image_pdfimage_print

Prof. Elmar Rueckert (Chair)

Chair of Cyber-Physical-Systems

Portrait Prof. Dr. Rueckert Elmar, January 2018

Short bio: Since March 2021 is Univ.-Prof. Dr. Elmar Rueckert the chair of the Cyber-Physical-Systems Institute at the Montanuniversität Leoben in Austria. He received his PhD in computer science at the Graz University of Technology in 2014 and worked for four years as senior researcher and research group leader at the Technical University of Darmstadt. Thereafter, he worked for three years as assistant professor at the University of Lübeck. His research interests include stochastic machine and deep learning, robotics and reinforcement learning and human motor control. In 2019, he was awarded with the ‘German Young Researcher Award’. 

Research Interests

  • Computational Modeling & Process Informatics: Cyber-Physical-Systems, Process Modeling in Metal Forming, Movement Decoding and Understanding, Brain- Computer-Interfaces, Electroencephalography, Spiking Neural Networks, Optimal Feedback Control, Muscle Synergies, Probabilistic Time-Series Models.
  • Machine & Deep Learning: Deep Networks, Graphical Models, Probabilistic Inference, Variational Inference, Gaussian Processes, Transfer Learning, Message Passing, Clustering, Bayesian Optimization, Lazy Learning, Genetic Programming, LSTMs.
  • Robotics: Stochastic Optimal Control, Movement Primitives, Reinforcement Learning, Imitation Learning, Morphological Computation, Quadruped Locomotion, Humanoid Postural Control, Grasping, Tactile Learning, Dynamic Control.
  • Human Motor Control & Science: Prosthesis Research & Rehabilitation, Motor Adaptation, Motor Skill Learning, Postural Control, Telepresence, Embodiment, Congruence in Teleoperation, Interactive Learning, Shared Control, Human Feedback.

Contact & Quick Links

Univ.-Prof. Dipl.-Ing. Dr.techn. Elmar Rueckert
Leiter des Lehrstuhls für Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Phone:  +43 3842 402 – 1901 (Sekretariat CPS)
Email:   rueckert@ai-lab.science
Web:  https://cps.unileoben.ac.at
Chat: WEBEX

Publcations

Journal Articles

Krukenfellner, Philip; Rueckert, Elmar; Flachberger, Helmut

Predicting condition states, based on displacement data, generated by acceleration sensors on industrial linear vibrating screens through neural networks Journal Article

In: IEEE Sensors Journal, pp. 1–13, 2024, ISBN: 1558-1748.

Links | BibTeX

Trimmel, Simone; Spörl, Philipp; Haluza, Daniela; Lashin, Nagi; Meisel, Thomas C.; Pitha, Ulrike; Prohaska, Thomas; Puschenreiter, Markus; Rückert, Elmar; Spangl, Bernhard; Wiedenhofer, Dominik; Irrgeher, Johanna

Green and blue infrastructure as model system for emissions of technology-critical elements Journal Article

In: Science of The Total Environment, vol. 934, 2024, ISBN: 0048-9697, (https://doi.org/10.1016/j.scitotenv.2024.173364).

Links | BibTeX

Kunavar, Tjasa; Jamšek, Marko; Avila-Mireles, Edwin Johnatan; Rueckert, Elmar; Peternel, Luka; Babič., Jan

The Effects of Different Motor Teaching Strategies on Learning a Complex Motor Task Journal Article

In: Sensors (MDPI), vol. 24, no. 4, pp. 1–17, 2024.

Links | BibTeX

Nwankwo, Linus; Fritze, Clemens; Bartsch, Konrad; Rueckert, Elmar

ROMR: A ROS-based Open-source Mobile Robot Journal Article

In: HardwareX, vol. 15, pp. 1–29, 2023.

Abstract | Links | BibTeX

Herzog, Rebecca; Berger, Till M; Pauly, Martje Gesine; Xue, Honghu; Rueckert, Elmar; Munchau, Alexander; B"aumer, Tobias; Weissbach, Anne

Cerebellar transcranial current stimulation-an intraindividual comparison of different techniques Journal Article

In: Frontiers in Neuroscience, 2022.

Links | BibTeX

Rottmann, Nils; Studt, Nico; Ernst, Floris; Rueckert, Elmar

ROS-Mobile: An Android™ application for the Robot Operating System Journal Article

In: Arxiv, 2022.

Links | BibTeX

Xue, Honghu; Hein, Benedikt; Bakr, Mohamed; Schildbach, Georg; Abel, Bengt; Rueckert, Elmar

Using Deep Reinforcement Learning with Automatic Curriculum Learning for Mapless Navigation in Intralogistics Journal Article

In: Applied Sciences (MDPI), Special Issue on Intelligent Robotics, 2022, (Supplement: https://cloud.cps.unileoben.ac.at/index.php/s/Sj68rQewnkf4ppZ).

Abstract | Links | BibTeX

Xue, Honghu; Herzog, Rebecca; Berger, Till M.; Bäumer, Tobias; Weissbach, Anne; Rueckert, Elmar

Using Probabilistic Movement Primitives in analyzing human motion differences under Transcranial Current Stimulation Journal Article

In: Frontiers in Robotics and AI , vol. 8, 2021, ISSN: 2296-9144.

Abstract | Links | BibTeX

Tanneberg, Daniel; Ploeger, Kai; Rueckert, Elmar; Peters, Jan

SKID RAW: Skill Discovery from Raw Trajectories Journal Article

In: IEEE Robotics and Automation Letters (RA-L), pp. 1–8, 2021, ISSN: 2377-3766, (© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.).

Links | BibTeX

Jamsek, Marko; Kunavar, Tjasa; Bobek, Urban; Rueckert, Elmar; Babic, Jan

Predictive exoskeleton control for arm-motion augmentation based on probabilistic movement primitives combined with a flow controller Journal Article

In: IEEE Robotics and Automation Letters (RA-L), pp. 1–8, 2021, ISSN: 2377-3766, (© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.).

Links | BibTeX

Cansev, Mehmet Ege; Xue, Honghu; Rottmann, Nils; Bliek, Adna; Miller, Luke E.; Rueckert, Elmar; Beckerle, Philipp

Interactive Human-Robot Skill Transfer: A Review of Learning Methods and User Experience Journal Article

In: Advanced Intelligent Systems, pp. 1–28, 2021.

Links | BibTeX

Kyrarini, Maria; Lygerakis, Fotios; Rajavenkatanarayanan, Akilesh; Sevastopoulos, Christos; Nambiappan, Harish Ram; Chaitanya, Kodur Krishna; Babu, Ashwin Ramesh; Mathew, Joanne; Makedon, Fillia

A Survey of Robots in Healthcare Journal Article

In: Technologies, vol. 9, iss. 8, 2021.

Links | BibTeX

Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E.

A novel Chlorophyll Fluorescence based approach for Mowing Area Classification Journal Article

In: IEEE Sensors Journal, 2020.

Links | BibTeX

Tanneberg, Daniel; Rueckert, Elmar; Peters, Jan

Evolutionary training and abstraction yields algorithmic generalization of neural computers Journal Article

In: Nature Machine Intelligence, pp. 1–11, 2020.

Links | BibTeX

Cartoni, E.; Mannella, F.; Santucci, V. G.; Triesch, J.; Rueckert, E.; Baldassarre, G.

REAL-2019: Robot open-Ended Autonomous Learning competition Journal Article

In: Proceedings of Machine Learning Research, vol. 123, pp. 142-152, 2020, (NeurIPS 2019 Competition and Demonstration Track).

Links | BibTeX

Diakoloukas, Vassilios; Lygerakis, Fotios; Lagoudakis, Michail G; Kotti, Margarita

Variational Denoising Autoencoders and Least-Squares Policy Iteration for Statistical Dialogue Manager Journal Article

In: IEEE Signal Processing Letters , vol. 27, pp. 960-964, 2020.

Links | BibTeX

Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks Journal Article

In: Neural Networks – Elsevier, vol. 109, pp. 67-80, 2019, ISBN: 0893-6080, (Impact Factor of 7.197 (2017)).

Links | BibTeX

Sosic, Adrian; Zoubir, Abdelhak M.; Rueckert, Elmar; Peters, Jan; Koeppl, Heinz

Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling Journal Article

In: Journal of Machine Learning Research (JMLR), vol. 19, no. 69, pp. 1-45, 2018.

Links | BibTeX

Paraschos, Alexandros; Rueckert, Elmar; Peters, Jan; Neumann, Gerhard

Probabilistic Movement Primitives under Unknown System Dynamics Journal Article

In: Advanced Robotics (ARJ), vol. 32, no. 6, pp. 297-310, 2018.

Links | BibTeX

Rueckert, Elmar; Camernik, Jernej; Peters, Jan; Babic, Jan

Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control Journal Article

In: Nature Publishing Group: Scientific Reports, vol. 6, no. 28455, 2016.

Links | BibTeX

Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan

Recurrent Spiking Networks Solve Planning Tasks Journal Article

In: Nature Publishing Group: Scientific Reports, vol. 6, no. 21142, 2016.

Links | BibTeX

Rueckert, Elmar; d’Avella, Andrea

Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems Journal Article

In: Frontiers in Computational Neuroscience, vol. 7, no. 138, 2013.

Links | BibTeX

Rueckert, Elmar; Neumann, Gerhard; Toussaint, Marc; Maass, Wolfgang

Learned graphical models for probabilistic planning provide a new class of movement primitives Journal Article

In: Frontiers in Computational Neuroscience, vol. 6, no. 97, 2013.

Links | BibTeX

Rueckert, Elmar; Neumann, Gerhard

Stochastic Optimal Control Methods for Investigating the Power of Morphological Computation Journal Article

In: Artificial Life, vol. 19, no. 1, 2012.

Links | BibTeX

Conferences

Lygerakis, Fotios; Dagioglou, Maria; Karkaletsis, Vangelis

Accelerating Human-Agent Collaborative Reinforcement Learning Conference

In Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference (PETRA '21), Association for Computing Machinery, New York, NY, USA, 90–92, 2021.

Links | BibTeX

Banerjee, Debapriya; Lygerakis, Fotios; Makedon, Fillia

Sequential Late Fusion Technique for Multi-modal Sentiment Analysis Conference

In Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference (PETRA '21), Association for Computing Machinery, New York, NY, USA, 264–265. , 2021.

Links | BibTeX

Lygerakis, Fotios; Tsitos, Athanasios C; Dagioglou, Maria; Makedon, Fillia; Karkaletsis, Vangelis

Evaluation of 3D markerless pose estimation accuracy using openpose and depth information from a single RGB-D camera Conference

In Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA '20), Article 75, 1–6 Association for Computing Machinery, New York, NY, USA, 2020.

Links | BibTeX

Lygerakis, Fotios; Diakoloulas, Vassilios; Lagoudakis, Michail; Kotti, Margarita

Robust Belief State Space Representation for Statistical Dialogue Managers Using Deep Autoencoders Conference

2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 2019.

Links | BibTeX

Proceedings Articles

Lygerakis, Fotios; Dave, Vedant; Rueckert, Elmar

M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation Proceedings Article

In: IEEE International Conference on Ubiquitous Robots (UR 2024), IEEE 2024.

Links | BibTeX

Feith, Nikolaus; Rueckert, Elmar

Integrating Human Expertise in Continuous Spaces: A Novel Interactive Bayesian Optimization Framework with Preference Expected Improvement Proceedings Article

In: IEEE International Conference on Ubiquitous Robots (UR 2024), IEEE 2024.

Links | BibTeX

Feith, Nikolaus; Rueckert, Elmar

Advancing Interactive Robot Learning: A User Interface Leveraging Mixed Reality and Dual Quaternions Proceedings Article

In: IEEE International Conference on Ubiquitous Robots (UR 2024), IEEE 2024.

Links | BibTeX

Neubauer, Melanie; Rueckert, Elmar

Semi-Autonomous Fast Object Segmentation and Tracking Tool for Industrial Applications Proceedings Article

In: IEEE International Conference on Ubiquitous Robots (UR 2024), IEEE 2024.

Links | BibTeX

Dave*, Vedant; Lygerakis*, Fotios; Rueckert, Elmar

Multimodal Visual-Tactile Representation Learning through Self-Supervised Contrastive Pre-Training Proceedings Article

In: IEEE International Conference on Robotics and Automation (ICRA 2024)., 2024, (* equal contribution).

Links | BibTeX

Nwankwo, Linus; Rueckert, Elmar

The Conversation is the Command: Interacting with Real-World Autonomous Robots Through Natural Language Proceedings Article

In: HRI '24: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction., pp. 808–812, ACM/IEEE Association for Computing Machinery, New York, NY, USA, 2024, ISBN: 9798400703232, (Published as late breaking results. Supplementary video: https://cloud.cps.unileoben.ac.at/index.php/s/fRE9XMosWDtJ339 ).

Abstract | Links | BibTeX

Lygerakis, Fotios; Rueckert, Elmar

CR-VAE: Contrastive Regularization on Variational Autoencoders for Preventing Posterior Collapse Proceedings Article

In: Asian Conference of Artificial Intelligence Technology (ACAIT)., IEEE, 2023.

Links | BibTeX

Yadav, Harsh; Xue, Honghu; Rudall, Yan; Bakr, Mohamed; Hein, Benedikt; Rueckert, Elmar; Nguyen, Ngoc Thinh

Deep Reinforcement Learning for Mapless Navigation of Autonomous Mobile Robot Proceedings Article

In: International Conference on System Theory, Control and Computing (ICSTCC), 2023, (October 11-13, 2023, Timisoara, Romania.).

Links | BibTeX

Nwankwo, Linus; Rueckert, Elmar

Understanding why SLAM algorithms fail in modern indoor environments Proceedings Article

In: International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). , pp. 186 – 194, Cham: Springer Nature Switzerland., 2023.

Abstract | Links | BibTeX

Keshavarz, Sahar; Vita, Petr; Rueckert, Elmar; Ortner, Ronald; Thonhauser, Gerhard

A Reinforcement Learning Approach for Real-Time Autonomous Decision-Making in Well Construction Proceedings Article

In: Society of Petroleum Engineers – SPE Symposium: Leveraging Artificial Intelligence to Shape the Future of the Energy Industry, AIS 2023, Society of Petroleum Engineers., 2023, ISBN: 9781613999882.

Links | BibTeX

Xue, Honghu; Song, Rui; Petzold, Julian; Hein, Benedikt; Hamann, Heiko; Rueckert, Elmar

End-To-End Deep Reinforcement Learning for First-Person Pedestrian Visual Navigation in Urban Environments Proceedings Article

In: International Conference on Humanoid Robots (Humanoids 2022), 2022.

Abstract | Links | BibTeX

Dave, Vedant; Rueckert, Elmar

Predicting full-arm grasping motions from anticipated tactile responses Proceedings Article

In: International Conference on Humanoid Robots (Humanoids 2022), 2022.

Abstract | Links | BibTeX

Leonel, Rozo*; Vedant, Dave*

Orientation Probabilistic Movement Primitives on Riemannian Manifolds Proceedings Article

In: Conference on Robot Learning (CoRL), pp. 11, 2022, (* equal contribution).

Abstract | Links | BibTeX

Denz, R.; Demirci, R.; Cansev, E.; Bliek, A.; Beckerle, P.; Rueckert, E.; Rottmann, N.

A high-accuracy, low-budget Sensor Glove for Trajectory Model Learning Proceedings Article

In: International Conference on Advanced Robotics , pp. 7, 2021.

Links | BibTeX

Rottmann, N.; Denz, R.; Bruder, R.; Rueckert, E.

Probabilistic Approach for Complete Coverage Path Planning with low-cost Systems Proceedings Article

In: European Conference on Mobile Robots (ECMR 2021), 2021.

Links | BibTeX

Akbulut, M Tuluhan; Oztop, Erhan; Seker, M Yunus; Xue, Honghu; Tekden, Ahmet E; Ugur, Emre

ACNMP: Skill Transfer and Task Extrapolation through Learning from Demonstration and Reinforcement Learning via Representation Sharing Proceedings Article

In: 2020.

Abstract | Links | BibTeX

Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E.

Exploiting Chlorophyll Fluorescense for Building Robust low-Cost Mowing Area Detectors Proceedings Article

In: IEEE SENSORS , pp. 1–4, 2020.

Links | BibTeX

Rottmann, N.; Kunavar, T.; Babič, J.; Peters, J.; Rueckert, E.

Learning Hierarchical Acquisition Functions for Bayesian Optimization Proceedings Article

In: International Conference on Intelligent Robots and Systems (IROS’ 2020), 2020.

Links | BibTeX

Rottmann, N.; Bruder, R.; Xue, H.; Schweikard, A.; Rueckert, E.

Parameter Optimization for Loop Closure Detection in Closed Environments Proceedings Article

In: Workshop Paper at the International Conference on Intelligent Robots and Systems (IROS), pp. 1–8, 2020.

Links | BibTeX

Tolga-Can Çallar, Elmar Rueckert; Böttger, Sven

Efficient Body Registration Using Single-View Range Imaging and Generic Shape Templates Proceedings Article

In: 54th Annual Conference of the German Society for Biomedical Engineering (BMT 2020), 2020.

Links | BibTeX

Xue, H.; Boettger, S.; Rottmann, N.; Pandya, H.; Bruder, R.; Neumann, G.; Schweikard, A.; Rueckert, E.

Sample-Efficient Covariance Matrix Adaptation Evolutional Strategy via Simulated Rollouts in Neural Networks Proceedings Article

In: International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI’ 2020), 2020.

Links | BibTeX

Stark, Svenja; Peters, Jan; Rueckert, Elmar

Experience Reuse with Probabilistic Movement Primitives Proceedings Article

In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), 2019., 2019.

Links | BibTeX

Boettger, S.; Callar, T. C.; Schweikard, A.; Rueckert, E.

Medical robotics simulation framework for application-specific optimal kinematics Proceedings Article

In: Current Directions in Biomedical Engineering 2019, pp. 1–5, 2019.

Links | BibTeX

Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E.

Loop Closure Detection in Closed Environments Proceedings Article

In: European Conference on Mobile Robots (ECMR 2019), 2019, ISBN: 978-1-7281-3605-9.

Links | BibTeX

Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E.

Cataglyphis ant navigation strategies solve the global localization problem in robots with binary sensors Proceedings Article

In: Proceedings of International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS), Prague, Czech Republic , 2019, ( February 22-24, 2019).

Links | BibTeX

Rueckert, Elmar; Jauer, Philipp; Derksen, Alexander; Schweikard, Achim

Dynamic Control Strategies for Cable-Driven Master Slave Robots Proceedings Article

In: Keck, Tobias (Ed.): Proceedings on Minimally Invasive Surgery, Luebeck, Germany, 2019, (January 24-25, 2019).

Links | BibTeX

Gondaliya, Kaushikkumar D.; Peters, Jan; Rueckert, Elmar

Learning to Categorize Bug Reports with LSTM Networks Proceedings Article

In: Proceedings of the International Conference on Advances in System Testing and Validation Lifecycle (VALID)., pp. 6, XPS (Xpert Publishing Services), Nice, France, 2018, ISBN: 978-1-61208-671-2, ( October 14-18, 2018).

Links | BibTeX

Rueckert, Elmar; Nakatenus, Moritz; Tosatto, Samuele; Peters, Jan

Learning Inverse Dynamics Models in O(n) time with LSTM networks Proceedings Article

In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2017.

Links | BibTeX

Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Efficient Online Adaptation with Stochastic Recurrent Neural Networks Proceedings Article

In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2017.

Links | BibTeX

Stark, Svenja; Peters, Jan; Rueckert, Elmar

A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries Proceedings Article

In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2017.

Links | BibTeX

Thiem, Simon; Stark, Svenja; Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Simulation of the underactuated Sake Robotics Gripper in V-REP Proceedings Article

In: Workshop at the International Conference on Humanoid Robots (HUMANOIDS), 2017.

Links | BibTeX

Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals Proceedings Article

In: Proceedings of the Conference on Robot Learning (CoRL), 2017.

Links | BibTeX

Tanneberg, Daniel; Paraschos, Alexandros; Peters, Jan; Rueckert, Elmar

Deep Spiking Networks for Model-based Planning in Humanoids Proceedings Article

In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2016.

Links | BibTeX

Azad, Morteza; Ortenzi, Valerio; Lin, Hsiu-Chin; Rueckert, Elmar; Mistry, Michael

Model Estimation and Control of Complaint Contact Normal Force Proceedings Article

In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2016.

Links | BibTeX

Kohlschuetter, Jan; Peters, Jan; Rueckert, Elmar

Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities Proceedings Article

In: Proceedings of the XIV Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON), 2016.

Links | BibTeX

Modugno, Valerio; Neumann, Gerhard; Rueckert, Elmar; Oriolo, Giuseppe; Peters, Jan; Ivaldi, Serena

Learning soft task priorities for control of redundant robots Proceedings Article

In: Proceedings of the International Conference on Robotics and Automation (ICRA), 2016.

Links | BibTeX

Sharma, David; Tanneberg, Daniel; Grosse-Wentrup, Moritz; Peters, Jan; Rueckert, Elmar

Adaptive Training Strategies for BCIs Proceedings Article

In: Cybathlon Symposium, 2016.

Links | BibTeX

Weber, Paul; Rueckert, Elmar; Calandra, Roberto; Peters, Jan; Beckerle, Philipp

A Low-cost Sensor Glove with Vibrotactile Feedback and Multiple Finger Joint and Hand Motion Sensing for Human-Robot Interaction Proceedings Article

In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2016.

Links | BibTeX

Calandra, Roberto; Ivaldi, Serena; Deisenroth, Marc; Rueckert, Elmar; Peters, Jan

Learning Inverse Dynamics Models with Contacts Proceedings Article

In: Proceedings of the International Conference on Robotics and Automation (ICRA), 2015.

Links | BibTeX

Rueckert, Elmar; Mundo, Jan; Paraschos, Alexandros; Peters, Jan; Neumann, Gerhard

Extracting Low-Dimensional Control Variables for Movement Primitives Proceedings Article

In: Proceedings of the International Conference on Robotics and Automation (ICRA), 2015.

Links | BibTeX

Paraschos, Alexandros; Rueckert, Elmar; Peters, Jan; Neumann, Gerhard

Model-Free Probabilistic Movement Primitives for Physical Interaction Proceedings Article

In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), 2015.

Links | BibTeX

Rueckert, Elmar; Lioutikov, Rudolf; Calandra, Roberto; Schmidt, Marius; Beckerle, Philipp; Peters, Jan

Low-cost Sensor Glove with Force Feedback for Learning from Demonstrations using Probabilistic Trajectory Representations Proceedings Article

In: ICRA 2015 Workshop on Tactile and force sensing for autonomous compliant intelligent robots, 2015.

Links | BibTeX

Rueckert, Elmar; Mindt, Max; Peters, Jan; Neumann, Gerhard

Robust Policy Updates for Stochastic Optimal Control Proceedings Article

In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2014.

Links | BibTeX

Rueckert, Elmar; d’Avella, Andrea

Learned Muscle Synergies as Prior in Dynamical Systems for Controlling Bio-mechanical and Robotic Systems Proceedings Article

In: Abstracts of Neural Control of Movement Conference (NCM), Conference Talk, pp. 27–28, 2013.

Links | BibTeX

Rueckert, Elmar; Neumann, Gerhard

A study of Morphological Computation by using Probabilistic Inference for Motor Planning Proceedings Article

In: Proceedings of the 2nd International Conference on Morphological Computation (ICMC), pp. 51–53, 2011.

Links | BibTeX

Masters Theses

Rueckert, Elmar

Simultaneous localisation and mapping for mobile robots with recent sensor technologies Masters Thesis

Technical University Graz, 2010.

Links | BibTeX

PhD Theses

Rueckert, Elmar

Biologically inspired motor skill learning in robotics through probabilistic inference PhD Thesis

Technical University Graz, 2014.

Links | BibTeX

Proceedings

Dave, Vedant; Lygerakis, Fotios; Rueckert, Elmar

Multimodal Visual-Tactile Representation Learning through Self-Supervised Contrastive Pre-Training Proceedings Forthcoming

Forthcoming, (Website: https://sites.google.com/view/mvitac/home).

Abstract | Links | BibTeX

Workshops

Nwankwo, Linus; Rueckert, Elmar

Multimodal Human-Autonomous Agents Interaction Using Pre-Trained Language and Visual Foundation Models Workshop

2024, ( In Workshop of the 2024 ACM/IEEE International Conference on HumanRobot Interaction (HRI ’24 Workshop), March 11–14, 2024, Boulder, CO, USA. ACM, New York, NY, USA).

Abstract | Links | BibTeX

Yadav, Harsh; Xue, Honghu; Rudall, Yan; Bakr, Mohamed; Hein, Benedikt; Rueckert, Elmar; Nguyen, Thinh

Deep Reinforcement Learning for Autonomous Navigation in Intralogistics Workshop

2023, (European Control Conference (ECC) Workshop, Extended Abstract.).

Abstract | Links | BibTeX

Dave, Vedant; Rueckert, Elmar

Can we infer the full-arm manipulation skills from tactile targets? Workshop

International Conference on Humanoid Robots (Humanoids 2022), 2022.

Abstract | Links | BibTeX

Track Record

News

Sorry,You have not added any story yet

1 Lehrlingsstelle (4 Jahre), 2303API

1 Lehrlingsstelle für den Lehrberuf “Informationstechnologie mit Schwerpunkt Betriebstechnik” (Lehrzeit 4 Jahre) am Department Product Engineering – Lehrstuhl für Cyber Physical Systems ab der Montanuniversität Leoben ab 01.09.2023 zu besetzen (die Lehrlingsentschädigung gemäß Kollektivvertrag beträgt im 1. Lehrjahr 863,20 € (14x jährlich)).

Besondere Erfordernisse:

• Abschluss der allgemeinen Schulpflicht
• Interesse an Technik
• Gute Englischkenntnisse in Wort und Schrift

Aufgabengebiet:
• Auswählen, Einrichten, Synchronisieren und in Betrieb nehmen von (auch mobilen) Benutzerendgeräten und Peripheriegeräten sowie Konfigurieren von Endgeräten.
• Auswählen und in Betrieb nehmen von neuen Netzkomponenten.
• Konzipieren und Planen von Datenspeichersystemen sowie Implementieren und Testen von Datenspeichersystemen inklusive Backup-Lösungen.
• Konfigurieren von Serversystemen und deren Basisdiensten sowie Testen der Konfiguration.

Erwünschte Zusatzqualifikationen:
• Programmier-Grundkenntnisse in einer aktuellen Programmiersprache (C, C++, Python o.ä.)

Referenznummer: 2303API

Ende der Bewerbefrist: 04.05.2023

Die Montanuniversität Leoben strebt eine Erhöhung des Frauenanteiles an und fordert deshalb qualifizierte Frauen ausdrücklich zur Bewerbung auf. Frauen werden bei gleicher Qualifikation wie der bestgeeignete Mitbewerber vorrangig aufgenommen.

Für Ihre Bewerbung verwenden Sie bitte unser Online Bewerbungsformular auf der Homepage: https://www.unileoben.ac.at/jobs

B.Sc. Thesis – Franz Waldsam: EAGLE – N²ET
Estimating Aerospace manufacturing time from Geometry Leveraging Encoder Neural Network

Supervisor: Univ.-Prof. Dr Elmar Rückert
Start date: 1st March 2023

Involved Company: voestalpine Böhler Aerospace GmbH & Co KG 

 

Theoretical difficulty: mid
Practical difficulty: mid

Abstract

Geometric data of a requested forging is important as a source to estimate feasibility and offer realistic pricing. However, every bigger deviation in such calculation regarding technical viability costs involved companies’ possible revenue. 

To mitigate this issue and support the technologists and sales department an autoencoder (unsupervised learning) with an attached regression model was developed (pre-existing). Nevertheless, this system still needs adaptation/improvement to meet the operational requirements. 

This bachelor thesis proposes a way to implement an optimization process for adjusting the layer structure and possible scaling of a given autoencoder system. The autoencoder itself uses 3D surface data in form of a “.stl” to create a point cloud in x, y, and z. A docker image containing the autoencoder then extracts the most significant 3D features and provides an estimation for feasibility and price. The focus lies on creating a wrapper function to test different hyperparameters in an automated way. Strategies like random search, grid search, and Bayesian optimization will be applied. The results of the optimized framework will be challenged with the pre-existing autoencoder model.

Tentative Work Plan

To achieve our objective, the following concrete tasks will be focused on:

  • Literature research
  • Evaluation of the SOTA / the current model
  • Identification of network / hyperparameter optimization options
  • Model optimization / improvement
  • Evaluation and Testing on new data

Franz Waldsam

Bachelor Thesis Student at the Montanuniversität Leoben

image001

Short bio: Franz has already a master degree in metallurgy but seeks additional expertise in data analysis and machine learning, therefore currently revisiting the Montanuniversität Leoben as bachelor student in Industrial Data Science.

Graduated in 2015 he went into the quality management of the domestic steel industry. Working in a laboratory environment within a very dynamic market he quickly noticed the unstoppable tendencies to more and more data driven process planning, monitoring and production itself. Therefore, as of March 2023, he is writing his bachelor thesis at the Chair of Cyber-Physical Systems in cooperation with voestalpine Boehler Aerospace GmbH & Co KG.

Research Interests

  • Robotics

Thesis

  • EAGLE – N²ET Estimating Aerospace manufacturing time from Geometry Leveraging Encoder Neural Network
  • Supervision: Elmar Rueckert

Contact

Franz Waldsam
Bachelor Thesis Student at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

190.015 Applied Machine and Deep Learning (5SH IL, WS) [2023 WS]

Course Content

In the first week, advanced machine and deep learning methods like multi-layer-perceptrons, convolutional neural networks, variational autoencoder, transformers, simultaneous navigation and mapping approaches, and more will be presented.

These methods can be tested using interactive tools like for example using   https://playground.tensorflow.org. To deepen the knowledge, students will answer well-crafted scientific questions using latex handouts alone or in teams of two students in the lecture room. 

Additionally, Jupyter notebook files were prepared to implement advanced machine and deep learning approaches without installing any software. For all participants of the course user accounts will be created using our JupyterHub at https://jupyter.cps.unileoben.ac.at. The accounts will remain active till the end of the semester. 



MON TUE WED THUR FRI


02.10.2023 03.10.2023 04.10.2023 05.10.2023 06.10.2023
Topic Intro to ML Organisation Neural Networks Representation Learning Robot Learning AML Projects
10 am




:15 Quizz on ML Quizz on Neural Nets Introduction to Deep Representation Learning: Core Methods & Coding Examples
Quizz on AML

:30 Introduction to ML Introduction to Multi-Layer-Perceptrons
Project Topic Presentations

:45
11 am 15 min Break 15 min Break
:15 Statistics, Model Validation, Figures & Evaluations Handout on Neural Networks using playground.tensorflow
Team Ass., Git Repos & Wiki Instructions

:30 30 min Break

:45
AML Summary
12 pm 30 min Lunch Break 30 min Lunch Break Curiosity (MLPs), Imagination (Dreamer) and Information (Empowerment)

:15 Quizz on Robotics

:30 Course Organisation & Grading Intro to Timeseries & Databases Introduction to Robot Learning

:45
1 pm 15 min Break 15 min Break Quizz Summary
:15 Python Programming with our JupyterHub JupyterHub NB on MLPs & Databases
15 min Break

:30
Handout on Robot Learning (Model Learning & RL)

:45 Quizz Summary Quizz Summary

2 pm



:15


15 min Break

:30


Introduction to Mobile Robotics & SLAM

:45



3 pm


JupyterHub NB on Path Planning
:15




:30


Quizz Summary

:45













Legend





Quizz on ML Online Quizz using https://tweedback.de




Course Content Presentation Using google slides, etc.







15 min Break Breaks to recover or to continue programming




Organisation & Instructions Using google slides, etc.







Practical Exercise Using online tools, our JupyterHub, etc.







Latest Research State-of-the-art research





Prerequisites & If you Miss Course Contents

During the first week, a laptop or tablet will be needed to use the interactive tools and the Jupyter notebooks. 

Webex Online Sessions of the 1st Week

Find here the link to the online stream during the first week in October, 2023: https://unileoben.webex.com/unileoben/j.php?MTID=m5492385776dd885ca5dde72e52563c61

When you miss some course contens

If you miss some course contents due to overlapping events, you can watch recordings of the sessions online. All recordings will be hosted via Moodle at https://moodle.unileoben.ac.at/course/view.php?id=3082.

Course Description

Modern machine learning methods and in particular deep learning methods are entering almost all areas of engineering. 

The integrated course enables the students to apply these methods in the application domains of their study.

For this purpose, current problems from the industry are investigated and the possibilities of machine and deep learning methods are tested.

Students gain a deep understanding of method implementations, how data must be prepared, which criteria are relevant for selecting learning methods, and how evaluations must be performed in order to interpret the results in a meaningful way.

Initially, the basics of learning methods are developed in 5-6 lecture units. Then, students select one of the listed industrial problems and work on it alone or as a team (with extended assignments). The project work is accompanied by weekly tutorials with tips and tricks. Finally, the project results are discussed in a written report and presented for a final 10-15min.

Grading is based on the quality of the code, the report, and the final short presentation.

Among others, one of the following industry problems can be chosen:

1. Application and comparison of deep neural networks for steel quality prediction in continuous casting plants with data from the ‘Stahl- und Walzwerk Marienhütte GmbH Graz’.

2. Predictive maintenance of bearing shells using frequency analysis in decision trees and deep neural networks based on acoustic measurement data.

3. Motion analysis and path planning for human-machine interaction in logistics tasks with mobile robots of the Chair of CPS.

4. Autonomous navigation and mapping with RGB-D cameras of the four-legged robot Unitree Go1 for excavation inspection in mining.

The project list is continuously extended.

Links and Resources

Location & Time

 

Previous Knowledge Expected

Formal Prerequisite: Basic Python programming skills, Fundamentals of Statistics.

Recommended Prerequisites:
Introduction to Machine Learning (“190.012” and “190.013”).

Slides

Learning objectives / qualifications

  • Implement or independently adapt modern machine learning methods and in particular deep learning methods in Python.

  • Analyze data of complex industrial problems, process (filter) the data, and divide it into training- and test data sets such that a meaningful interpretation is possible.
  • Define criteria and metrics to evaluate evaluations and predictions and generate statistics.

  • Develop, evaluate, and discuss meaningful experiments and evaluations.

  • Identify and describe assumptions, problems, and ideas for improvement of practical learning problems.

Grading

Continuous assessment: During the lectures and the tutorials 0-20 bonus points can be collected through active participation.

Project assignments: Alone or in small groups (2-3 students) one of the listed projects has to be implemented. A written report in form of a git repository wiki page have to be submitted.
– For the implementation (Python Code) 0-40 Points can be obtained.
– For the wiki page report, 0-60 Points will be given.

Grading scheme: 0-49,9 Points (5), 50-65,9 Points (4), 66-79 Points (3), 80-91 Points (2), 92-100 Points (1).

With an overall score of up to 79%, an additional oral performance review MAY (!) also be required if the positive performance record is not clear. In this case, you will be informed as soon as the grades are released. If you have already received a grade via MU online, you will not be invited to another oral performance review.

Literature

Maschine Learning and Data-modelling:

– Rueckert Elmar 2022. An Introduction to Probabilistic Machine Learning, https://cloud.cps.unileoben.ac.at/index.php/s/iDztK2ByLCLxWZA

– James-A. Goulet 2020. Probabilistic Machine Learning for Civil Engineers. MIT Press.

– Bishop 2006. Pattern Recognition and Machine Learning, Springer.

Learning method Programming in Python:

– Sebastian Raschka, YuxiH. Liu and Vahid Mirjalili 2022. Machine Learning with PyTorch and Scikit- Learn. Packt Publishing Ltd, UK.

– Matthieu Deru and Alassane Ndiaye 2020. Deep Learning mit TensorFlow, Keras und TensorFlow.js., Rheinwerk-verlag, DE. 

Problemspecific Litheratur:

– B. Siciliano, L.Sciavicco 2009. Robotics: Modelling, Planning and Control, Springer.

– Kevin M. Lynch and FrankC. Park 2017. MODERN ROBOTICS, MECHANICS, PLANNING, AND CONTROL, Cambridge University Press.

– E.T. Turkogan 1996. Fundamentals of Steelmaking. Maney Publishing,UK.

MU Online LV Anlegen, Kollisionen prüfen

Lehrveranstaltungsbeschreibung

  • Nextcloud Dokumente unter (interner NC Link): https://cloud.cps.unileoben.ac.at/index.php/f/206304
  • Diese Beschreibung ist die Grundlage für die Dateneingabe im MUOnline. 
  • Inhalte in DE und EN.
  • Wichtig sind due Zuordnungen zu Pflichtfächern, Wahlpflichtfächern.
  • Wichtig sind die formalen Voraussetzungen.  

Die LV Beschreibung wird bei Bedarf an andere Lehrstühle verschickt und muss Fehlerfrei (Wochenstunden, ECTS, LV Typ, Titel, etc.) sein! 

 

Prüfen von Konflikten nach Studienplänen

Terminkonflikte mit anderen Pflicht- und Wahlpflichtfächern aus den zugeordneten Studiengängen (siehe LV Beschreibung oben) muss unbedingt vermieden werden. Alle Studierende sollen ihren Studienplan ohne Terminkollisionen umsetzen können.

Ausdrucken der Wochenstundenpläne nach Studiengang im MUOnline

Im MUOnline geht man wie folgt vor: 

  1. Nach der Anmeldung klickt man auf den Punkt Studies / Course Offer
  2.  Danach wählt man den relevanten Studiengang aus (hier im Bild ist es das Bachelor IDS Studium).

3. Als nächstes wählt man das Studienjahr und klickt auf Semesterplan.

4. Dann wählt man das zugehörige Semester aus und klickt auf das Kalendersymbol. Wichtig LVs die nur im Wintersemester stattfinden haben ungerade Semesterzahlen (1, 3, 5, …). 

5. Als nächstes müssen relevante Wochen ausgewählt werden. Dazu zuieht man das Semesterstartdatum heran.

  • Wintersemester: 1.Oktober
  • Sommersemster: 1.März

Wenn keine Einträge vorhanden sind, muss das Vorjahr ausgewählt werden. 

Wichtig ist mehrere Wochen zu betrachten um möglichst alle Terminkonflikte auszuschließen.  Unten sind 2 Beispiele für den Master Maschinenbau im Wintersemster. 

Prioritäten und Wahl eines geeigneten Termins

Aus den Wochenplänen erkennt man, dass z.B. Freitag ein ungünstiger Tag für eine neue LV wäre. 

Montag von 10:15 bis 12:00 würde gehen, aber es müssen noch alle anderen Semester und alle weiteren Studiengänge betrachtet werden. 

Es bietet sich an die Wochenpläne auszudrucken und auf einem Tisch auszulegen. Dann können Lücken gefunden werden. 

Prioritäten: 

  • [Pflicht -> Pflicht] An erster Stelle stehen Konflikte mit anderen Pflichtfächern aus den Studiengängen in denen die neue LV auch ein Pflichtfach darstellt (Pflicht -> in den Klammern). 
    • Empfohlenes Semester
    • Danach alle weiteren Winter- oder Sommersemester
  • [Pflicht -> Wahlpflicht] Danach sollen Wahlpflichtfächer berücksichtigt werden. 
  • [Wahlpflicht -> Pflicht] Studiengängen in denen die neue LV ein Wahlpflichtfach darstellt.
  • [Wahlpflicht -> Wahlpflicht] WPF in  Studiengängen in denen die neue LV nur ein Wahlpflichtfach darstellt.

Oben ist die Auflistung einiger Wochenpläne für das Wintersemster, von oben nach unten und von links nach rechts, nach Prioritäten sortiert.

Hier gilt es nun 1-3 Terminslots mit möglichst wenigen Konflikten auszuwählen. 

Für diese 1-3 Termine müssen dann Räume gesucht werden. 

Abstimmen mit anderen Lehrstühlen:

  • Gerade die Lehrstühle für Maschinenbau und IDS sollen immer telefonisch oder per Email kontaktiert werden um den Wunschtermin abzusichern.  

Melanie Neubauer, M.Sc.

Ph.D. Student at the Montanuniversität Leoben

Hi! My Name is Melanie Neubauer and I started at the CPS-Chair in April 2023. 

I studied Industrial Logistics at the Montanuniversität Leoben, where I passed my  Master’s defense in March 2023.

In my doctoral work, I investigate  deep neural networks for image processing in cyber-physical-systems combined with inverse reinforcement learning techniques.

The title of my doctoral work is: Vision-based Deep Inverse Reinforcement Learning

Research Interests

  • Cyber-Physical-Systems 
  • Robotics
  • Machine Learning

Contact

M.Sc. Melanie Neubauer
Doctoral Student supervised by Univ.-Prof. Dr. Elmar Rueckert since April 2023.
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Phone:  +43 3842 402 – 1901 (Sekretariat CPS)

Email:   melanie.neubauer@unileoben.ac.at
Web Work: CPS-Page
Chat: WEBEX

Publications

2024

Neubauer, Melanie; Rueckert, Elmar

Semi-Autonomous Fast Object Segmentation and Tracking Tool for Industrial Applications Proceedings Article

In: IEEE International Conference on Ubiquitous Robots (UR 2024), IEEE 2024.

Links | BibTeX

Semi-Autonomous Fast Object Segmentation and Tracking Tool for Industrial Applications

B.Sc. Thesis – Marco Schwarz: Development of a generic ROS2 Device Interface based on Micro-ROS on a ESP32

Supervisor: DI Nikolaus Feith;
Konrad Bartsch;
Univ.-Prof. Dr Elmar Rückert
Start date: 8th Februar 2023

 

Theoretical difficulty: low
Practical difficulty: high

Abstract

Modern IoT devices are powerful elements in complex Cyber-Physical-Systems (CPS). 

 

However, communicating with such microcontrollers can be challenging and often requires custom software and hardware interfaces. When working with many different devices, this can quickly become overwhelming. 

The goal of this thesis is to develop a generic hardware interface for the ESP32 microcontroller.

Individual hardware devices, sensors, and actuators can be integrated into a CPS through configuration files. Adjusting these files does not require in-depth hardware or software knowledge and allows rapid IoT development and integration via ROS 2.

The power of the generic ROS2 device interface is demonstrated in multiple use cases, e.g., the sensor glove with flex sensors, vibration motors and an IMU, or an ODrive motor controller board for mobile robots. 

Tentative Work Plan

To achieve our objective, the following concrete tasks will be focused on:

  • Assess the hardware and software requirements for the interfaces.
  • Literature research on related or existing generic ROS2 solutions.
  • Development of the generic software program. 
  • Use case evaluation of the interface for various devices. Assessment of the performance and limitations. 
  • Software documentation in the wiki of the git repository.
  • B.Sc. thesis writing
  • Research paper contribution with figures, results (optional).

Related Work

[R1] Dauphin, L., Baccelli, E., & Adjih, C. (2018, September). RIOT-ROS2: low-cost robots in IoT controlled via information-centric networking. In 2018 IFIP/IEEE International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN) (pp. 1-6). IEEE.

[R2] Barciś, M., Barciś, A., Tsiogkas, N., & Hellwagner, H. (2021). Information Distribution in Multi-Robot Systems: Generic, Utility-Aware Optimization Middleware. Frontiers in Robotics and AI8, 685105.

[R3] Jo, W., Kim, J., Wang, R., Pan, J., Senthilkumaran, R. K., & Min, B. C. (2022). Smartmbot: A ros2-based low-cost and open-source mobile robot platform. arXiv preprint arXiv:2203.08903.

Tutorials and Documentations

[1] ESP32 Tutorials, last visited 09.02.2023, https://randomnerdtutorials.com/getting-started-with-esp32/

[2] ESP32 Tutorials, last visited 09.02.2023, https://www.az-delivery.de/en/blogs/azdelivery-blog-fur-arduino-und-raspberry-pi/esp32-das-multitalent

[3] MAC OS Serial Driver, last visited 09.02.2023, https://github.com/adrianmihalko/ch340g-ch34g-ch34x-mac-os-x-driver

[4] ESP32 Datasheet, last visited 09.02.2023, https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

[5] ROS2 Documentation, last visited 09.02.2023, https://docs.ros.org/en/humble

Thesis

PURE Datenbank

Ansprechperson an der MUL

Publikationen

Vergleich der Publikationen auf unserer Webpage https://cps.unileoben.ac.at/publications/mit den Publikationen in PURE. Fehlende Einträge müssen erstellt werden. 

 

Neuer Eintrag: Contribution to Journal

Etwas verwirrend mag die Kategorisierung sein. Alle unsere Arbeiten sind unter dem Hauptpunkt “Contribution to Journal” angesiedelt. 

  • Conference Article (our peer-reviewed conf., workshop and abstract papers)
  • Article (real journal articles)

Maximilian Pettinger, B.Sc.

Student Assistant at the Montanuniversität Leoben

IMG_E2067[1]

Short bio: Maximilian Pettinger, B.Sc started at CPS in November  2022.

Maximilian Pettinger is a master student in Polymer Engineering and bachelor student in Mechanical Engineering, both Montanuniversity Leoben. Prior to his master program he studied Polymer Engineering at the Montanuniversität Leoben, where he passed his Bachelor defense in January 2022. Furthermore, he is a member of the MotoStudent Team (MontanFactory Racing) of the University of Leoben.

Research Interests

  • Robotics, MicroROS, 

Thesis

Contact

Maximilian Pettinger, B.Sc 
Student Assistent at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Email:   maximilian.pettinger@stud.unileoben.ac.at