Home

image_pdfimage_print

The Chair of Cyber-Physical-Systems

The Chair of Cyber-Physical-Systems at the Montanuniversität Leoben in Austria is headed by Prof. Elmar Rueckert.

The group’s research topics are autonomous systems, machine and deep learning, embedded smart sensing systems, and computational models.

Find out more about us here  (a recent post in German).

Or have a look at this presentation of our research.

Latest Research Videos

ROMR
PlayPlay
NavAcl-Q+
PlayPlay
ROMR
PlayPlay
TacProMPs
PlayPlay
NavACL-Q
PlayPlay
previous arrow
next arrow
ROMR
NavAcl-Q+
ROMR
TacProMPs
NavACL-Q
previous arrow
next arrow

AI & Robotics Positions and Topics

The chair is offering a number of open positions and student thesis topics in AI and robotics.

Also check our wiki, which offers numerous public posts on open source code repositories or tutorials.

Latest news

News

July 26, 2019

Advanced Robotics Best Paper Award

for the paper: Probabilistic Movement Primitives under Unknown System Dynamics, by Paraschos, Alexandros and Rueckert, Elmar and Peters, Jan and Neumann, Gerhard. Advanced Robotics (ARJ), 32 (6), pp. 297-310, 2018.

June 22, 2019

Conference Paper accepted at ECMR 2019

The paper by Nils Rottmann, Ralf Bruder, Achim Schweikard and Elmar Rueckert on “Loop Closure Detection in Closed Environments” was accepted for publication at the 2019 European Conference on Mobile Robots..Read More

June 20, 2019

Conference Paper Accepted at IROS 2019

The paper by Svenja Stark, Jan Peters and Elmar Rueckert on “Experience Reuse with Probabilistic Movement Primitives” was accepted for publication in the Proceedings of the 2019 IEEE/RSJ International Conference on..Read More

June 7, 2019

Successful grant: Autonome Elektrofahrzeuge als urbane Lieferanten

Das Projekt Autonome Elektrofahrzeuge als urbane Lieferanten wird im Rahmen des Programms „Our Common Future“ von der Robert Bosch Stiftung gefördert. Projektstart ist der 01.07.2019 bis 30.10.2021 More at: https://future.ai-lab.science

April 17, 2019

Gründungssitzung Grundlagen von KI Systemen

Fachausschusses FA1.60 zu Grundlagen lernender intelligenter Systeme, Gründungsmitglieder: Barbara Hammer (Universität Bielefeld), Elmar Rückert (gewählter Vorsitzender), Georg Schildbach (Universität zu Lübeck), Gerhard Neumann (Universität Tübingen), Heinz Koeppl (Technische Universität Darmstadt),..Read More

January 5, 2019

Best Paper Award

for the paper: Learning to Categorize Bug Reports with LSTM Networks, by Gondaliya, Kaushikkumar D; Peters, Jan; Rueckert, Elmar.  In Proceedings of the International Conference on Advances in System Testing and Validation Lifecycle (VALID)., pp…Read More

December 21, 2018

Conference paper accepted at BIOSIGNALS 2019

Rottmann, N; Bruder, R; Schweikard, A; Rueckert, E. (2019). Cataglyphis ant navigation strategies solve the global localization problem in robots with binary sensors, Proceedings of the International Conference on Bio-inspired Systems and..Read More

October 9, 2018

Journal Paper Accepted at Neural Networks

Daniel Tanneberg, Jan Peters, Elmar Rueckert Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks accepted (Oct, 9th 2018) at Neural Networks – Elsevier with an Impact Factor..Read More

July 31, 2018

Conference paper accepted at VAILD 2018

Gondaliya, D. Kaushikkumar; Peters, J.; Rueckert, E. (2018). Learning to categorize bug reports with LSTM networks: An empirical study on thousands of real bug reports from a world leading software..Read More

July 18, 2018

Journal Paper Accepted at JMLR – Journal of Machine Learning Research.

Adrian Šošić, Elmar Rueckert, Jan Peters, Abdelhak M. Zoubir, Heinz Koeppl Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling accepted (Oct, 8th 2018) at Journal of Machine Learning Research (JMLR).

February 1, 2018

1st day as Assistant Professor

September 18, 2017

Invited Talk at the ICDL Conference, Lisbon, Portugal

Home – Background Slideshow Title: Experience Replay and Intrinsic Motivation in Neural Motor Skill Learning Models

September 18, 2017

3 HUMANOIDS Papers Accepted

Rueckert, E.; Nakatenus, M.; Tosatto, S.; Peters, J. (2017). Learning Inverse Dynamics Models in O(n) time with LSTM networks. Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Efficient Online Adaptation with..Read More

September 1, 2017

CoRL Paper accepted

Tanneberg, D.; Peters, J.; Rueckert, E. (2017). Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals, Proceedings of the Conference on Robot Learning (CoRL).

August 4, 2017

W1 Juniorprofessorship with tenure track at University Lübeck

With February 1st, 2018 I will work as professor for robotics at the university Lübeck.

More news on Professor Rueckert’s page.