UR3 passwords
Robot serial number:20225300304
Passwords:
- safety: 0000
Robot serial number:20225300304
Passwords:
Supervisor: Vedant Dave, M.Sc.;
Univ.-Prof. Dr Elmar Rückert
Start date: 15th August 2023
Theoretical difficulty: Mid
Practical difficulty: High
The aim of this Thesis is to predict the electricity price for the Hydrogen plants from open-sourced Energy data provided by the European Network of Transmission System Operators (ENTSO-E) [1]. We explore multiple machine learning techniques to achieve this aim. At the end, a standalone GUI is provided, that can be used in the industry with ease. This work was done in collaboration HyCenta Research GmbH.
Further, this thesis seeks to address the following research questions:
Deep Neural Energy Price Forecasting for the Hydrogen Industry
To achieve the objectives, the following concrete tasks will be focused on:
[1] Hirth, Lion & Mühlenpfordt, Jonathan & Bulkeley, Marisa, 2018. “The ENTSO-E Transparency Platform – A review of Europe’s most ambitious electricity data platform,” Applied Energy, Elsevier, vol. 225(C), pages 1054-1067.
Supervisor: Fotios Lygerakis and Prof. Elmar Rueckert
Start Date: 1st March 2023
Theoretical difficulty: low
Practical difficulty: mid
As the interaction with robots becomes an integral part of our daily lives, there is an escalating need for more human-like communication methods with these machines. This surge in robotic integration demands innovative approaches to ensure seamless and intuitive communication. Incorporating sign language, a powerful and unique form of communication predominantly used by the deaf and hard-of-hearing community, can be a pivotal step in this direction.
By doing so, we not only provide an inclusive and accessible mode of interaction but also establish a non-verbal and non-intrusive way for everyone to engage with robots. This evolution in human-robot interaction will undoubtedly pave the way for more holistic and natural engagements in the future.
ROS2-based Human-Robot Interaction Framework with Sign Language
The implementation of sign language in human-robot interaction will not only improve the user experience but will also advance the field of robotics and artificial intelligence.
This project will encompass 4 crucial elements.


Dear CPS team, thank you very much for this great and successful year. We all enjoyed our Christmas party at the kitchen.



As of 20th of January 2024, the Vice Rector for studies, digitalization and international affairs, Thomas Prohaska, sent out new general guidelines for Mastertheses on the Montanuniversity of Leoben.
English Versions
German Versions
Aushubmaterialien machen mit rund 42 Mio. t/a fast 60 % des österreichischen Abfallaufkommens aus, von denen 73 % deponiert und nur 8 % in Behandlungsanlagen eingebracht (BMK, 2021) und deren Outputströme größtenteils einer geringwertigen Verwendung, z.B. Untergrundverfüllung, zugeführt werden. Gleichzeitig werden in Österreich 55 Mio. t/a grundeigene mineralischer Rohstoffe abgebaut (Statista, 2022). Ursache für diese Diskrepanz sind die Herausforderungen bei der Materialdisposition, aber auch die günstige (ALSAG-freie) Deponierung von nicht kontaminierten Aushubmaterialien. Somit stellt die Verwendung von Aushubmaterialien einen ungenutzten Beitrag zur Kreislaufwirtschaft dar, welcher sich vor allem in der Schonung heimischer Ressourcen und in der Minimierung des CO2 Ausstoß von Tiefbauprojekten bemerkbar macht (Galler, 2015).
Österreichische Forschungsförderungsgesellschaft mbH (FFG)
In the NNATT project model research and experimental work is conducted to identify tunnel- and excavated material with sensor based classification and deep learning. Representative tunnel- and excavation material from Austria is sampled, mineralogically, chemically and geotechnically characterized, sensor based measured in preliminary tests and finally applied in a conceptual pilot plant for material classification at the Zentrum am Berg in Eisenerz. Additionally, the project focuses on opportunities for application in alternative building materials, resulting in saving of primary raw materials and the associated reduction of CO2 emissions.
In 2021, excavated materials, such as tunnel excavation, accounted for around 46.1 million tons, or 60% of Austria’s total waste. Our project proposes an innovative solution for the recycling of excavated materials from tunneling and construction projects by using spectral imaging technology data in deep neural networks to predict rocks and their recycling potentials. By implementing real-time material identification on a conveyor belt based on deep neural networks, we aim to feed the excavated material into a recycling chain. This cutting-edge technology enables us to identify the resources potential of the material, facilitating efficient processing and sorting both on-site and off-site.
The objectives of our project are fourfold: to conserve valuable resources in Austria by maximizing material reuse, to reduce the burden on landfills by minimizing waste disposal, to shorten transportation routes and decrease CO2 emissions associated with material transport, and to promote sustainable practices within the construction industry.
Through the integration of advanced technology and a commitment to sustainability, our project represents a significant step towards creating a future in which excavated material is considered a valuable resource that contributes to a circular economy.
Website AVAW: https://www.avaw-unileoben.at/de/forschung/projekte/nnatt
Supervisor: Linus Nwankwo, M.Sc.;
Univ.-Prof. Dr Elmar Rückert
Start date: 30th October 2023
Theoretical difficulty: mid
Practical difficulty: High

This thesis explores machine learning techniques for analysing onboard recordings from the TU Graz Racing Team, a prominent Formula Student team. The main goal is to design and train an end-to-end machine learning model to autonomously discern race courses based on sensor observations.
Further, this thesis seeks to address the following research questions:
To achieve the objectives, the following concrete tasks will be focused on:
[1] Autonomous Racing Graz, “Enhanced localisation for autonomous racing with high-resolution lidar“, Article by Tom Grey, Visited 30.10.2023.
[2] Autonomous RC car racing ETH Zürich, “The ORCA (Optimal RC Racing) Project“, Article by Alex Liniger, Visited 30.10.2023.
[3] P. Cai, H. Wang, H. Huang, Y. Liu and M. Liu, “Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement Learning,” in IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7262-7269, Oct. 2021, doi: 10.1109/LRA.2021.3097345.
[4] Z. Lu, C. Zhang, H. Zhang, Z. Wang, C. Huang and Y. Ji, “Deep Reinforcement Learning Based Autonomous Racing Car Control With Priori Knowledge,” 2021 China Automation Congress (CAC), Beijing, China, 2021, pp. 2241-2246, doi: 10.1109/CAC53003.2021.9728289.
[5] J. Kabzan, L. Hewing, A. Liniger and M. N. Zeilinger, “Learning-Based Model Predictive Control for Autonomous Racing,” in IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3363-3370, Oct. 2019, doi: 10.1109/LRA.2019.2926677.
This project aims at employing advanced data analyses and methodology in order to investigate process data from different processes in the steelmaking chain, generating process understanding and knowledge on correlations and causations in operation, as well as develop recommendation or warning systems for the operator in order to adjust and improve operation. Topics range from questions on operation and stability of the blast furnace (BF), to the production of ultra-clean steels with Ruhrstahl-Heraeus (RH) treatment and the optimization of the continuous casting (CC) process.
Joanneum Research GmbH – Institute DIGITAL
Johannes Kepler University Linz – Department of Particulate Flow
Linz Center of Mechatronics – Area SENS
Montanuniversität Leoben
Chair of Cyberphysical Systems
Chair of Ferrous Metallurgy
Primetals Technologies Austria GmbH
voestalpine Stahl GmbH
voestalpine Stahl Donawitz GmbH
Details on the research project can be found on the project webpage.
Die metallverarbeitende Industrie ist bei ihrer Produktion auf hochwertigen Metallschrott angewiesen. Derzeit muss dieser nach Österreich importiert werden. Mit Juli startet nun ein FFG-Leitprojekt, das mit Hilfe von Künstlicher Intelligenz das Recycling von Metallverbundabfällen verbessern will.
Vor dem Hintergrund des „Europäischen Green Deals“ und des Kreislaufwirtschaftspaketes müssen Ressourcenverbrauch (minus 25 Prozent) und CO2-Emissionen (minus 55 Prozent) bis 2030 drastisch reduziert und gleichzeitig die Ressourceneffizienz massiv gesteigert werden. Bei Metallen ist der Ökologische Fußabdruck durch den Rohstoffeinsatz besonders hoch, gleichzeitig sind sie ideale Kandidaten fürs Recycling. Genau hier setzt das neue FFG- Leitprojekt an, und will mit Künstlicher Intelligenz die Qualität der metallischen Abfälle steigern.
Haushaltsschrotte und Schrotte aus Altfahrzeugen sowie Elektro-Altgeräten zeichnen sich durch einen hohen Metallgehalt aus und haben daher großes Potenzial zum Recycling. Leider fallen diese Metalle nicht sortenrein an, sondern in Form von Kunststoffmetallverbunden oder Legierungsmischungen. „Derzeit werden die Metalle geschreddert und aufgrund der minderen Qualität ins Ausland exportiert,“ erklärt Dr. Alexia Tischberger-Aldrian, Projektverantwortliche seitens des Lehrstuhls für Abfallverwertungstechnik und Abfallwirtschaft. Gleichzeitig importiert Österreich höherwertigen Schrott, der für die Metallproduktion sehr wichtig ist.
Österreichische Forschungsförderungsgesellschaft mbH (FFG)