 Setting 3 Setting 4
BO 20.86 ± 130.22 33.72 ± 128.19 32.59 ± 131.62 52.23 ± 130.94

DBO −120.44 ± 67.67 145.81 ± 124.01 220.43 ± 145.49 234.69 ± 137.05

HIBO 37.33 ± 133.81 21.94 ± 130.17 33.93 ± 129.46 53.38 ± 130.0

MBO 279.58 ± 71.95 304.52 ± 65.32 408.58 ± 102.14 387.74 ± 55.94

REMBO 115.97 ± 145.47 142.36 ± 148.85 208.40 ± 128.32 237.78 ± 114.94

4.2.2 Results

In order to learn the parameters of the policies described above, BO and its extensions
execute 50 iterations. The dataset is initialized with 2 initial samples. The experiments
include 200 repetitions of the optimization process. Fig. 4.6 shows the results of optimizing
the parameters of the P controller policy. The extensions of BO are using a feature space
of size d = 2. The mean and standard deviation values of the final solutions can be seen in
Tab. 4.6. In total, MBO is not able to find proper parameters for the policy. In setting 1, 2
and 4, an improvement is only made in the first iterations. However, within the remaining
iterations no improvement is made. In setting 3 no progress is made, compared to the initial
dataset. BO and HIBO perform at similar levels. Regarding all settings, both algorithms
achieve costs between 20 and 53 in average. In the settings 2, 3 and 4 BO and HIBO receive
the lowest cost values, compared to the other algorithms. All this settings differ to setting
1, by the fact that the initial positions of mallet and puck are not directly aligned to the
goal. In the first setting DBO minimizes the costs most effectively and also receives negative
averaged costs in the end of the optimization, indicating that the task of scoring a goal is
solved in most repetitions. However, once the initial position of the mallet and puck do not
share the same x-coordinate, like in the remaining settings, the performance of DBO drops.
REMBO generates costs between 115 and 238 and is always inferior to BO and HIBO. For
setting 2, 3 and 4, REMBO and DBO perform similar, where the averaged costs of REMBO
shrink faster in the beginning of the optimization process.

In task oriented robotics, it is mostly not important to find the most optimal parame-
ters. It is sufficient to find a set of parameters that solves the task but is not the optimal
solution. Hence, optimizing until a first task solving solution is found, is satisfactory. In the
context of the air hockey simulation, a success is defined as scoring a goal. Fig. 4.7 shows
the number of evaluations performed by each algorithm until the first success of scoring a
goal occurs. In setting 1 DBO is able to find a proper solution within 30 evaluations, for the
most cases. In 96.5 % DBO is able to find parameters, leading to a goal. However, in the
other settings DBO only yields to working solutions in 13.5 % up to 19.5 % of the repetitions.
BO and HIBO are able to find appropriate parameters in 55.5 % up to 65.5 % of the cases.
In the first three iterations BO is more likely to gain success, compared to HIBO. However,
HIBO catches up in the next iterations, in a way that the performance of HIBO and BO is
balanced. In setting 2, 3 and 4 the amount of repetitions, where a proper parameter set is
found within 30 evaluations, is distinctly higher for BO and HIBO compared to the other
algorithms. REMBO obtains success in only up to 30.5 % of the repetitions. The moment

– 36 –



4 Experiments

10 20 30 40 50
Evaluations

-400

-200

0

200

400
A

irH
oc

ke
yP

1

(a) Setting 1

10 20 30 40 50

Evaluations

-200

0

200

400

A
irH

oc
ke

yP
2

BO DBO
HIBO MBO
REMBO

(b) Setting 2

10 20 30 40 50
Evaluations

-200

0

200

400

600

A
irH

oc
ke

yP
3

(c) Setting 3

10 20 30 40 50
Evaluations

0

200

400

600

A
irH

oc
ke

yP
4

(d) Setting 4

Figure 4.6: (a)-(d) Mean and 1
4 standard deviation of the cost values over 200 trails,

learning the P controller parameters, in order to learn to score a goal according to the
initial setting. Thereby the best solution found so far is considered. The vertical line
indicates the separation of the data set initialization and the optimization process.

of the first success is mostly equally distributed over the optimization process. The success
rate for MBO does not exceed 2 %. Regarding MBO, parameters, leading to a goal, are
only found in the first three iterations or are elements of the initial dataset.

Learning the parameters of the spline policy is applied to the first setting, as in Fig. 4.5(a).
For DBO, REMBO, MBO and HIBO a feature space of size d = 5 is used. For each
algorithms 200 repetitions are executed. The results are shown in Fig. 4.8. Overall all al-
gorithms are able to learn parameters which lead to goals. MBO does not perform as well,
as the other algorithms, but is able to find proper parameters in 62.5 % of the repetitions.
The other algorithms do solve the task in every repetition. BO, REMBO and HIBO achieve
similar results, regarding both the averaged mean cost values and the number of evaluations
performed until the first success occurs. In most cases task solving parameters are found
within the first 20 evaluations. DBO is able to find such parameters within the first 10 eval-

– 37 –



4 Experiments

10 20 30 40 50

Number of evaluations until first success

0

20

40

60

N
um

be
r 

of
 r

un
s

BO: 62%
DBO: 96.5%
HIBO: 56%
MBO: 2%
REMBO: 30.5%

(a) Setting 1

10 20 30 40 50

Number of evaluations until first success

0

5

10

15

20

25

N
um

be
r 

of
 r

un
s

BO: 59% DBO: 19.5%
HIBO: 65.5% MBO: 1%
REMBO: 29.5%

(b) Setting 2

10 20 30 40 50

Number of evaluations until first success

0

5

10

15

20

25

N
um

be
r 

of
 r

un
s

BO: 61% DBO: 15.5%
HIBO: 62% MBO: 1%
REMBO: 14%

(c) Setting 3

10 20 30 40 50

Number of evaluations until first success

0

10

20

30

N
um

be
r 

of
 r

un
s

BO: 56.5% DBO: 13.5%
HIBO: 55.5% MBO: 0%
REMBO: 9.5%

(d) Setting 4

Figure 4.7: (a)-(d) Histograms over the number of evaluations performed on the four
different settings until the first success occurs. The histogram uses a bin size of 5, where
the first bin consists of the tow initial sample points of the data set and three iterations of
the optimization process. The legend shows the percentage of repetitions for each algorithm,
where a least one goal is scored. Each algorithm was executed 200 times.

– 38 –



4 Experiments

10 20 30 40 50

Evaluations

-500

0

500
A

irH
oc

ke
yS

pl
in

e

BO DBO
HIBO MBO
REMBO

(a)

10 20 30 40 50

Number of evaluations until first success

0

50

100

150

N
um

be
r 

of
 r

un
s

BO: 100%
DBO: 100%
HIBO: 100%
MBO: 62.5%
REMBO: 100%

(b)

Figure 4.8: (a) Mean and 1
4 standard deviation of the cost values over 200 trails learning

the spline policy parameters. The vertical line indicates the separation of the data set
initialization and the optimization process. The averaged cost values for the best solution
are: BO: −354.92± 74.95, DBO: −419.73± 74.76, HIBO: −364.49± 72.79, MBO: 3.37±
318.83 and REMBO: −358.87± 77.56. (b) Histogram over the number of evaluations until
the first success occurs, with a bin size of 5. The legend shows the percentage of repetitions
for each algorithm, where a least one goal is scored. Each algorithms was executed 200
times.

uations for the most repetitions. Also the averaged cost values are lower compared to the
other algorithms. Generally, the results on learning the spline policy parameters, seems to
be better compared to learning the P controller policy parameters. With the spline policy,
the mallet does moved faster, since the ten way points have to be approached within the
first two seconds of the simulation. Additionally, for the P controller policy the speed of
the mallet depends on the proportional gain Kp. Higher speed allows the puck to travel
more on the air field, after being hit by the mallet. This is creases the chance that a goal
is scored, since the goal is not defended.

– 39 –



5
Discussion and Future Work

This sections discusses the introduced algorithms, the corresponding experimental results
and the automatic feature generation of HIBO. Additionally, suggestions for future works
are given. In Section 4.1 and Section 4.2 BO and the four high dimensional extensions
DBO, HIBO, MBO and REMBO were applied to benchmark functions and an air hockey
simulation. Regarding all experiments, there is no algorithm that did perform best in every
setting. For each algorithm, except for MBO, there is at least on setting where the algo-
rithm performed best in higher dimensions. BO and HIBO produced the best result for
the Branin function. However, the embedded Branin function is restricted to two dimen-
sions. Therefor the experiments on the remaining benchmark functions can be considered
to be more difficult. DBO outperformed the other algorithms at the Ackley function, while
REMBO optimizes the Schwefel function at best. This indicates, that choosing the best
algorithm depends on the given problem.

HIBO
It is noticeable, that HIBO and BO performed similar in every experiment. In some cases a
small variation among both algorithms occurs, like in 4.6(b). However, in total the results
do not differ significantly. This indicates that the HIBO algorithm does not provide any
improvement compared to the classic BO algorithm. One reason can be, that the condi-
tioning of the search space performed by HIBO is not influential enough, in order to guide
the optimization of the parameters towards better solutions. Further more, the run time
of HIBO is larger since two GPs have to be trained. For example, in the high dimensional
benchmark experiments, HIBO lasts about eight times longer compared to BO. Regarding
the similar performance of HIBO and BO, combined with the longer run time of HIBO, the
proposed version of HIBO is not suitable to replace BO in higher dimension. As mentioned
in Chapter 1, HIBO was successfully tested before, with a handcrafted feature generation
and additional modifications of the BO algorithm. The experiments within this thesis in-
dicate, that the good performance is derived from the additional modifications, as in this
thesis HIBO always performed similar to BO.

As described in Section 3.4, HIBO computes a currently optimal feature. This feature
is then used to condition the search space while deploying an acquisition function on the
fusion of the parameter space and the feature space. The underlying model has to estimate
the objective function on D + d dimensions, where D and d are the size of the parameter

– 40 –



5 Discussion and Future Work

space and the feature space respectively, with d < D. This can increase the complexity,
compared to the modeling in BO with only D dimensions. However, the introduction of
features can provide better information about the objective function. In order to increase
the conditioning in HIBO, the kernel matrix of the used GP can be manipulated. Therefor
the kernel function is only used to compute the correlation among parameters and features.
The remaining elements on the kernel matrix remain at zero. Thus, the parameters only
depend on the features. An additional drawback of HIBO compared to the other algorithms
is that the second acquisition function has D free parameters to optimize. Except for BO,
the other algorithms only optimize on d dimension, whereby the complexity of the model
can be reduced.

Feature Generation
Fig. 5.1 shows an exemplary feature space, created by HIBO during the experiment of learn-
ing the P controller policy parameters in the first setting. Additionally, the cost function
in dependency of the last way point is shown in Fig. 5.1(a). The influence of the last way
point is clearly visible, since the puck has to move straight towards the goal, or bounce the
wall in certain angle to reach the goal. The plots of the feature space shows, that features,
corresponding to task solving parameters, are located in a certain area. However, the cost
function in this area is very rugged, as this area contains solutions with very different cost
values. Even some of the worst solutions are located within this area. This can corrupt the
prediction of a GP Regression and the performance of the optimization process. Therefore,
the feature generation can be improved. Instead of learning the feature generation jointly
with the GP parameters on the log marginal likelihood from Eq. (2.7), other functions can
be considered. An example is the minimization of the third derivative, called jerk, resulting
in smoother surfaces. Another potential reason is the number of iterations performed in
the optimization process. In this experiment HIBO did compute 52 evaluations of the air
hockey simulation. Increasing the number of evaluations could improve the generation of
the feature space. However, the number of evaluations should not be to high, since the
objective function is connected with high evaluations costs. In the experiments, the fea-
ture generation of HIBO is implemented by an ANN with the log-sigmoid function from
Eq. (2.9) as the activation function. Thus, the feature values are located in the range of
[0, 1]. However, the projection of the parameter space into the feature space, does not al-
ways covers the full range, as seen in Fig. 5.1. In the current implementation of HIBO,
the first acquisition function, applied on the feature space, searches on the full range of
[0, 1]d. Thus, the optimization of this acquisition function, can lead to a feature, that does
not correspond to the features generated by projecting previous evaluated parameters. As
a consequence, the search space of the second acquisition function is restricted to an area,
where no training data is available, since only the projection of the parameter space can
be used to train the GP. By restricting the search space of the first acquisition function
to the projected parameter space, or rescaling the projection to a fixed range, like [0, 1]d,
the performance of HIBO could be improved, potentially. The suggested modifications of
HIBO, can be examined in further work.

MBO
In most experiments MBO performed poor. Only in the experiment optimizing the Ackley
function MBO gained improvement and outperforms BO, HIBO and REMBO. This does
not match the results from [34], where MBO performed superior to REMBO and other

– 41 –



5 Discussion and Future Work

(a) cost function over x2 − y2 plane (b) cost function over f1

(c) cost function over f2 (d) cost function over f1 and f2 space

Figure 5.1: Comparison of the cost function in setting 1 over the parameter space and the
feature space with d = 2, learned by HIBO. (a) The cost function plotted over the x2 − y2
plane, for fixed KP = 9, x1 = 0.25 and y1 = −0.4. (b) - (d) The cost function over the
feature space, where f1 and f2 are the learned features. To generate the features, a grid
in the parameter space, with 20 points per dimension is mapped into a feature space. The
values of the cost function are received by evaluating the corresponding parameters.

– 42 –



5 Discussion and Future Work

algorithms like [17]. However, [34] used the Michalewicz function and Rosenbrock function
as a benchmark. Additionally, in [34] the optimization process lasts 500 iterations. In this
thesis, a maximum of 50 iterations were performed. Hence, the result from this thesis and
from [34] are not directly comparable. However, the performance differences may derive
from different implementations and different approaches to learn the hyper parameters of
MBO. Optimizing with MBO leads to high running times. The most expensive operation
is the inversion of the kernel matrix, while mapping the feature space to the parameter
space with a Multi Output GP. As the kernel matrix is build with the Kronecker product,
the matrix has a size of ND × ND, with N as the number of samples and D as the
dimensionality of the output. Thus, with higher dimensions and a advancing optimization
process, the running time of an iteration significantly increases. This is the reason why
MBO is not considered in the high dimensional benchmark experiments, where the running
time of the total optimization process over 30 iterations would last about 6 hours.

REMBO
For REMBO it is assumed that the objective function has a lower dimensional effective
dimensionality. Hence, the experimental setup on the benchmark functions is in favor
of REMBO, since low dimensional versions of the benchmark functions are embedded in
higher dimensions. However, REMBO yielded divers results. At the Schwefel function,
REMBO was able to handle higher dimensions better than the other algorithms. Otherwise,
REMBO was not able to gain improvement at the high dimensional experiment on the
Ackley function. At the air hockey experiments, REMBO performed ordinary, but was
not able to score goals in most cases. REMBO creates a random embedding by using a
randomly created projection matrix. Since the embedding and the projection matrix are
constant over the optimization process, no adaption to the correlation of the parameters is
possible. Therefor REMBO only can learn the correlation between the embedding and the
objective function. Additionally, REMBO is based on a linear transformation. Thus, the
correlation of the embedding and the parameter space is assumed to be linear.

DBO
DBO optimizes directly on the parameter space. However, only a randomly chosen subset
of parameters is considered in an iteration. Thus, DBO can consider the correlation of the
parameters, if those are chosen, but has to operate on a low number of dimensions. In
the experiments DBO performed well. Except for the Schwefel function and some settings
in the air hockey simulation, DBO was able to yield good results, compared to the other
algorithms. DBO seems to perform well, if the parameters are not highly correlated or
have steady influence, regarding the objective function. An example is the Ackley function,
where optimizing a single dimension leads to a general improvement. In the case of the
air hockey simulation, the first setting allows a simple solution, by directly moving towards
the puck, since mallet and puck are directly aligned towards the goal. As long as the
last way point is located between the goals, the y value can be changed with only small
impact to the performance. This simplifies the optimization. In the other settings the x

and y values of the last way point are more correlated. Moving the last checkpoint more
towards the left or right, requires to move also in the y direction, since only a certain
angle leads to goals, which is visible in Fig. 5.1(a). As in each iteration a number of
dimensions are randomly chosen, such correlations are not always considered. Additionally,
DBO is not able to adapt to the objective function, since a uniform distribution is used

– 43 –



5 Discussion and Future Work

to choose the dimensions. In the setup for the benchmark experiments, there are a lot
dimension with zero impact. If DBO is able to detect dimensions with less impact, DBO
could decrease the probability for choosing this dimension. In [48], PCA and eigenvalues are
used to compute a probability for each dimension to be chosen. However, PCA requires an
appropriate amount of training data to perform well. Another possible approach to compute
the probability, is to measure the amount of improvement made by changing the value of the
dimension. If an improvement is made within an iteration, the probability of being chosen
is increased for all chosen dimensions. Over time favorable dimension can be detected. For
evolutionary algorithms, there exits different approaches to compute probabilities based on
the performance of a populations individuals [19]. Those can be adapted to DBO, by using
the amount of improvement as a performance measurement, when choosing the dimensions.

Experimental Setup
The experimental setup for the benchmark functions, described in Section 4.1, embeds a
lower d-dimensional benchmark function into a higher D-dimensional space, with d < D.
However, only d dimensions are used to evaluate the benchmark function. The remaining
dimensions have no impact onto the results and can not be optimized. Thus, the experi-
mental setup does not provide realistic high dimensional optimization, since it is rare that
a parameter does not have any impact on the performance. Hence, additional experiments
with BO, DBO, HIBO and REMBO were executed on the Ackley and Schwefel function,
where a D-dimensional version of the function is optimized, with D ∈ {10, 30, 50}. Since
the Branin function is restricted to two dimensions, this experiment is not performed for
the Branin function. The results are shown in Fig. A.1 and Tab. A.1 for the Schwefel
function and in Fig. A.2 and Tab. A.2 for the Ackley function. Generally the value of the
best found solution is inferior, compared to the results from Section 4.1. This is related to
the higher number of dimensions that have to be optimized. However, the relation among
the algorithms performance remains the same. The Schwefel function is optimized best
by REMBO, and DBO achieves the best results on the Ackley function. Furthermore the
performance of BO and HIBO is similar. Hence, the conclusions based on the results in
Section 4.1 also hold for high dimensional optimization, with a high number of parameters
being influential.

– 44 –



6
Summary

This thesis introduced and examined the HIBO algorithm with automatic feature learning.
The motivation is to propose an extension for BO, which is able to perform with a higher
number of parameters to be optimized. Therefor HIBO uses a mGP to learn a feature
generation, which is implemented with an ANN. An acquisition function computes a feature,
optimizing the current model of the objective function. By fusing the parameter and feature
space, and constraining the search space to the previous computed feature, a new set of
parameters is received for evaluation. The HIBO algorithm is compared to three existing
extensions of BO for higher dimensions. This includes DBO, which randomly selects a subset
of parameters to be optimized for each iteration. REMBO performs the optimization of the
objective function in a random embedding, and maps the embedding onto the parameter
space, with a linear transformation. The third algorithm is MBO, which uses a mGP to
compute a feature space and an optimal feature, regarding the objective function. This
feature is then mapped back into the parameter space with a Multi Output GP. Three
benchmark functions and an air hockey simulation are used, to compare the performance
of the algorithms. Overall, no algorithm was able to perform best in every experiment.
Hence, finding the best algorithm in the context of BO depends on the problem that has to
be solved. HIBO performed similar to BO in all experiments. Thus, HIBO in its proposed
version, does not improve the BO algorithm in low dimensional settings as well as in high
dimensional settings. The chosen approach to condition the parameter space with the
features, is not able to guide the optimization process towards better solutions. Additional
modifications for HIBO are suggested, which can be evaluated in further work. DBO and
REMBO performed well in most experiments. However, depending on the given problem,
both algorithms did not always perform superior to BO. DBO is not able to adapt to the
given problem, since DBO always randomly samples dimensions with a uniform distribution.
For DBO a modification is suggested, which can be considered in further research. All in
all, the proposed HIBO algorithm is not able to adapt BO to high dimensions. However
DBO and REMBO yield better solutions than BO, depending on the given problem.

– 45 –



Bibliography

[1] Abramowitz, M. Handbook of Mathematical Functions, With Formulas, Graphs, and
Mathematical Tables, New York, NY, USA: Dover Publications, Inc., 1974. isbn:
0486612724.

[2] Agarwalla, A., Jain, A. K., Manohar, K., Saxena, A., and Mukhopadhyay, J. Bayesian
Optimisation with Prior Reuse for Motion Planning in Robot Soccer. In: arXiv e-
prints.arXiv:1611.01851:arXiv:1611.01851, 2016. arXiv: 1611.01851 [cs.RO].

[3] Bonilla, E. V., Chai, K. M., and Williams, C. Multi-task Gaussian Process Prediction.
In: Advances in Neural Information Processing Systems 20. Ed. by J. C. Platt, D.
Koller, Y. Singer, and S. T. Roweis. Curran Associates, Inc., 2008, pp. 153–160. url:
http://papers.nips.cc/paper/3189-multi-task-gaussian-process-prediction.pdf.

[4] Brochu, E., Cora, V. M., and de Freitas, N. A Tutorial on Bayesian Optimization of
Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning. In: arXiv e-prints.arXiv:1012.2599:arXiv:1012.2599, 2010.
arXiv: 1012.2599 [cs.LG].

[5] Brooks, R. A. Artificial Life and Real Robots. In: Proceedings of the First European
Conference on Artificial Life. MIT Press, 1992, pp. 3–10.

[6] Broyden, C. G. The Convergence of a Class of Double-rank Minimization Algorithms
1. General Considerations. In: IMA Journal of Applied Mathematics 6(1):76–90, Mar.
1970. issn: 0272-4960. doi: 10.1093/imamat/6.1.76. eprint: http://oup.prod.sis.
lan/imamat/article-pdf/6/1/76/2233756/6-1-76.pdf. url: https://doi.org/10.
1093/imamat/6.1.76.

[7] Calandra, R., Peters, J., Rasmussen, C. E., and Deisenroth, M. P. Manifold Gaussian
Processes for Regression. In: arXiv e-prints.arXiv:1402.5876:arXiv:1402.5876, 2014.
arXiv: 1402.5876 [stat.ML].

[8] Calandra, R., Seyfarth, A., Peters, J., and Deisenroth, M. P. Bayesian optimization for
learning gaits under uncertainty. In: Annals of Mathematics and Artificial Intelligence
76(1):5–23, 2016. issn: 1573-7470. doi: 10.1007/s10472-015-9463-9. url: https:
//doi.org/10.1007/s10472-015-9463-9.

[9] Cox, D. D. and John, S. A statistical method for global optimization. In: [Proceedings]
1992 IEEE International Conference on Systems, Man, and Cybernetics. 1992, 1241–
1246 vol.2. doi: 10.1109/ICSMC.1992.271617.

[10] File:Derived Neuron schema with no labels.svg. Accessed: Sep 23 2019. url: https:
//commons.wikimedia.org/wiki/File:Derived_Neuron_schema_with_no_
labels.svg.

[11] Fletcher, R. A new approach to variable metric algorithms. In: The Computer Journal
13(3):317–322, Jan. 1970. issn: 0010-4620. doi: 10.1093/comjnl/13.3.317. eprint:
http://oup.prod.sis.lan/comjnl/article-pdf/13/3/317/988678/130317.pdf. url:
https://doi.org/10.1093/comjnl/13.3.317.

[12] Frazier, P. I. A Tutorial on Bayesian Optimization. In: CoRR abs/1807.02811, 2018.

– 46 –

https://arxiv.org/abs/1611.01851
http://papers.nips.cc/paper/3189-multi-task-gaussian-process-prediction.pdf
https://arxiv.org/abs/1012.2599
https://doi.org/10.1093/imamat/6.1.76
http://oup.prod.sis.lan/imamat/article-pdf/6/1/76/2233756/6-1-76.pdf
http://oup.prod.sis.lan/imamat/article-pdf/6/1/76/2233756/6-1-76.pdf
https://doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/imamat/6.1.76
https://arxiv.org/abs/1402.5876
https://doi.org/10.1007/s10472-015-9463-9
https://doi.org/10.1007/s10472-015-9463-9
https://doi.org/10.1007/s10472-015-9463-9
https://doi.org/10.1109/ICSMC.1992.271617
https://commons.wikimedia.org/wiki/File:Derived_Neuron_schema_with_no_labels.svg
https://commons.wikimedia.org/wiki/File:Derived_Neuron_schema_with_no_labels.svg
https://commons.wikimedia.org/wiki/File:Derived_Neuron_schema_with_no_labels.svg
https://doi.org/10.1093/comjnl/13.3.317
http://oup.prod.sis.lan/comjnl/article-pdf/13/3/317/988678/130317.pdf
https://doi.org/10.1093/comjnl/13.3.317


Bibliography

[13] Fukushima, K. Neocognitron: A self-organizing neural network model for a mecha-
nism of pattern recognition unaffected by shift in position. In: Biological Cybernet-
ics 36(4):193–202, 1980. issn: 1432-0770. doi: 10.1007/BF00344251. url: https:
//doi.org/10.1007/BF00344251.

[14] Garnett, R., Osborne, M. A., and Roberts, S. J. Bayesian optimization for sensor set
selection. In: IPSN. 2010.

[15] Goldfarv, D. A family of variable-metric methods derived by variational means. In:
Math. Comp. 24(109):23–26, 1970.

[16] Goovaerts, P. Geostatistics for natural resources evaluation. Oxford: Oxford Univer-
sity Press, 1997.

[17] Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-
Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P.,
and Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules. In: ACS Central Science 4(2):268–276, 2018. PMID:
29532027. doi: 10.1021/acscentsci.7b00572. eprint: https://doi.org/10.1021/
acscentsci.7b00572. url: https://doi.org/10.1021/acscentsci.7b00572.

[18] Hannun, A., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R.,
Satheesh, S., Sengupta, S., Coates, A., et al. Deep Speech: Scaling up end-to-end
speech recognition. In: arXiv e-prints.arXiv:1412.5567:arXiv:1412.5567, 2014. arXiv:
1412.5567 [cs.CL].

[19] Hassani, A. and Treijs, J. An overview of standard and parallel genetic algorithms.
In: IDT Workshop on Interesting Results in Computer Science and Engineering,
Mälardalen University. 2009, pp. 1–7.

[20] Hickish, B., Fletcher, D. I., and Harrison, R. F. Investigating Bayesian Optimization
for rail network optimization. In: International Journal of Rail Transportation 0(0):1–
17, 2019. doi: 10.1080/23248378.2019.1669500. eprint: https://doi.org/10.1080/
23248378.2019.1669500. url: https://doi.org/10.1080/23248378.2019.1669500.

[21] Jamil, M. and Yang, X. S. A literature survey of benchmark functions for global opti-
misation problems. In: International Journal of Mathematical Modelling and Numeri-
cal Optimisation 4(2):150, 2013. issn: 2040-3615. doi: 10.1504/ijmmno.2013.055204.
url: http://dx.doi.org/10.1504/IJMMNO.2013.055204.

[22] Kandasamy, K., Schneider, J., and Poczos, B. High Dimensional
Bayesian Optimisation and Bandits via Additive Models. In: arXiv e-
prints.arXiv:1503.01673:arXiv:1503.01673, 2015. arXiv: 1503.01673 [stat.ML].

[23] Kaneko, K., Kaminaga, H., Sakaguchi, T., Kajita, S., Morisawa, M., Kumagai, I., and
Kanehiro, F. Humanoid Robot HRP-5P: An Electrically Actuated Humanoid Robot
With High-Power and Wide-Range Joints. In: IEEE Robotics and Automation Letters
4:1431–1438, 2019.

[24] Koos, S., Mouret, J.-B., and Doncieux, S. The Transferability Approach: Crossing
the Reality Gap in Evolutionary Robotics. In: IEEE Transactions on Evolutionary
Computation 17:122–145, 2013.

[25] Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet Classification with Deep
Convolutional Neural Networks. In: Commun. ACM 60(6):84–90, May 2017. issn:
0001-0782. doi: 10.1145/3065386. url: http://doi.acm.org/10.1145/3065386.

– 47 –

https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1007/BF00344251
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
https://doi.org/10.1021/acscentsci.7b00572
https://arxiv.org/abs/1412.5567
https://doi.org/10.1080/23248378.2019.1669500
https://doi.org/10.1080/23248378.2019.1669500
https://doi.org/10.1080/23248378.2019.1669500
https://doi.org/10.1080/23248378.2019.1669500
https://doi.org/10.1504/ijmmno.2013.055204
http://dx.doi.org/10.1504/IJMMNO.2013.055204
https://arxiv.org/abs/1503.01673
https://doi.org/10.1145/3065386
http://doi.acm.org/10.1145/3065386


Bibliography

[26] Kushner, H. J. A New Method of Locating the Maximum Point of an Arbitrary
Multipeak Curve in the Presence of Noise. In: Journal of Basic Engineering 86(1):97,
1964. doi: 10.1115/1.3653121. url: https://doi.org/10.1115%2F1.3653121.

[27] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied
to document recognition. In: Proceedings of the IEEE 86(11):2278–2324, 1998. doi:
10.1109/5.726791.

[28] Lehman, J., Clune, J., Misevic, D., Adami, C., Altenberg, L., Beaulieu, J.,
Bentley, P. J., Bernard, S., Beslon, G., Bryson, D. M., et al. The Surpris-
ing Creativity of Digital Evolution: A Collection of Anecdotes from the Evo-
lutionary Computation and Artificial Life Research Communities. In: arXiv e-
prints.arXiv:1803.03453:arXiv:1803.03453, 2018. arXiv: 1803.03453 [cs.NE].

[29] Li, C., Gupta, S., Rana, S., Nguyen, V., Venkatesh, S., and Shilton,
A. High Dimensional Bayesian Optimization Using Dropout. In: arXiv e-
prints.arXiv:1802.05400:arXiv:1802.05400, 2018. arXiv: 1802.05400 [stat.ML].

[30] Lizotte, D., Wang, T., Bowling, M., and Schuurmans, D. Automatic Gait Optimiza-
tion with Gaussian Process Regression. In: Proceedings of the 20th International Joint
Conference on Artifical Intelligence. IJCAI’07. Hyderabad, India: Morgan Kaufmann
Publishers Inc., 2007, pp. 944–949. url: http://dl .acm.org/citation.cfm?id=
1625275.1625428.

[31] Marchant, R. and Ramos, F. Bayesian optimisation for Intelligent Environmental
Monitoring. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2012, pp. 2242–2249. doi: 10.1109/IROS.2012.6385653.

[32] Marco, A., Hennig, P., Bohg, J., Schaal, S., and Trimpe, S. Automatic LQR tuning
based on Gaussian process global optimization. In: 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA). 2016, pp. 270–277. doi: 10.1109/ICRA.
2016.7487144.

[33] McCulloch, W. S. and Pitts, W. A logical calculus of the ideas immanent in nervous
activity. In: The bulletin of mathematical biophysics 5(4):115–133, 1943. issn: 1522-
9602. doi: 10.1007/BF02478259. url: https://doi.org/10.1007/BF02478259.

[34] Moriconi, R., Deisenroth, M. P., and Sesh Kumar, K. S. High-dimensional
Bayesian optimization using low-dimensional feature spaces. In: arXiv e-
prints.arXiv:1902.10675:arXiv:1902.10675, 2019. arXiv: 1902.10675 [stat.ML].

[35] Močkus, J., Tiesis, V., and Žilinskas, A. The application of Bayesian methods for
seeking the extremum. In: vol. 2. Elsevier, Sept. 1978, pp. 117–129. isbn: 0-444-85171-
2.

[36] Nolfi, S. and Floreano, D. Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. Scituate, MA, USA: Bradford Company,
2004. isbn: 0262640562.

[37] Rasmussen, C. and Williams, C. Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. Cambridge, MA, USA: MIT Press, Jan. 2006,
p. 248.

[38] Ruehl, S. W., Parlitz, C., Heppner, G., Hermann, A., Roennau, A., and Dillmann, R.
Experimental evaluation of the schunk 5-Finger gripping hand for grasping tasks. In:
2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014).
2014, pp. 2465–2470. doi: 10.1109/ROBIO.2014.7090710.

– 48 –

https://doi.org/10.1115/1.3653121
https://doi.org/10.1115%2F1.3653121
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1803.03453
https://arxiv.org/abs/1802.05400
http://dl.acm.org/citation.cfm?id=1625275.1625428
http://dl.acm.org/citation.cfm?id=1625275.1625428
https://doi.org/10.1109/IROS.2012.6385653
https://doi.org/10.1109/ICRA.2016.7487144
https://doi.org/10.1109/ICRA.2016.7487144
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://arxiv.org/abs/1902.10675
https://doi.org/10.1109/ROBIO.2014.7090710


Bibliography

[39] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by
back-propagating errors. In: Nature 323:533–536, 1986.

[40] Sano, S., Kadowaki, T., Tsuda, K., and Kimura, S. Application of Bayesian Op-
timization for Pharmaceutical Product Development. In: Journal of Pharmaceutical
Innovation, 2019. issn: 1939-8042. doi: 10.1007/s12247-019-09382-8. url: https:
//doi.org/10.1007/s12247-019-09382-8.

[41] Schrunk SVH. Accessed at Nov 1 2019. url: https://schunk.com/de_en/gripping-
systems/series/svh/.

[42] Sewak, M. Deep Reinforcement Learning: Frontiers of Artificial Intelligence. Jan.
2019. isbn: 978-981-13-8284-0. doi: 10.1007/978-981-13-8285-7.

[43] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. Taking the
Human Out of the Loop: A Review of Bayesian Optimization. In: Proceedings of the
IEEE 104(1):148–175, 2016. issn: 0018-9219. doi: 10.1109/JPROC.2015.2494218.

[44] Shanno, D. F. Conditioning of quasi-Newton methods for function minimization. In:
Mathematics of computation 24(111):647–656, 1970.

[45] Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. W. Gaussian Process Bandits
without Regret: An Experimental Design Approach. In: CoRR abs/0912.3995, 2009.
arXiv: 0912.3995. url: http://arxiv.org/abs/0912.3995.

[46] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. In: Journal
of Machine Learning Research 15:1929–1958, 2014. url: http://jmlr.org/papers/
v15/srivastava14a.html.

[47] Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., and Birchfield, S. Deep
Object Pose Estimation for Semantic Robotic Grasping of Household Objects. In:
CoRR abs/1809.10790, 2018. arXiv: 1809.10790. url: http://arxiv.org/abs/1809.
10790.

[48] Ulmasov, D., Baroukh, C., Chachuat, B., Deisenroth, M. P., and Misener, R. Bayesian
Optimization with Dimension Scheduling: Application to Biological Systems. In: arXiv
e-prints.arXiv:1511.05385:arXiv:1511.05385, 2015. arXiv: 1511.05385 [stat.ML].

[49] Wackernagel, H. Multivariate geostatistics: an introduction with applications. English.
Vol. 33. 8. 1996, 363A.

[50] Wang, Z., Hutter, F., Zoghi, M., Matheson, D., and de Freitas, N. Bayesian
Optimization in a Billion Dimensions via Random Embeddings. In: arXiv e-
prints.arXiv:1301.1942:arXiv:1301.1942, 2013. arXiv: 1301.1942 [stat.ML].

[51] Wang, Z., Zoghi, M., Hutter, F., Matheson, D., and De Freitas, N. Bayesian Optimiza-
tion in High Dimensions via Random Embeddings. In: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence. IJCAI ’13. Beijing, China:
AAAI Press, 2013, pp. 1778–1784. isbn: 978-1-57735-633-2. url: http://dl.acm.org/
citation.cfm?id=2540128.2540383.

[52] Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. Joint Face Detection and Alignment
Using Multitask Cascaded Convolutional Networks. In: IEEE Signal Processing Let-
ters 23(10):1499–1503, 2016. doi: 10.1109/LSP.2016.2603342. arXiv: 1604.02878
[cs.CV].

– 49 –

https://doi.org/10.1007/s12247-019-09382-8
https://doi.org/10.1007/s12247-019-09382-8
https://doi.org/10.1007/s12247-019-09382-8
https://schunk.com/de_en/gripping-systems/series/svh/
https://schunk.com/de_en/gripping-systems/series/svh/
https://doi.org/10.1007/978-981-13-8285-7
https://doi.org/10.1109/JPROC.2015.2494218
https://arxiv.org/abs/0912.3995
http://arxiv.org/abs/0912.3995
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/1809.10790
http://arxiv.org/abs/1809.10790
http://arxiv.org/abs/1809.10790
https://arxiv.org/abs/1511.05385
https://arxiv.org/abs/1301.1942
http://dl.acm.org/citation.cfm?id=2540128.2540383
http://dl.acm.org/citation.cfm?id=2540128.2540383
https://doi.org/10.1109/LSP.2016.2603342
https://arxiv.org/abs/1604.02878
https://arxiv.org/abs/1604.02878


A
Appendix

5 10 15 20
Evaluations

300

350

400

450

S
ch

w
ef

el

(a) d = 2 und D = 10

10 20 30

Evaluations

200

250

300

350

400

450
S

ch
w

ef
el

BO
DBO
HIBO
REMBO

(b) d = 5 und D = 30

10 20 30
Evaluations

200

250

300

350

400

450

S
ch

w
ef

el

(c) d = 10 und D = 50

Figure A.1: (a)-(c) Mean and 1
4 standard deviation over 200 trails, optimizing the D-

dimensional Schwefel function. Thereby the best solution found so far is considered. The
vertical line indicates the separation of the data set initialization and the optimization
process. DBO, HIBO and REMBO using a d-dimensional space.

– 50 –



A Appendix

Table A.1: Mean and standard deviation of the best parameter value on the D-dimensional
Schwefel function function, found during the optimization process. DBO, HIBO and
REMBO using a d-dimensional space. The values are computed based on 200 repetitions.

Algorithm d = 2 D = 10 d = 5 D = 30 d = 10 D = 50

BO 303.63 ± 39.92 317.30 ± 46.85 313.66 ± 55.3

DBO 341.45 ± 38.65 332.46 ± 57.20 320.45 ± 61.68

HIBO 297.29 ± 38.34 318.27 ± 47.68 314.25 ± 55.78

REMBO 301.73 ± 41.45 242.23 ± 20.15 237.56 ± 17.07

5 10 15 20
Evaluations

0

2

4

6

8

10

A
ck

le
y

(a) d = 2 und D = 10

5 10 15 20 25 30

Evaluations

4

6

8

10

12

A
ck

le
y

BO
DBO
HIBO
REMBO

(b) d = 5 und D = 30

5 10 15 20 25 30
Evaluations

4

6

8

10

12

A
ck

le
y

(c) d = 10 und D = 50

Figure A.2: (a)-(c) Mean and 1
2 standard deviation over 200 trails, optimizing the D-

dimensional Ackley function. Thereby the best solution found so far is considered. The
vertical line indicates the separation of the data set initialization and the optimization
process. DBO, HIBO and REMBO using a d-dimensional space.

– 51 –



A Appendix

Table A.2: Mean and standard deviation of the best parameter value on the D-dimensional
Ackley function function, found during the optimization process. DBO, HIBO and REMBO
using a d-dimensional space. The values are computed based on 200 repetitions.

Algorithm d = 2 D = 10 d = 5 D = 30 d = 10 D = 50

BO 7.02 ± 1.65 9.19 ± 0.74 9.49 ± 0.71

DBO 1.96 ± 0.74 2.76 ± 0.51 3.67 ± 0.43

HIBO 7.01 ± 1.66 9.17 ± 0.74 9.52 ± 0.71

REMBO 4.12 ± 1.27 9.44 ± 1.28 11.78 ± 0.88

– 52 –


	1 Introduction
	2 Background Methods
	2.1 Artificial Neural Networks
	2.1.1 Artificial Neuron
	2.1.2 Artificial Neural Network

	2.2 Bayesian Optimization
	2.2.1 Acquisition Functions

	2.3 Gaussian Process Regression
	2.3.1 Kernel functions
	2.3.2 Hyperparameter tuning

	2.4 Manifold Gaussian Process
	2.5 Multi Output Gaussian Process
	2.5.1 Intrinsic Coregionalization Model
	2.5.2 Multi Task Gaussian Process


	3 Bayesian Optimization in High Dimensional Spaces
	3.1 Bayesian Optimization with Dropouts
	3.2 Bayesian Optimization with Random Embedding
	3.3 Manifold Bayesian Optimization
	3.4 Hierarchical Acquisition Functions for Bayesian Optimization

	4 Experiments
	4.1 Synthetic Benchmark Functions
	4.1.1 Branin function
	4.1.2 Schwefel function
	4.1.3 Ackley function

	4.2 Robotic Air Hockey Task
	4.2.1 Simulation
	4.2.2 Results


	5 Discussion and Future Work
	6 Summary
	Bibliography
	A Appendix

