ROS2-based Human-Robot Interaction Framework with Sign Language

image_pdfimage_print

Supervisor: Fotios Lygerakis and Prof. Elmar Rueckert

Start Date: 1st March 2023

Theoretical difficulty: low
Practical difficulty: mid

Abstract

As the interaction with robots becomes an integral part of our daily lives, there is an escalating need for more human-like communication methods with these machines. This surge in robotic integration demands innovative approaches to ensure seamless and intuitive communication. Incorporating sign language, a powerful and unique form of communication predominantly used by the deaf and hard-of-hearing community, can be a pivotal step in this direction. 

By doing so, we not only provide an inclusive and accessible mode of interaction but also establish a non-verbal and non-intrusive way for everyone to engage with robots. This evolution in human-robot interaction will undoubtedly pave the way for more holistic and natural engagements in the future.

DALL·E 2023-02-09 17.32.48 - robot hand communicating with sign language

Thesis

Project Description

The implementation of sign language in human-robot interaction will not only improve the user experience but will also advance the field of robotics and artificial intelligence.

This project will encompass 4 crucial elements.

  1. Human Gesture Recognition with CNNs and/or Transformers – Recognizing human gestures in sign language through the development of deep learning methods utilizing a camera.
    • Letter-level
    • Word/Gloss-level
  2. Chat Agent with Large Language Models (LLMs) – Developing a gloss chat agent.
  3. Finger Spelling/Gloss gesture with Robot Hand/Arm-Hand –
    • Human Gesture Imitation
    • Behavior Cloning
    • Offline Reinforcement Learning
  4. Software Engineering – Create a seamless human-robot interaction framework using sign language.
    • Develop a ROS-2 framework
    • Develop a robot digital twin on simulation
  5. Human-Robot Interaction Evaluation – Evaluate and adopt the more human-like methods for more human-like interaction with a robotic signer.
1024-1364
Hardware Set-Up for Character-level Human-Robot Interaction with Sign language.
Example of letter-level HRI with sign language: Copying agent