1

Klemens Lechner, B.Sc.

Master Thesis Student at the Montanuniversität Leoben

Klemens Lechner Photo

Short bio: Klemens is an Energy Engineering student at Montanuniversität Leoben,  working on a Master’s Thesis named “Deep Neural Energy Forecasting for  
Economic Resource Usage in Hydrogen Industries”. This work focuses on  exploring how AI can be used to better manage resources in the hydrogen industry.

Klemens got his start in Electrical Engineering, graduating from a  technical secondary school. After a brief but interesting stint with the Military Orchestra in Carinthia, he decided to return to his  engineering roots, earning a Bachelor of Science in Raw Materials Engineering.

Now, as a Master’s candidate, Klemens hopes to combine his skills and  interests to make a positive contribution to the energy sector.

Research Interests

  • Deep Learning
  • Resource utilization in Energy Sector

Thesis

Contact

Klemens Lechner, B. Sc
Master Thesis Student at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18,
8700 Leoben, Austria 

Email: klemens.lechner@stud.unileoben.ac.at




Gabriel Brinkmann

Bachelor Thesis Student at the Montanuniversität Leoben

Google_Scholar_logo.svg

Short bio: Gabriel is a Bachelor Student in Mechanical Engineering at Montanuniversität Leoben and, as of March 2023, is writing his Bachelors thesis at the Chair of Cyber-Physical Systems.

Research Interests

  • Robotics

Thesis

Contact

Gabriel Brinkmann
Master Thesis Student at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Email:   




Benjamin Schoedinger, M.Sc.

Master Thesis Student at the Montanuniversität Leoben

Google_Scholar_logo.svg

Short bio:

Research Interests

  • Robotics

Thesis

Contact

Benjamin Schoedinger, B.Sc
Master Thesis Student at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Email:   




Christoph Andres, B.Sc.

Bachelor Thesis Student at the Montanuniversität Leoben

Christoph_Andres

Short bio:

Christoph is a bachelor student in Mechanical Engineering at Montanuniversität Leoben. His fascination for industrial robotics and automation already started at high school, where he worked on a collaborative robotics project during his final thesis.

 

In June 2023, he finished his bachelor’s thesis at CPS.

Research Interests

  • Robotics

Thesis

Contact

Christoph Andres, B.Sc.
Bachelor Thesis Student at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria  




Christopher Martin Shimmin, M.Sc.

Master Thesis Student at the Montanuniversität Leoben

IMG_2239

Short bio: Christopher is a master student in Industrial Engineering with a specialization in Data Science at the Polytechnic University of Catalunya (UPC BarcelonaTech) and, as of September 2023, finished his master thesis at the Chair of Cyber-Physical Systems in Montanuniversität Leoben.

Graduated in June 2020 from his Bachelor studies in Electronics Engineering from Tecnocampus Mataro (UPF) where he was a member of the Bytemaster Tecnocampus Racing Team, which participated in the 6th edition of the Motostudent competition. Furthermore, he is a current member of the Montan Factory Racing team in Montanuniversität Leoben, which will be participating in the 7th edition of the Motostudent competition in October 2023.

Research Interests

  • Bayesian optimization
  • Cyber-physical systems applied to Motorsports Mechatronic systems Digital twins

Thesis

Contact

Christopher Martin Shimmin, M. Sc.
Master Thesis Student at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18,
8700 Leoben, Austria 

Email: : : christopher.martin@estudiantat.upc.edu

christopher.martin-shimmin@stud.unileoben.ac.at

 




Pratheesh Nair, B.Sc.

Master Thesis Student at the Montanuniversität Leoben

Short bio:

Research Interests

  • Robotics

Thesis

Contact

Pratheesh, B.Sc
Master Thesis Student at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Email:   




Maximilian Pettinger, B.Sc.

Student Assistant at the Montanuniversität Leoben

IMG_E2067[1]

Short bio: Maximilian Pettinger, B.Sc started at CPS in November  2022.

Maximilian Pettinger is a master student in Polymer Engineering and bachelor student in Mechanical Engineering, both Montanuniversity Leoben. Prior to his master program he studied Polymer Engineering at the Montanuniversität Leoben, where he passed his Bachelor defense in January 2022. Furthermore, he is a member of the MotoStudent Team (MontanFactory Racing) of the University of Leoben.

Research Interests

  • Robotics, MicroROS, 

Thesis

Contact

Maximilian Pettinger, B.Sc 
Student Assistent at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Email:   maximilian.pettinger@stud.unileoben.ac.at




Dr. Daniel Tanneberg

Ph.D. Student at the University of Luebeck

Portrait of Daniel Tanneberg, Jan. 2018

Short bio: Dr. Daniel Tanneberg passed his PhD defense on the 3rd of December in 2020. He is now working as senior researcher at the Honda Research Institute in Offenbach, Germany. 

He was co-supervised by Prof. Jan Peters from the Technische Universitaet Darmstadt and Univ.-Prof. Dr. Elmar Rueckert, the head of this lab.

Daniel has joined the Intelligent Autonomous Systems (IAS) Group at the Technische Universitaet Darmstadt in October 2015 as a Ph.D. Student. His research focused on (biologically-inspired) machine learning for robotics and neuroscience. During his Ph.D., Daniel investigated the applicability and properties of spiking and memory-augmented deep neural networks. His neural networks were applied to robotic as well as to algorithmic tasks. 

With his masters thesis with the title Neural Networks Solve Robot Planning Problems he won the prestigoues Hanns-Voith-Stiftungspreis 2017 ’Digital Solutions’.

Research Interests

  • (Biologically-inspired) Machine Learning, (Memory-augmented) Neural Networks, Deep Learning, (Stochastic) Neural Networks, Lifelong-Learning.

Contact & Quick Links

Dr. Daniel Tanneberg
Former Doctoral Student supervised by Prof. Dr. Jan Peters and Univ.-Prof. Dr. Elmar Rueckert from 10/2015 to 12/2020.
Hochschulstr. 10,
64289 Darmstadt,
Deutschland

Email:   daniel@robot-learning.de
Web: https://www.rob.uni-luebeck.de/index.php?id=460

CV of M.Sc. Daniel Tanneberg
GitHub
Google Citations
ORCID
Research Gate
Twitter

Publcations

2021

Tanneberg, Daniel; Ploeger, Kai; Rueckert, Elmar; Peters, Jan

SKID RAW: Skill Discovery from Raw Trajectories Journal Article

In: IEEE Robotics and Automation Letters (RA-L), pp. 1–8, 2021, ISSN: 2377-3766, (© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.).

Links | BibTeX

SKID RAW: Skill Discovery from Raw Trajectories

2020

Tanneberg, Daniel; Rueckert, Elmar; Peters, Jan

Evolutionary training and abstraction yields algorithmic generalization of neural computers Journal Article

In: Nature Machine Intelligence, pp. 1–11, 2020.

Links | BibTeX

Evolutionary training and abstraction yields algorithmic generalization of neural computers

2019

Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks Journal Article

In: Neural Networks - Elsevier, vol. 109, pp. 67-80, 2019, ISBN: 0893-6080, (Impact Factor of 7.197 (2017)).

Links | BibTeX

Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks

2017

Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Efficient Online Adaptation with Stochastic Recurrent Neural Networks Proceedings Article

In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2017.

Links | BibTeX

Efficient Online Adaptation with Stochastic Recurrent Neural Networks

Thiem, Simon; Stark, Svenja; Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Simulation of the underactuated Sake Robotics Gripper in V-REP Proceedings Article

In: Workshop at the International Conference on Humanoid Robots (HUMANOIDS), 2017.

Links | BibTeX

Simulation of the underactuated Sake Robotics Gripper in V-REP

Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals Proceedings Article

In: Proceedings of the Conference on Robot Learning (CoRL), 2017.

Links | BibTeX

Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals

2016

Tanneberg, Daniel; Paraschos, Alexandros; Peters, Jan; Rueckert, Elmar

Deep Spiking Networks for Model-based Planning in Humanoids Proceedings Article

In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2016.

Links | BibTeX

Deep Spiking Networks for Model-based Planning in Humanoids

Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan

Recurrent Spiking Networks Solve Planning Tasks Journal Article

In: Nature Publishing Group: Scientific Reports, vol. 6, no. 21142, 2016.

Links | BibTeX

Recurrent Spiking Networks Solve Planning Tasks

Sharma, David; Tanneberg, Daniel; Grosse-Wentrup, Moritz; Peters, Jan; Rueckert, Elmar

Adaptive Training Strategies for BCIs Proceedings Article

In: Cybathlon Symposium, 2016.

Links | BibTeX

Adaptive Training Strategies for BCIs




Svenja Stark, M.Sc.

Ph.D. Student at the Technical University of Darmstadt

Portrait of Svenja Stark, Jan. 2018

Short bio: Svenja Stark left the TU Darmstadt team in 2020 and is now a successful high school teacher in Hessen. She joined the Intelligent Autonomous Systems Group as a PhD student in December 2016, where she was supervised by Prof. Dr. Jan Peters and Univ.-Prof. Dr. Elmar Rueckert. 

She has been working on the GOAL-Robots project that aimed at developing goal-based open-ended autonomous learning robots; building lifelong learning robots.

Before joining the Autonomous Systems Labs, Svenja Stark received a Bachelor and a Master of Science degree in Computer Science from the TU Darmstadt. During her studies, she completed parts of her graduate coursework at the University of Massachusetts in Amherst. Her thesis entitled “Learning Probabilistic Feedforward and Feedback Policies for Generating Stable Walking Behaviors” was written under supervision of Elmar Rueckert and Jan Peters.

Research Interests

  • Multi-task learning, meta-learning, goal-based learning, intrinsic motivation, lifelong learning, Reinforcement Learning, motor skill learning.

Contact & Quick Links

M.Sc. Svenja Stark
Doctoral Student supervised by Prof. Dr. Jan Peters and Univ.-Prof. Dr. Elmar Rueckert. 
Hochschulstr. 10,
64289 Darmstadt,
Deutschland

Email:   svenja@robot-learning.de
Web: https://www.rob.uni-luebeck.de/index.php?id=460

Publcations

2019

Stark, Svenja; Peters, Jan; Rueckert, Elmar

Experience Reuse with Probabilistic Movement Primitives Proceedings Article

In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), 2019., 2019.

Links | BibTeX

Experience Reuse with Probabilistic Movement Primitives

2017

Stark, Svenja; Peters, Jan; Rueckert, Elmar

A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries Proceedings Article

In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2017.

Links | BibTeX

A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries

Thiem, Simon; Stark, Svenja; Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Simulation of the underactuated Sake Robotics Gripper in V-REP Proceedings Article

In: Workshop at the International Conference on Humanoid Robots (HUMANOIDS), 2017.

Links | BibTeX

Simulation of the underactuated Sake Robotics Gripper in V-REP




Honghu Xue, M.Sc.

Ph.D. Student at the University of Luebeck

Portrait of Honghu Xue

Short bio: Mr. Honghu Xue investigates in his doctoral thesis deep reinforcement learning approaches for  planning and control. His methods are applied to mobile robots and the FRANKA EMIKA robot arm. He started his thesis in March 2019.

Honghu Xue received his M.Sc. in Embedded Systems Engineering at Albert-Ludwigs-University of Freiburg with the study focus on Reinforcement Learning, Machine Learning and AI.

Research Interests

  • Deep Reinforcement Learning: Model-Based RL, Sample-efficient RL, Long-time-horizon RL, Efficient Exploration Strategies in MDP, Distributional RL, Policy Search.
  • Deep & Machine Learning: Learning Transition Model in MDP (featuring visual input and modelling the stochasticity of the environment), Super-resolution Image using DL, Time-Sequential Model for Partial Observability.

Research Videos

https://cps.unileoben.ac.at/wp/NavACLLogistics2022lowQ.mp4#t=1https://cps.unileoben.ac.at/wp/Humanoids2022PedestrianNavigation.mp4

Contact & Quick Links

M.Sc. Honghu Xue
Doctoral Student supervised by Univ.-Prof. Dr. Elmar Rueckert since March 2019.
Ratzeburger Allee 160,
23562 Lübeck,
Deutschland

Phone:  +49 451 3101 – 5213
Email:   xue@rob.uni-luebeck.de
Web:https://www.rob.uni-luebeck.de/index.php?id=460

CV of M.Sc. Honghu Xue
DBLP
Frontiers Network
Github
Google Citations
LinkedIn
ORCID
Rearch Gate

Meeting Notes


Publcations

2023

Yadav, Harsh; Xue, Honghu; Rudall, Yan; Bakr, Mohamed; Hein, Benedikt; Rueckert, Elmar; Nguyen, Thinh

Deep Reinforcement Learning for Autonomous Navigation in Intralogistics Workshop

2023, (European Control Conference (ECC) Workshop, Extended Abstract.).

Abstract | Links | BibTeX

Deep Reinforcement Learning for Autonomous Navigation in Intralogistics

2022

Xue, Honghu; Song, Rui; Petzold, Julian; Hein, Benedikt; Hamann, Heiko; Rueckert, Elmar

End-To-End Deep Reinforcement Learning for First-Person Pedestrian Visual Navigation in Urban Environments Proceedings Article

In: International Conference on Humanoid Robots (Humanoids 2022), 2022.

Abstract | Links | BibTeX

End-To-End Deep Reinforcement Learning for First-Person Pedestrian Visual Navigation in Urban Environments

Herzog, Rebecca; Berger, Till M; Pauly, Martje Gesine; Xue, Honghu; Rueckert, Elmar; Munchau, Alexander; B"aumer, Tobias; Weissbach, Anne

Cerebellar transcranial current stimulation-an intraindividual comparison of different techniques Journal Article

In: Frontiers in Neuroscience, 2022.

Links | BibTeX

Cerebellar transcranial current stimulation-an intraindividual comparison of different techniques

Xue, Honghu; Hein, Benedikt; Bakr, Mohamed; Schildbach, Georg; Abel, Bengt; Rueckert, Elmar

Using Deep Reinforcement Learning with Automatic Curriculum Learning for Mapless Navigation in Intralogistics Journal Article

In: Applied Sciences (MDPI), Special Issue on Intelligent Robotics, 2022, (Supplement: https://cloud.cps.unileoben.ac.at/index.php/s/Sj68rQewnkf4ppZ).

Abstract | Links | BibTeX

Using Deep Reinforcement Learning with Automatic Curriculum Learning for Mapless Navigation in Intralogistics

2021

Xue, Honghu; Herzog, Rebecca; Berger, Till M.; Bäumer, Tobias; Weissbach, Anne; Rueckert, Elmar

Using Probabilistic Movement Primitives in analyzing human motion differences under Transcranial Current Stimulation Journal Article

In: Frontiers in Robotics and AI , vol. 8, 2021, ISSN: 2296-9144.

Abstract | Links | BibTeX

Using Probabilistic Movement Primitives in analyzing human motion differences under Transcranial Current Stimulation

Cansev, Mehmet Ege; Xue, Honghu; Rottmann, Nils; Bliek, Adna; Miller, Luke E.; Rueckert, Elmar; Beckerle, Philipp

Interactive Human-Robot Skill Transfer: A Review of Learning Methods and User Experience Journal Article

In: Advanced Intelligent Systems, pp. 1–28, 2021.

Links | BibTeX

Interactive Human-Robot Skill Transfer: A Review of Learning Methods and User Experience

2020

Akbulut, M Tuluhan; Oztop, Erhan; Seker, M Yunus; Xue, Honghu; Tekden, Ahmet E; Ugur, Emre

ACNMP: Skill Transfer and Task Extrapolation through Learning from Demonstration and Reinforcement Learning via Representation Sharing Proceedings Article

In: 2020.

Abstract | Links | BibTeX

ACNMP: Skill Transfer and Task Extrapolation through Learning from Demonstration and Reinforcement Learning via Representation Sharing

Rottmann, N.; Bruder, R.; Xue, H.; Schweikard, A.; Rueckert, E.

Parameter Optimization for Loop Closure Detection in Closed Environments Proceedings Article

In: Workshop Paper at the International Conference on Intelligent Robots and Systems (IROS), pp. 1–8, 2020.

Links | BibTeX

Parameter Optimization for Loop Closure Detection in Closed Environments

Xue, H.; Boettger, S.; Rottmann, N.; Pandya, H.; Bruder, R.; Neumann, G.; Schweikard, A.; Rueckert, E.

Sample-Efficient Covariance Matrix Adaptation Evolutional Strategy via Simulated Rollouts in Neural Networks Proceedings Article

In: International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI’ 2020), 2020.

Links | BibTeX

Sample-Efficient Covariance Matrix Adaptation Evolutional Strategy via Simulated Rollouts in Neural Networks