image_pdfimage_print

KI basiertes Recycling von Metallverbund-Abfällen (KIRAMET)

FFG, BMVIT Leitprojekt 07/2023-06/2026

Die metallverarbeitende Industrie ist bei ihrer Produktion auf hochwertigen Metallschrott angewiesen. Derzeit muss dieser nach Österreich importiert werden. Mit Juli startet nun ein FFG-Leitprojekt, das mit Hilfe von Künstlicher Intelligenz das Recycling von Metallverbundabfällen verbessern will.

Vor dem Hintergrund des „Europäischen Green Deals“ und des Kreislaufwirtschaftspaketes müssen Ressourcenverbrauch (minus 25 Prozent) und CO2-Emissionen (minus 55 Prozent) bis 2030 drastisch reduziert und gleichzeitig die Ressourceneffizienz massiv gesteigert werden. Bei Metallen ist der Ökologische Fußabdruck durch den Rohstoffeinsatz besonders hoch, gleichzeitig sind sie ideale Kandidaten fürs Recycling. Genau hier setzt das neue FFG- Leitprojekt an, und will mit Künstlicher Intelligenz die Qualität der metallischen Abfälle steigern.

Haushaltsschrotte und Schrotte aus Altfahrzeugen sowie Elektro-Altgeräten zeichnen sich durch einen hohen Metallgehalt aus und haben daher großes Potenzial zum Recycling. Leider fallen diese Metalle nicht sortenrein an, sondern in Form von Kunststoffmetallverbunden oder Legierungsmischungen. „Derzeit werden die Metalle geschreddert und aufgrund der minderen Qualität ins Ausland exportiert,“ erklärt Dr. Alexia Tischberger-Aldrian, Projektverantwortliche seitens des Lehrstuhls für Abfallverwertungstechnik und Abfallwirtschaft. Gleichzeitig importiert Österreich höherwertigen Schrott, der für die Metallproduktion sehr wichtig ist.

Projektziele

  • Entwicklung einer KI unterstützten Sortierstraße zur Bereitstellung von definierten Metallfraktionen
  • Entwicklung einer Prozess Modellierungs- und Optimierungsumgebung zur Erstellung von digitalen Zwillingen zur Prozesssimulation und Ableitung optimaler Handlungsempfehlungen
  • Etablierung eines Datenflusses für recyclingrelevante Daten der im Projekt betrachteten Abfallströme
  • Entwicklung und Bereitstellung einer intelligenten Redyclingplattform zur übergeordneten Prozessseuerung und Vernetzung von Stakeholdern
  • Anwendung der entwickelten KI basierten Lösungen in relevanten Use Cases

Projekt Consortium

  • Montanuniversität Leoben (Koordinator)
    • Lehrstuhl für Abfallverwertungstechnik und Abfallwirtschaft
    • Lehrstuhl für Cyber-Physical-Systems
  • 7lytix gmbh
  • Fabasoft R&D GmbH
  • Bernegger GmbH
  • voestalpine High Performance Metals GmbH
  • Breitenfeld Edelstahl Aktiengesellschaft
  • METTOP GmbH
  • ETA Umweltmanagement GmbH
  • Nekonata XR Technologies GmbH
  • Mayer Recycling GmbH
  • BT-Wolfgang Binder GmbH
  • O.Ö. Landes-Abfallverwertungsunternehmen GmbH
  • K1-MET GmbH
  • Scholz Austria GmbH
  • Andritz AG
  • Software Competence Center Hagenberg GmbH
  • voestalpine Stahl GmbH
  • PROFACTOR GmbH
  • Salzburg Research Forschungsgesellschaft m.b.H.

Fördergeber

  • Österreichische Forschungsförderungsgesellschaft mbH (FFG)

  • Bundesministerium für Verkehr, Innovation und Technologie (BMVIT)

Open Lab Day – 20th of October 2023

Date & Location: 20.10.2023 15:00-19:00

Overall, we could host more than 150 visitors which made our open lab day a great success. 

Chair of Cyber-Physical-Systems 
Metallurgiegebäude 1.Stock
Montanuniversität Leoben
Franz-Josef-Straße 18,
8700 Leoben, Austria

Impressions of the last open lab day in 2023. 

English: Immerse yourself in the fascinating world of artificial intelligence and robotics. We present self-learning robots, mobile robot guides and how deep neural networks are learned. Children can experiment with our Lego EV3 robots and try to deliver snacks autonomously. Catering will be provided.

Deutsch: Tauchen Sie ein in die faszinierende Welt der künstlichen Intelligenz und Robotik. Wir präsentieren selbstlernende Roboter, mobile Roboterguides und wie tiefe neuronale Netze gelernt werden. Kinder können mit unseren Lego EV3 Robotern experimentieren und versuchen Snacks autonom auszuliefern. Für Verpflegung ist gesorgt.

Here we will put some pictures and videos of our open lab day on the 20th of October 2023.

Kosmo Obermayer (Apprentice)

Technician

Short bio: Mr. Kosmo Obermayer joined the CPS team in Sept. 2023 as apprentice for IT and telecommunication.  

At the chair of CPS, Mr. Obermayer manages our server and IT infrastructure, contributes to the creation of robotic systems, electronics, mechanical designs, and complex embedded systems. 

Research Interests

  • Cloud Computing & Server Architectures
  • IT infrastructure and networking
  • Development of Robotic Systems 

Contact

Mr. Kosmo Obermayer
Lehrling am Lehrstuhls für Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Phone:  +43 3842 402 – 1901
Email: kosmo.obermayer@unileoben.ac.at 
Web:  https://cps.unileoben.ac.at

Tanja Sukal, B.Sc.

Student Assistant at the Montanuniversität Leoben

Tanja_Sukal_ picture

Short bio:Tanja Sukal, B.Sc. started at CPS in October  2024.

Tanja Sukal is a master student at Montanuniversität Leoben in the program Industrial Data Science. Her research interests include data modeling based on machine learning algorithms including neural networks. 

Research Interests

  • Data Modeling 
  • Machine Learning
  • Python Programming

Past Thesis

Contact

Tanja Sukal
Student Assistant at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18,
8700 Leoben, Austria 

Email: tanja.sukal@stud.unileoben.ac.at

B.Sc. Thesis – Christoph Andres: Development of a ROS2 Interface for the FANUC CRX-10iA robot arm

Supervisor: Univ.-Prof. Dr Elmar Rückert, Niko Feith
Start date: 1st March 2023

 

Theoretical difficulty: low
Practical difficulty: mid

Abstract

The FANUC CRX-10iA robot arm is a compliant system that can be used for collaborative human-robot tasks. 

In this Bachelor thesis, the abilities of the robot arm are evaluated for such co-worker scenarios. In particular, the reachable space, the robustness of the inverse kinematics, the ability to simulate the system in real-time, and the precision and reliability of the system are analyzed.

To embed the system in our CPS Hub, a ROS2 interface will be developed und used for all experiments. The interface can be used to control the system or to send end receive commands from simulation tools like CoppeliaSim or Gazebo. 

Tentative Work Plan

To achieve our objective, the following concrete tasks will be focused on:

  • Literature research
  • ROS2 interface implementation for the simulation tool
  • ROS2 interface implementation for the real system
  • Identification of quality measures and definition of the experiments
  • Evaluation 
  • Thesis writing

Thesis

Micro – ROS Servo

CPS presents a guide to setup the communication between Micro – ROS and ROS2 and control multiple servos attached to a PWM/Servo Driver board. Therefor the installation of ROS2, the setup of a Micro – ROS workspace, the establishment of the communication with a custom message and the implementation of third party libraries as well as the usage of two different RTOS system will be described step for step.

By combining the power of Micro ROS Foxy, ESP32 and a PCA9685 board, this project provides a way of controlling multiple servos. The setup has been tested on a Linux Ubuntu 20.04.6 LTS environment, allowing seamless communication and accurate servo positioning. The linked guide give some information about Micro – ROS and walks through the installation of ROS2, the setup of a Micro-ROS workspace, and the establishment of the communication between Micro-ROS and ROS2 using a custom message format called “ServoMessage”. Additionally, the guide covers the implementation of third-party libraries and the usage of two different RTOS systems. The code includes examples of how to use the Micro ROS Foxy framework to send and receive ServoMessages over the ROS2 network to control the attached servos. 

Components

Electronics:
  • Micro USB Cable
  • ESP32 Developement Board
  • 2 x 4,7 kΩ resistors 
  • PCA9685 PWM/Servo Board
  • Servos
  • 5V Power Supply

Links

Daniel Wagermaier, B.Sc.

Master Thesis Student at the Montanuniversität Leoben

Short bio: Daniel Wagermaier writes his master thesis at the chair of Cyber-Physical Systems (CPS). The title of the thesis is: ‘Improving fundamental metallurgical modelling using data-driven approaches.  

Research Interests

  • Machine and Deep Learning
  • Metallurgical Processes

Thesis

Contact

Daniel Wagermaier, B.Sc
Master Thesis Student at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Email: daniel.wagermaier@stud.unileoben.ac.at