Author: Elmar Rueckert
B.Sc. Thesis – Christoph Andres: Development of a ROS2 Interface for the FANUC CRX-10iA robot arm
Supervisor: Univ.-Prof. Dr Elmar Rückert, Niko Feith
Start date: 1st March 2023
Theoretical difficulty: low
Practical difficulty: mid
Abstract
The FANUC CRX-10iA robot arm is a compliant system that can be used for collaborative human-robot tasks.
In this Bachelor thesis, the abilities of the robot arm are evaluated for such co-worker scenarios. In particular, the reachable space, the robustness of the inverse kinematics, the ability to simulate the system in real-time, and the precision and reliability of the system are analyzed.
To embed the system in our CPS Hub, a ROS2 interface will be developed und used for all experiments. The interface can be used to control the system or to send end receive commands from simulation tools like CoppeliaSim or Gazebo.
Tentative Work Plan
To achieve our objective, the following concrete tasks will be focused on:
- Literature research
- ROS2 interface implementation for the simulation tool
- ROS2 interface implementation for the real system
- Identification of quality measures and definition of the experiments
- Evaluation
- Thesis writing
Thesis
Micro – ROS Servo
CPS presents a guide to setup the communication between Micro – ROS and ROS2 and control multiple servos attached to a PWM/Servo Driver board. Therefor the installation of ROS2, the setup of a Micro – ROS workspace, the establishment of the communication with a custom message and the implementation of third party libraries as well as the usage of two different RTOS system will be described step for step.
By combining the power of Micro ROS Foxy, ESP32 and a PCA9685 board, this project provides a way of controlling multiple servos. The setup has been tested on a Linux Ubuntu 20.04.6 LTS environment, allowing seamless communication and accurate servo positioning. The linked guide give some information about Micro – ROS and walks through the installation of ROS2, the setup of a Micro-ROS workspace, and the establishment of the communication between Micro-ROS and ROS2 using a custom message format called “ServoMessage”. Additionally, the guide covers the implementation of third-party libraries and the usage of two different RTOS systems. The code includes examples of how to use the Micro ROS Foxy framework to send and receive ServoMessages over the ROS2 network to control the attached servos.
Components
- Micro USB Cable
- ESP32 Developement Board
- 2 x 4,7 kΩ resistors
- PCA9685 PWM/Servo Board
- Servos
- 5V Power Supply
Links
- Step for Step Guide: https://cloud.cps.unileoben.ac.at/index.php/s/G888TecHBFELWiw
- Repository: https://github.com/MaxPett/Micro-ROS_Servo
Daniel Wagermaier, B.Sc.
Master Thesis Student at the Montanuniversität Leoben
Short bio: Daniel Wagermaier writes his master thesis at the chair of Cyber-Physical Systems (CPS). The title of the thesis is: ‘Improving fundamental metallurgical modelling using data-driven approaches.
Research Interests
- Machine and Deep Learning
- Metallurgical Processes
Thesis
- Improving fundamental metallurgical modelling using data-driven approaches (Ongoing)
- Supervision: Prof. Elmar Rückert
- Industrial Partner: qoncept, Robert Pierer.
Contact
Daniel Wagermaier, B.Sc
Master Thesis Student at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18,
8700 Leoben, Austria
Email: daniel.wagermaier@stud.unileoben.ac.at
Prof. Elmar Rueckert (Chair)
Chair of Cyber-Physical-Systems
Short bio: Since March 2021 is Univ.-Prof. Dr. Elmar Rueckert the chair of the Cyber-Physical-Systems Institute at the Montanuniversität Leoben in Austria. He received his PhD in computer science at the Graz University of Technology in 2014 and worked for four years as senior researcher and research group leader at the Technical University of Darmstadt. Thereafter, he worked for three years as assistant professor at the University of Lübeck. His research interests include stochastic machine and deep learning, robotics and reinforcement learning and human motor control. In 2019, he was awarded with the ‘German Young Researcher Award’.
Research Interests
- Computational Modeling & Process Informatics: Cyber-Physical-Systems, Process Modeling in Metal Forming, Movement Decoding and Understanding, Brain- Computer-Interfaces, Electroencephalography, Spiking Neural Networks, Optimal Feedback Control, Muscle Synergies, Probabilistic Time-Series Models.
- Machine & Deep Learning: Deep Networks, Graphical Models, Probabilistic Inference, Variational Inference, Gaussian Processes, Transfer Learning, Message Passing, Clustering, Bayesian Optimization, Lazy Learning, Genetic Programming, LSTMs.
- Robotics: Stochastic Optimal Control, Movement Primitives, Reinforcement Learning, Imitation Learning, Morphological Computation, Quadruped Locomotion, Humanoid Postural Control, Grasping, Tactile Learning, Dynamic Control.
- Human Motor Control & Science: Prosthesis Research & Rehabilitation, Motor Adaptation, Motor Skill Learning, Postural Control, Telepresence, Embodiment, Congruence in Teleoperation, Interactive Learning, Shared Control, Human Feedback.
Contact & Quick Links
Univ.-Prof. Dipl.-Ing. Dr.techn. Elmar Rueckert
Leiter des Lehrstuhls für Cyber-Physical-Systems
Montanuniversität Leoben
Roseggerstrasse 11
8700 Leoben, Austria
Phone: +43 3842 402 – 1901 (Sekretariat CPS)
Email: rueckert@ai-lab.science
Web: https://cps.unileoben.ac.at
Chat: WEBEX
VCard
Publcations
Journal Articles |
Krukenfellner, Philip; Rueckert, Elmar; Flachberger, Helmut In: IEEE Sensors Journal, pp. 1–13, 2024, ISBN: 1558-1748. @article{Krukenfellner2024, |
Trimmel, Simone; Spörl, Philipp; Haluza, Daniela; Lashin, Nagi; Meisel, Thomas C.; Pitha, Ulrike; Prohaska, Thomas; Puschenreiter, Markus; Rückert, Elmar; Spangl, Bernhard; Wiedenhofer, Dominik; Irrgeher, Johanna Green and blue infrastructure as model system for emissions of technology-critical elements Journal Article In: Science of The Total Environment, vol. 934, 2024, ISBN: 0048-9697, (https://doi.org/10.1016/j.scitotenv.2024.173364). @article{Trimmel2024, |
Kunavar, Tjasa; Jamšek, Marko; Avila-Mireles, Edwin Johnatan; Rueckert, Elmar; Peternel, Luka; Babič., Jan The Effects of Different Motor Teaching Strategies on Learning a Complex Motor Task Journal Article In: Sensors (MDPI), vol. 24, no. 4, pp. 1–17, 2024. @article{Kunavar2024, |
Nwankwo, Linus; Fritze, Clemens; Bartsch, Konrad; Rueckert, Elmar ROMR: A ROS-based Open-source Mobile Robot Journal Article In: HardwareX, vol. 15, pp. 1–29, 2023. @article{Nwankwo2023b, Currently, commercially available intelligent transport robots that are capable of carrying up to 90kg of load can cost $5,000 or even more. This makes real-world experimentation prohibitively expensive, and limiting the applicability of such systems to everyday home or industrial tasks. Aside from their high cost, the majority of commercially available platforms are either closed-source, platform-specific, or use difficult-to-customize hardware and firmware. In this work, we present a low-cost, open-source and modular alternative, referred to herein as ”ROS-based open-source mobile robot (ROMR)”. ROMR utilizes off-the-shelf (OTS) components, additive manufacturing technologies, aluminium profiles, and a consumer hoverboard with high-torque brushless direct current (BLDC) motors. ROMR is fully compatible with the robot operating system (ROS), has a maximum payload of 90kg, and costs less than $1500. Furthermore, ROMR offers a simple yet robust framework for contextualizing simultaneous localization and mapping (SLAM) algorithms, an essential prerequisite for autonomous robot navigation. The robustness and performance of the ROMR were validated through realworld and simulation experiments. All the design, construction and software files are freely available online under the GNU GPL v3 license at https://doi.org/10.17605/OSF.IO/K83X7. A descriptive video of ROMR can be found at https://osf.io/ku8ag. |
Herzog, Rebecca; Berger, Till M; Pauly, Martje Gesine; Xue, Honghu; Rueckert, Elmar; Munchau, Alexander; B"aumer, Tobias; Weissbach, Anne Cerebellar transcranial current stimulation-an intraindividual comparison of different techniques Journal Article In: Frontiers in Neuroscience, 2022. @article{Herzog2022, |
Rottmann, Nils; Studt, Nico; Ernst, Floris; Rueckert, Elmar ROS-Mobile: An Android™ application for the Robot Operating System Journal Article In: Arxiv, 2022. @article{Rottmann2022, |
Xue, Honghu; Hein, Benedikt; Bakr, Mohamed; Schildbach, Georg; Abel, Bengt; Rueckert, Elmar Using Deep Reinforcement Learning with Automatic Curriculum Learning for Mapless Navigation in Intralogistics Journal Article In: Applied Sciences (MDPI), Special Issue on Intelligent Robotics, 2022, (Supplement: https://cloud.cps.unileoben.ac.at/index.php/s/Sj68rQewnkf4ppZ). @article{Xue2022, We propose a deep reinforcement learning approach for solving a mapless navigation problem in warehouse scenarios. The automatic guided vehicle is equipped with LiDAR and frontal RGB sensors and learns to reach underneath the target dolly. The challenges reside in the sparseness of positive samples for learning, multi-modal sensor perception with partial observability, the demand for accurate steering maneuvers together with long training cycles. To address these points, we proposed NavACL-Q as an automatic curriculum learning together with distributed soft actor-critic. The performance of the learning algorithm is evaluated exhaustively in a different warehouse environment to check both robustness and generalizability of the learned policy. Results in NVIDIA Isaac Sim demonstrates that our trained agent significantly outperforms the map-based navigation pipeline provided by NVIDIA Isaac Sim in terms of higher agent-goal distances and relative orientations. The ablation studies also confirmed that NavACL-Q greatly facilitates the whole learning process and a pre-trained feature extractor manifestly boosts the training speed. |
Xue, Honghu; Herzog, Rebecca; Berger, Till M.; Bäumer, Tobias; Weissbach, Anne; Rueckert, Elmar Using Probabilistic Movement Primitives in analyzing human motion differences under Transcranial Current Stimulation Journal Article In: Frontiers in Robotics and AI , vol. 8, 2021, ISSN: 2296-9144. @article{Rueckert2021, In medical tasks such as human motion analysis, computer-aided auxiliary systems have become preferred choice for human experts for its high efficiency. However, conventional approaches are typically based on user-defined features such as movement onset times, peak velocities, motion vectors or frequency domain analyses. Such approaches entail careful data post-processing or specific domain knowledge to achieve a meaningful feature extraction. Besides, they are prone to noise and the manual-defined features could hardly be re-used for other analyses. In this paper, we proposed probabilistic movement primitives(ProMPs), a widely-used approach in robot skill learning, to model human motions. The benefit of ProMPs is that the features are directly learned from the data and ProMPs can capture important features describing the trajectory shape, which can easily be extended to other tasks. Distinct from previous research, where classification tasks are mostly investigated, we applied ProMPs together with a variant of Kullback-Leibler (KL) divergence to quantify the effect of different transcranial current stimulation methods on human motions. We presented an initial result with10participants. The results validate ProMPs as a robust and effective feature extractor for human motions. |
Tanneberg, Daniel; Ploeger, Kai; Rueckert, Elmar; Peters, Jan SKID RAW: Skill Discovery from Raw Trajectories Journal Article In: IEEE Robotics and Automation Letters (RA-L), pp. 1–8, 2021, ISSN: 2377-3766, (© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.). @article{Tanneberg2021, |
Jamsek, Marko; Kunavar, Tjasa; Bobek, Urban; Rueckert, Elmar; Babic, Jan Predictive exoskeleton control for arm-motion augmentation based on probabilistic movement primitives combined with a flow controller Journal Article In: IEEE Robotics and Automation Letters (RA-L), pp. 1–8, 2021, ISSN: 2377-3766, (© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.). @article{Jamsek2021, |
Cansev, Mehmet Ege; Xue, Honghu; Rottmann, Nils; Bliek, Adna; Miller, Luke E.; Rueckert, Elmar; Beckerle, Philipp Interactive Human-Robot Skill Transfer: A Review of Learning Methods and User Experience Journal Article In: Advanced Intelligent Systems, pp. 1–28, 2021. @article{Cansev2021, |
Kyrarini, Maria; Lygerakis, Fotios; Rajavenkatanarayanan, Akilesh; Sevastopoulos, Christos; Nambiappan, Harish Ram; Chaitanya, Kodur Krishna; Babu, Ashwin Ramesh; Mathew, Joanne; Makedon, Fillia A Survey of Robots in Healthcare Journal Article In: Technologies, vol. 9, iss. 8, 2021. @article{nokey, |
Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E. A novel Chlorophyll Fluorescence based approach for Mowing Area Classification Journal Article In: IEEE Sensors Journal, 2020. @article{Rottmann2020d, |
Tanneberg, Daniel; Rueckert, Elmar; Peters, Jan Evolutionary training and abstraction yields algorithmic generalization of neural computers Journal Article In: Nature Machine Intelligence, pp. 1–11, 2020. @article{Tanneberg2020, |
Cartoni, E.; Mannella, F.; Santucci, V. G.; Triesch, J.; Rueckert, E.; Baldassarre, G. REAL-2019: Robot open-Ended Autonomous Learning competition Journal Article In: Proceedings of Machine Learning Research, vol. 123, pp. 142-152, 2020, (NeurIPS 2019 Competition and Demonstration Track). @article{Cartoni2020, |
Diakoloukas, Vassilios; Lygerakis, Fotios; Lagoudakis, Michail G; Kotti, Margarita Variational Denoising Autoencoders and Least-Squares Policy Iteration for Statistical Dialogue Manager Journal Article In: IEEE Signal Processing Letters , vol. 27, pp. 960-964, 2020. @article{nokey, |
Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks Journal Article In: Neural Networks – Elsevier, vol. 109, pp. 67-80, 2019, ISBN: 0893-6080, (Impact Factor of 7.197 (2017)). @article{Tanneberg2019, |
Sosic, Adrian; Zoubir, Abdelhak M.; Rueckert, Elmar; Peters, Jan; Koeppl, Heinz Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling Journal Article In: Journal of Machine Learning Research (JMLR), vol. 19, no. 69, pp. 1-45, 2018. @article{Sosic2018, |
Paraschos, Alexandros; Rueckert, Elmar; Peters, Jan; Neumann, Gerhard Probabilistic Movement Primitives under Unknown System Dynamics Journal Article In: Advanced Robotics (ARJ), vol. 32, no. 6, pp. 297-310, 2018. @article{Paraschos2018, |
Rueckert, Elmar; Camernik, Jernej; Peters, Jan; Babic, Jan Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control Journal Article In: Nature Publishing Group: Scientific Reports, vol. 6, no. 28455, 2016. @article{Rueckert2016b, |
Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan Recurrent Spiking Networks Solve Planning Tasks Journal Article In: Nature Publishing Group: Scientific Reports, vol. 6, no. 21142, 2016. @article{Rueckert2016a, |
Rueckert, Elmar; d’Avella, Andrea Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems Journal Article In: Frontiers in Computational Neuroscience, vol. 7, no. 138, 2013. @article{Rueckert2013b, |
Rueckert, Elmar; Neumann, Gerhard; Toussaint, Marc; Maass, Wolfgang Learned graphical models for probabilistic planning provide a new class of movement primitives Journal Article In: Frontiers in Computational Neuroscience, vol. 6, no. 97, 2013. @article{Rueckert2013, |
Rueckert, Elmar; Neumann, Gerhard Stochastic Optimal Control Methods for Investigating the Power of Morphological Computation Journal Article In: Artificial Life, vol. 19, no. 1, 2012. @article{Rueckert2012, |
Conferences |
Lygerakis, Fotios; Dagioglou, Maria; Karkaletsis, Vangelis Accelerating Human-Agent Collaborative Reinforcement Learning Conference In Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference (PETRA '21), Association for Computing Machinery, New York, NY, USA, 90–92, 2021. @conference{nokey, |
Banerjee, Debapriya; Lygerakis, Fotios; Makedon, Fillia Sequential Late Fusion Technique for Multi-modal Sentiment Analysis Conference In Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference (PETRA '21), Association for Computing Machinery, New York, NY, USA, 264–265. , 2021. @conference{nokey, |
Lygerakis, Fotios; Tsitos, Athanasios C; Dagioglou, Maria; Makedon, Fillia; Karkaletsis, Vangelis In Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA '20), Article 75, 1–6 Association for Computing Machinery, New York, NY, USA, 2020. @conference{nokey, |
Lygerakis, Fotios; Diakoloulas, Vassilios; Lagoudakis, Michail; Kotti, Margarita Robust Belief State Space Representation for Statistical Dialogue Managers Using Deep Autoencoders Conference 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 2019. @conference{nokey, |
Proceedings Articles |
Dave, Vedant; Rueckert, Elmar Skill Disentanglement in Reproducing Kernel Hilbert Space Proceedings Article In: In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2025. @inproceedings{Dave2025bb, |
Lygerakis, Fotios; Dave, Vedant; Rueckert, Elmar M2CURL: Sample-Efficient Multimodal Reinforcement Learning via Self-Supervised Representation Learning for Robotic Manipulation Proceedings Article In: IEEE International Conference on Ubiquitous Robots (UR 2024), IEEE 2024. @inproceedings{Lygerakis2024, |
Feith, Nikolaus; Rueckert, Elmar Integrating Human Expertise in Continuous Spaces: A Novel Interactive Bayesian Optimization Framework with Preference Expected Improvement Proceedings Article In: IEEE International Conference on Ubiquitous Robots (UR 2024), IEEE 2024. @inproceedings{Feith2024A, |
Feith, Nikolaus; Rueckert, Elmar Advancing Interactive Robot Learning: A User Interface Leveraging Mixed Reality and Dual Quaternions Proceedings Article In: IEEE International Conference on Ubiquitous Robots (UR 2024), IEEE 2024. @inproceedings{Feith2024B, |
Neubauer, Melanie; Rueckert, Elmar Semi-Autonomous Fast Object Segmentation and Tracking Tool for Industrial Applications Proceedings Article In: IEEE International Conference on Ubiquitous Robots (UR 2024), IEEE 2024. @inproceedings{Neubauer2024, |
Dave*, Vedant; Lygerakis*, Fotios; Rueckert, Elmar Multimodal Visual-Tactile Representation Learning through Self-Supervised Contrastive Pre-Training Proceedings Article In: IEEE International Conference on Robotics and Automation (ICRA 2024)., 2024, (* equal contribution). @inproceedings{Dave2024b, |
Nwankwo, Linus; Rueckert, Elmar The Conversation is the Command: Interacting with Real-World Autonomous Robots Through Natural Language Proceedings Article In: HRI '24: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction., pp. 808–812, ACM/IEEE Association for Computing Machinery, New York, NY, USA, 2024, ISBN: 9798400703232, (Published as late breaking results. Supplementary video: https://cloud.cps.unileoben.ac.at/index.php/s/fRE9XMosWDtJ339 ). @inproceedings{Nwankwo2024, In recent years, autonomous agents have surged in real-world environments such as our homes, offices, and public spaces. However, natural human-robot interaction remains a key challenge. In this paper, we introduce an approach that synergistically exploits the capabilities of large language models (LLMs) and multimodal vision-language models (VLMs) to enable humans to interact naturally with autonomous robots through conversational dialogue. We leveraged the LLMs to decode the high-level natural language instructions from humans and abstract them into precise robot actionable commands or queries. Further, we utilised the VLMs to provide a visual and semantic understanding of the robot's task environment. Our results with 99.13% command recognition accuracy and 97.96% commands execution success show that our approach can enhance human-robot interaction in real-world applications. The video demonstrations of this paper can be found at https://osf.io/wzyf6 and the code is available at our GitHub repository. |
Lygerakis, Fotios; Rueckert, Elmar CR-VAE: Contrastive Regularization on Variational Autoencoders for Preventing Posterior Collapse Proceedings Article In: Asian Conference of Artificial Intelligence Technology (ACAIT)., IEEE, 2023. @inproceedings{Lygerakis2023, |
Yadav, Harsh; Xue, Honghu; Rudall, Yan; Bakr, Mohamed; Hein, Benedikt; Rueckert, Elmar; Nguyen, Ngoc Thinh Deep Reinforcement Learning for Mapless Navigation of Autonomous Mobile Robot Proceedings Article In: International Conference on System Theory, Control and Computing (ICSTCC), 2023, (October 11-13, 2023, Timisoara, Romania.). @inproceedings{Yadav2023b, |
Nwankwo, Linus; Rueckert, Elmar Understanding why SLAM algorithms fail in modern indoor environments Proceedings Article In: International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). , pp. 186 – 194, Cham: Springer Nature Switzerland., 2023. @inproceedings{Nwankwo2023, Simultaneous localization and mapping (SLAM) algorithms are essential for the autonomous navigation of mobile robots. With the increasing demand for autonomous systems, it is crucial to evaluate and compare the performance of these algorithms in real-world environments. In this paper, we provide an evaluation strategy and real-world datasets to test and evaluate SLAM algorithms in complex and challenging indoor environments. Further, we analysed state-of-the-art (SOTA) SLAM algorithms based on various metrics such as absolute trajectory error, scale drift, and map accuracy and consistency. Our results demonstrate that SOTA SLAM algorithms often fail in challenging environments, with dynamic objects, transparent and reflecting surfaces. We also found that successful loop closures had a significant impact on the algorithm’s performance. These findings highlight the need for further research to improve the robustness of the algorithms in real-world scenarios. |
Keshavarz, Sahar; Vita, Petr; Rueckert, Elmar; Ortner, Ronald; Thonhauser, Gerhard A Reinforcement Learning Approach for Real-Time Autonomous Decision-Making in Well Construction Proceedings Article In: Society of Petroleum Engineers – SPE Symposium: Leveraging Artificial Intelligence to Shape the Future of the Energy Industry, AIS 2023, Society of Petroleum Engineers., 2023, ISBN: 9781613999882. @inproceedings{Keshavarz2023, |
Xue, Honghu; Song, Rui; Petzold, Julian; Hein, Benedikt; Hamann, Heiko; Rueckert, Elmar End-To-End Deep Reinforcement Learning for First-Person Pedestrian Visual Navigation in Urban Environments Proceedings Article In: International Conference on Humanoid Robots (Humanoids 2022), 2022. @inproceedings{Xue2022b, We solve a visual navigation problem in an urban setting via deep reinforcement learning in an end-to-end manner. A major challenge of a first-person visual navigation problem lies in severe partial observability and sparse positive experiences of reaching the goal. To address partial observability, we propose a novel 3D-temporal convolutional network to encode sequential historical visual observations, its effectiveness is verified by comparing to a commonly-used frame-stacking approach. For sparse positive samples, we propose an improved automatic curriculum learning algorithm NavACL+, which proposes meaningful curricula starting from easy tasks and gradually generalizes to challenging ones. NavACL+ is shown to facilitate the learning process, greatly improve the task success rate on difficult tasks by at least 40% and offer enhanced generalization to different initial poses compared to training from a fixed initial pose and the original NavACL algorithm. |
Dave, Vedant; Rueckert, Elmar Predicting full-arm grasping motions from anticipated tactile responses Proceedings Article In: International Conference on Humanoid Robots (Humanoids 2022), 2022. @inproceedings{Dave2022, Tactile sensing provides significant information about the state of the environment for performing manipulation tasks. Depending on the physical properties of the object, manipulation tasks can exhibit large variation in their movements. For a grasping task, the movement of the arm and of the end effector varies depending on different points of contact on the object, especially if the object is non-homogeneous in hardness and/or has an uneven geometry. In this paper, we propose Tactile Probabilistic Movement Primitives (TacProMPs), to learn a highly non-linear relationship between the desired tactile responses and the full-arm movement. We solely condition on the tactile responses to infer the complex manipulation skills. We formulate a joint trajectory of full-arm joints with tactile data, leverage the model to condition on the desired tactile response from the non-homogeneous object and infer the full-arm (7-dof panda arm and 19-dof gripper hand) motion. We use a Gaussian Mixture Model of primitives to address the multimodality in demonstrations. We also show that the measurement noise adjustment must be taken into account due to multiple systems working in collaboration. We validate and show the robustness of the approach through two experiments. First, we consider an object with non-uniform hardness. Grasping from different locations require different motion, and results into different tactile responses. Second, we have an object with homogeneous hardness, but we grasp it with widely varying grasping configurations. Our result shows that TacProMPs can successfully model complex multimodal skills and generalise to new situations. |
Leonel, Rozo*; Vedant, Dave* Orientation Probabilistic Movement Primitives on Riemannian Manifolds Proceedings Article In: Conference on Robot Learning (CoRL), pp. 11, 2022, (* equal contribution). @inproceedings{Leonel2022, Learning complex robot motions necessarily demands to have models that are able to encode and retrieve full-pose trajectories when tasks are defined in operational spaces. Probabilistic movement primitives (ProMPs) stand out as a principled approach that models trajectory distributions learned from demonstrations. ProMPs allow for trajectory modulation and blending to achieve better generalization to novel situations. However, when ProMPs are employed in operational space, their original formulation does not directly apply to full-pose movements including rotational trajectories described by quaternions. This paper proposes a Riemannian formulation of ProMPs that enables encoding and retrieving of quaternion trajectories. Our method builds on Riemannian manifold theory, and exploits multilinear geodesic regression for estimating the ProMPs parameters. This novel approach makes ProMPs a suitable model for learning complex full-pose robot motion patterns. Riemannian ProMPs are tested on toy examples to illustrate their workflow, and on real learning-from-demonstration experiments. |
Denz, R.; Demirci, R.; Cansev, E.; Bliek, A.; Beckerle, P.; Rueckert, E.; Rottmann, N. A high-accuracy, low-budget Sensor Glove for Trajectory Model Learning Proceedings Article In: International Conference on Advanced Robotics , pp. 7, 2021. @inproceedings{Denz2021, |
Rottmann, N.; Denz, R.; Bruder, R.; Rueckert, E. Probabilistic Approach for Complete Coverage Path Planning with low-cost Systems Proceedings Article In: European Conference on Mobile Robots (ECMR 2021), 2021. @inproceedings{Rottmann2021, |
Akbulut, M Tuluhan; Oztop, Erhan; Seker, M Yunus; Xue, Honghu; Tekden, Ahmet E; Ugur, Emre ACNMP: Skill Transfer and Task Extrapolation through Learning from Demonstration and Reinforcement Learning via Representation Sharing Proceedings Article In: 2020. @inproceedings{nokey, To equip robots with dexterous skills, an effective approach is to first transfer the desired skill via Learning from Demonstration (LfD), then let the robot improve it by self-exploration via Reinforcement Learning (RL). In this paper, we propose a novel LfD+RL framework, namely Adaptive Conditional Neural Movement Primitives (ACNMP), that allows efficient policy improvement in novel environments and effective skill transfer between different agents. This is achieved through exploiting the latent representation learned by the underlying Conditional Neural Process (CNP) model, and simultaneous training of the model with supervised learning (SL) for acquiring the demonstrated trajectories and via RL for new trajectory discovery. Through simulation experiments, we show that (i) ACNMP enables the system to extrapolate to situations where pure LfD fails; (ii) Simultaneous training of the system through SL and RL preserves the shape of demonstrations while adapting to novel situations due to the shared representations used by both learners; (iii) ACNMP enables order-of-magnitude sample-efficient RL in extrapolation of reaching tasks compared to the existing approaches; (iv) ACNMPs can be used to implement skill transfer between robots having different morphology, with competitive learning speeds and importantly with less number of assumptions compared to the state-of-the-art approaches. Finally, we show the real-world suitability of ACNMPs through real robot experiments that involve obstacle avoidance, pick and place and pouring actions. |
Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E. Exploiting Chlorophyll Fluorescense for Building Robust low-Cost Mowing Area Detectors Proceedings Article In: IEEE SENSORS , pp. 1–4, 2020. @inproceedings{Rottmann2020b, |
Rottmann, N.; Kunavar, T.; Babič, J.; Peters, J.; Rueckert, E. Learning Hierarchical Acquisition Functions for Bayesian Optimization Proceedings Article In: International Conference on Intelligent Robots and Systems (IROS’ 2020), 2020. @inproceedings{Rottmann2020HiBO, |
Rottmann, N.; Bruder, R.; Xue, H.; Schweikard, A.; Rueckert, E. Parameter Optimization for Loop Closure Detection in Closed Environments Proceedings Article In: Workshop Paper at the International Conference on Intelligent Robots and Systems (IROS), pp. 1–8, 2020. @inproceedings{Rottmann2020c, |
Tolga-Can Çallar, Elmar Rueckert; Böttger, Sven Efficient Body Registration Using Single-View Range Imaging and Generic Shape Templates Proceedings Article In: 54th Annual Conference of the German Society for Biomedical Engineering (BMT 2020), 2020. @inproceedings{Çallar2020, |
Xue, H.; Boettger, S.; Rottmann, N.; Pandya, H.; Bruder, R.; Neumann, G.; Schweikard, A.; Rueckert, E. Sample-Efficient Covariance Matrix Adaptation Evolutional Strategy via Simulated Rollouts in Neural Networks Proceedings Article In: International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI’ 2020), 2020. @inproceedings{Xue2020, |
Stark, Svenja; Peters, Jan; Rueckert, Elmar Experience Reuse with Probabilistic Movement Primitives Proceedings Article In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), 2019., 2019. @inproceedings{Stark2019, |
Boettger, S.; Callar, T. C.; Schweikard, A.; Rueckert, E. Medical robotics simulation framework for application-specific optimal kinematics Proceedings Article In: Current Directions in Biomedical Engineering 2019, pp. 1–5, 2019. @inproceedings{Boettger2019, |
Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E. Loop Closure Detection in Closed Environments Proceedings Article In: European Conference on Mobile Robots (ECMR 2019), 2019, ISBN: 978-1-7281-3605-9. @inproceedings{Rottmann2019b, |
Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E. Cataglyphis ant navigation strategies solve the global localization problem in robots with binary sensors Proceedings Article In: Proceedings of International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS), Prague, Czech Republic , 2019, ( February 22-24, 2019). @inproceedings{Rottmann2019, |
Rueckert, Elmar; Jauer, Philipp; Derksen, Alexander; Schweikard, Achim Dynamic Control Strategies for Cable-Driven Master Slave Robots Proceedings Article In: Keck, Tobias (Ed.): Proceedings on Minimally Invasive Surgery, Luebeck, Germany, 2019, (January 24-25, 2019). @inproceedings{Rueckert2019c, |
Gondaliya, Kaushikkumar D.; Peters, Jan; Rueckert, Elmar Learning to Categorize Bug Reports with LSTM Networks Proceedings Article In: Proceedings of the International Conference on Advances in System Testing and Validation Lifecycle (VALID)., pp. 6, XPS (Xpert Publishing Services), Nice, France, 2018, ISBN: 978-1-61208-671-2, ( October 14-18, 2018). @inproceedings{Gondaliya2018, |
Rueckert, Elmar; Nakatenus, Moritz; Tosatto, Samuele; Peters, Jan Learning Inverse Dynamics Models in O(n) time with LSTM networks Proceedings Article In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2017. @inproceedings{Humanoids2017Rueckert, |
Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar Efficient Online Adaptation with Stochastic Recurrent Neural Networks Proceedings Article In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2017. @inproceedings{Tanneberg2017a, |
Stark, Svenja; Peters, Jan; Rueckert, Elmar A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries Proceedings Article In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2017. @inproceedings{Humanoids2017Stark, |
Thiem, Simon; Stark, Svenja; Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar Simulation of the underactuated Sake Robotics Gripper in V-REP Proceedings Article In: Workshop at the International Conference on Humanoid Robots (HUMANOIDS), 2017. @inproceedings{Thiem2017b, |
Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals Proceedings Article In: Proceedings of the Conference on Robot Learning (CoRL), 2017. @inproceedings{Tanneberg2017, |
Tanneberg, Daniel; Paraschos, Alexandros; Peters, Jan; Rueckert, Elmar Deep Spiking Networks for Model-based Planning in Humanoids Proceedings Article In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2016. @inproceedings{tanneberg_humanoids16, |
Azad, Morteza; Ortenzi, Valerio; Lin, Hsiu-Chin; Rueckert, Elmar; Mistry, Michael Model Estimation and Control of Complaint Contact Normal Force Proceedings Article In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2016. @inproceedings{Humanoids2016Azad, |
Kohlschuetter, Jan; Peters, Jan; Rueckert, Elmar Learning Probabilistic Features from EMG Data for Predicting Knee Abnormalities Proceedings Article In: Proceedings of the XIV Mediterranean Conference on Medical and Biological Engineering and Computing (MEDICON), 2016. @inproceedings{Kohlschuetter2016, |
Modugno, Valerio; Neumann, Gerhard; Rueckert, Elmar; Oriolo, Giuseppe; Peters, Jan; Ivaldi, Serena Learning soft task priorities for control of redundant robots Proceedings Article In: Proceedings of the International Conference on Robotics and Automation (ICRA), 2016. @inproceedings{Modugno_PICRA_2016, |
Sharma, David; Tanneberg, Daniel; Grosse-Wentrup, Moritz; Peters, Jan; Rueckert, Elmar Adaptive Training Strategies for BCIs Proceedings Article In: Cybathlon Symposium, 2016. @inproceedings{Sharma2016, |
Weber, Paul; Rueckert, Elmar; Calandra, Roberto; Peters, Jan; Beckerle, Philipp A Low-cost Sensor Glove with Vibrotactile Feedback and Multiple Finger Joint and Hand Motion Sensing for Human-Robot Interaction Proceedings Article In: Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2016. @inproceedings{ROMANS16_daglove, |
Calandra, Roberto; Ivaldi, Serena; Deisenroth, Marc; Rueckert, Elmar; Peters, Jan Learning Inverse Dynamics Models with Contacts Proceedings Article In: Proceedings of the International Conference on Robotics and Automation (ICRA), 2015. @inproceedings{Calandra2015, |
Rueckert, Elmar; Mundo, Jan; Paraschos, Alexandros; Peters, Jan; Neumann, Gerhard Extracting Low-Dimensional Control Variables for Movement Primitives Proceedings Article In: Proceedings of the International Conference on Robotics and Automation (ICRA), 2015. @inproceedings{Rueckert2015, |
Paraschos, Alexandros; Rueckert, Elmar; Peters, Jan; Neumann, Gerhard Model-Free Probabilistic Movement Primitives for Physical Interaction Proceedings Article In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), 2015. @inproceedings{Paraschos2015, |
Rueckert, Elmar; Lioutikov, Rudolf; Calandra, Roberto; Schmidt, Marius; Beckerle, Philipp; Peters, Jan Low-cost Sensor Glove with Force Feedback for Learning from Demonstrations using Probabilistic Trajectory Representations Proceedings Article In: ICRA 2015 Workshop on Tactile and force sensing for autonomous compliant intelligent robots, 2015. @inproceedings{Rueckert2015b, |
Rueckert, Elmar; Mindt, Max; Peters, Jan; Neumann, Gerhard Robust Policy Updates for Stochastic Optimal Control Proceedings Article In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2014. @inproceedings{Rueckert2014, |
Rueckert, Elmar; d’Avella, Andrea Learned Muscle Synergies as Prior in Dynamical Systems for Controlling Bio-mechanical and Robotic Systems Proceedings Article In: Abstracts of Neural Control of Movement Conference (NCM), Conference Talk, pp. 27–28, 2013. @inproceedings{Rueckert2013, |
Rueckert, Elmar; Neumann, Gerhard A study of Morphological Computation by using Probabilistic Inference for Motor Planning Proceedings Article In: Proceedings of the 2nd International Conference on Morphological Computation (ICMC), pp. 51–53, 2011. @inproceedings{Rueckert2011, |
Masters Theses |
Rueckert, Elmar Simultaneous localisation and mapping for mobile robots with recent sensor technologies Masters Thesis Technical University Graz, 2010. @mastersthesis{Rueckert2010, |
PhD Theses |
Rueckert, Elmar Biologically inspired motor skill learning in robotics through probabilistic inference PhD Thesis Technical University Graz, 2014. @phdthesis{Rueckert2014a, |
Workshops |
Nwankwo, Linus; Rueckert, Elmar 2024, ( In Workshop of the 2024 ACM/IEEE International Conference on HumanRobot Interaction (HRI ’24 Workshop), March 11–14, 2024, Boulder, CO, USA. ACM, New York, NY, USA). @workshop{Nwankwo2024MultimodalHA, In this paper, we extended the method proposed in [17] to enable humans to interact naturally with autonomous agents through vocal and textual conversations. Our extended method exploits the inherent capabilities of pre-trained large language models (LLMs), multimodal visual language models (VLMs), and speech recognition (SR) models to decode the high-level natural language conversations and semantic understanding of the robot's task environment, and abstract them to the robot's actionable commands or queries. We performed a quantitative evaluation of our framework's natural vocal conversation understanding with participants from different racial backgrounds and English language accents. The participants interacted with the robot using both vocal and textual instructional commands. Based on the logged interaction data, our framework achieved 87.55% vocal commands decoding accuracy, 86.27% commands execution success, and an average latency of 0.89 seconds from receiving the participants' vocal chat commands to initiating the robot’s actual physical action. The video demonstrations of this paper can be found at https://linusnep.github.io/MTCC-IRoNL/ |
Yadav, Harsh; Xue, Honghu; Rudall, Yan; Bakr, Mohamed; Hein, Benedikt; Rueckert, Elmar; Nguyen, Thinh Deep Reinforcement Learning for Autonomous Navigation in Intralogistics Workshop 2023, (European Control Conference (ECC) Workshop, Extended Abstract.). @workshop{Yadav2023, Even with several advances in autonomous mobile robots, navigation in a highly dynamic environment still remains a challenge. Classical navigation systems, such as Simultaneous Localization and Mapping (SLAM), build a map of the environment and constructing maps of highly dynamic environments is impractical. Deep Reinforcement Learning (DRL) approaches have the ability to learn policies without knowledge of the maps or the transition models of the environment. The aim of our work is to investigate the potential of using DRL to control an autonomous mobile robot to dock with a load carrier. This paper presents an initial successful training result of the Soft Actor-Critic (SAC) algorithm, which can navigate a robot toward an open door only based on the 360° LiDAR observations. Ongoing work is using visual sensors for load carrier docking. |
Dave, Vedant; Rueckert, Elmar Can we infer the full-arm manipulation skills from tactile targets? Workshop International Conference on Humanoid Robots (Humanoids 2022), 2022. @workshop{Dave2022WS, Tactile sensing provides significant information about the state of the environment for performing manipulation tasks. Manipulation skills depends on the desired initial contact points between the object and the end-effector. Based on physical properties of the object, this contact results into distinct tactile responses. We propose Tactile Probabilistic Movement Primitives (TacProMPs), to learn a highly non-linear relationship between the desired tactile responses and the full-arm movement, where we condition solely on the tactile responses to infer the complex manipulation skills. We use a Gaussian mixture model of primitives to address the multimodality in demonstrations. We demonstrate the performance of our method in challenging real-world scenarios. |
Track Record
News
Sorry,You have not added any story yet
1 Lehrlingsstelle (4 Jahre), 2303API
1 Lehrlingsstelle für den Lehrberuf “Informationstechnologie mit Schwerpunkt Betriebstechnik” (Lehrzeit 4 Jahre) am Department Product Engineering – Lehrstuhl für Cyber Physical Systems ab der Montanuniversität Leoben ab 01.09.2023 zu besetzen (die Lehrlingsentschädigung gemäß Kollektivvertrag beträgt im 1. Lehrjahr 863,20 € (14x jährlich)).
Besondere Erfordernisse:
• Abschluss der allgemeinen Schulpflicht
• Interesse an Technik
• Gute Englischkenntnisse in Wort und Schrift
Aufgabengebiet:
• Auswählen, Einrichten, Synchronisieren und in Betrieb nehmen von (auch mobilen) Benutzerendgeräten und Peripheriegeräten sowie Konfigurieren von Endgeräten.
• Auswählen und in Betrieb nehmen von neuen Netzkomponenten.
• Konzipieren und Planen von Datenspeichersystemen sowie Implementieren und Testen von Datenspeichersystemen inklusive Backup-Lösungen.
• Konfigurieren von Serversystemen und deren Basisdiensten sowie Testen der Konfiguration.
Erwünschte Zusatzqualifikationen:
• Programmier-Grundkenntnisse in einer aktuellen Programmiersprache (C, C++, Python o.ä.)
Referenznummer: 2303API
Ende der Bewerbefrist: 04.05.2023
Die Montanuniversität Leoben strebt eine Erhöhung des Frauenanteiles an und fordert deshalb qualifizierte Frauen ausdrücklich zur Bewerbung auf. Frauen werden bei gleicher Qualifikation wie der bestgeeignete Mitbewerber vorrangig aufgenommen.
Für Ihre Bewerbung verwenden Sie bitte unser Online Bewerbungsformular auf der Homepage: https://www.unileoben.ac.at/jobs
B.Sc. Thesis – Franz Waldsam: EAGLE – N²ET
Estimating Aerospace manufacturing time from Geometry Leveraging Encoder Neural Network
Supervisor: Univ.-Prof. Dr Elmar Rückert
Start date: 1st March 2023
Involved Company: voestalpine Böhler Aerospace GmbH & Co KG
Theoretical difficulty: mid
Practical difficulty: mid
Abstract
Geometric data of a requested forging is important as a source to estimate feasibility and offer realistic pricing. However, every bigger deviation in such calculation regarding technical viability costs involved companies’ possible revenue.
To mitigate this issue and support the technologists and sales department an autoencoder (unsupervised learning) with an attached regression model was developed (pre-existing). Nevertheless, this system still needs adaptation/improvement to meet the operational requirements.
This bachelor thesis proposes a way to implement an optimization process for adjusting the layer structure and possible scaling of a given autoencoder system. The autoencoder itself uses 3D surface data in form of a “.stl” to create a point cloud in x, y, and z. A docker image containing the autoencoder then extracts the most significant 3D features and provides an estimation for feasibility and price. The focus lies on creating a wrapper function to test different hyperparameters in an automated way. Strategies like random search, grid search, and Bayesian optimization will be applied. The results of the optimized framework will be challenged with the pre-existing autoencoder model.
Tentative Work Plan
To achieve our objective, the following concrete tasks will be focused on:
- Literature research
- Evaluation of the SOTA / the current model
- Identification of network / hyperparameter optimization options
- Model optimization / improvement
- Evaluation and Testing on new data
Franz Waldsam
Bachelor Thesis Student at the Montanuniversität Leoben
Short bio: Franz has already a master degree in metallurgy but seeks additional expertise in data analysis and machine learning, therefore currently revisiting the Montanuniversität Leoben as bachelor student in Industrial Data Science.
Graduated in 2015 he went into the quality management of the domestic steel industry. Working in a laboratory environment within a very dynamic market he quickly noticed the unstoppable tendencies to more and more data driven process planning, monitoring and production itself. Therefore, as of March 2023, he is writing his bachelor thesis at the Chair of Cyber-Physical Systems in cooperation with voestalpine Boehler Aerospace GmbH & Co KG.
Research Interests
- Robotics
Thesis
- EAGLE – N²ET Estimating Aerospace manufacturing time from Geometry Leveraging Encoder Neural Network
- Supervision: Elmar Rueckert
Contact
Franz Waldsam
Bachelor Thesis Student at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18,
8700 Leoben, Austria
190.015 Applied Machine and Deep Learning (5SH IL, WS) [2023 WS]
Course Content
In the first week, advanced machine and deep learning methods like multi-layer-perceptrons, convolutional neural networks, variational autoencoder, transformers, simultaneous navigation and mapping approaches, and more will be presented.
These methods can be tested using interactive tools like for example using https://playground.tensorflow.org. To deepen the knowledge, students will answer well-crafted scientific questions using latex handouts alone or in teams of two students in the lecture room.
Additionally, Jupyter notebook files were prepared to implement advanced machine and deep learning approaches without installing any software. For all participants of the course user accounts will be created using our JupyterHub at https://jupyter.cps.unileoben.ac.at. The accounts will remain active till the end of the semester.
MON | TUE | WED | THUR | FRI | ||
02.10.2023 | 03.10.2023 | 04.10.2023 | 05.10.2023 | 06.10.2023 | ||
Topic | Intro to ML Organisation | Neural Networks | Representation Learning | Robot Learning | AML Projects | |
10 | am | |||||
:15 | Quizz on ML | Quizz on Neural Nets | Introduction to Deep Representation Learning: Core Methods & Coding Examples | Quizz on AML | ||
:30 | Introduction to ML | Introduction to Multi-Layer-Perceptrons | Project Topic Presentations | |||
:45 | ||||||
11 | am | 15 min Break | 15 min Break | |||
:15 | Statistics, Model Validation, Figures & Evaluations | Handout on Neural Networks using playground.tensorflow | Team Ass., Git Repos & Wiki Instructions | |||
:30 | 30 min Break | |||||
:45 | AML Summary | |||||
12 | pm | 30 min Lunch Break | 30 min Lunch Break | Curiosity (MLPs), Imagination (Dreamer) and Information (Empowerment) | ||
:15 | Quizz on Robotics | |||||
:30 | Course Organisation & Grading | Intro to Timeseries & Databases | Introduction to Robot Learning | |||
:45 | ||||||
1 | pm | 15 min Break | 15 min Break | Quizz Summary | ||
:15 | Python Programming with our JupyterHub | JupyterHub NB on MLPs & Databases | 15 min Break | |||
:30 | Handout on Robot Learning (Model Learning & RL) | |||||
:45 | Quizz Summary | Quizz Summary | ||||
2 | pm | |||||
:15 | 15 min Break | |||||
:30 | Introduction to Mobile Robotics & SLAM | |||||
:45 | ||||||
3 | pm | JupyterHub NB on Path Planning | ||||
:15 | ||||||
:30 | Quizz Summary | |||||
:45 | ||||||
Legend | ||||||
Quizz on ML | Online Quizz using https://tweedback.de | |||||
Course Content Presentation | Using google slides, etc. | |||||
15 min Break | Breaks to recover or to continue programming | |||||
Organisation & Instructions | Using google slides, etc. | |||||
Practical Exercise | Using online tools, our JupyterHub, etc. | |||||
Latest Research | State-of-the-art research | |||||
Prerequisites & If you Miss Course Contents
During the first week, a laptop or tablet will be needed to use the interactive tools and the Jupyter notebooks.
Webex Online Sessions of the 1st Week
Find here the link to the online stream during the first week in October, 2023: https://unileoben.webex.com/unileoben/j.php?MTID=m5492385776dd885ca5dde72e52563c61
When you miss some course contens
If you miss some course contents due to overlapping events, you can watch recordings of the sessions online. All recordings will be hosted via Moodle at https://moodle.unileoben.ac.at/course/view.php?id=3082.
Course Description
Modern machine learning methods and in particular deep learning methods are entering almost all areas of engineering.
The integrated course enables the students to apply these methods in the application domains of their study.
For this purpose, current problems from the industry are investigated and the possibilities of machine and deep learning methods are tested.
Students gain a deep understanding of method implementations, how data must be prepared, which criteria are relevant for selecting learning methods, and how evaluations must be performed in order to interpret the results in a meaningful way.
Initially, the basics of learning methods are developed in 5-6 lecture units. Then, students select one of the listed industrial problems and work on it alone or as a team (with extended assignments). The project work is accompanied by weekly tutorials with tips and tricks. Finally, the project results are discussed in a written report and presented for a final 10-15min.
Grading is based on the quality of the code, the report, and the final short presentation.
Among others, one of the following industry problems can be chosen:
1. Application and comparison of deep neural networks for steel quality prediction in continuous casting plants with data from the ‘Stahl- und Walzwerk Marienhütte GmbH Graz’.
2. Predictive maintenance of bearing shells using frequency analysis in decision trees and deep neural networks based on acoustic measurement data.
3. Motion analysis and path planning for human-machine interaction in logistics tasks with mobile robots of the Chair of CPS.
4. Autonomous navigation and mapping with RGB-D cameras of the four-legged robot Unitree Go1 for excavation inspection in mining.
The project list is continuously extended.
Links and Resources
Location & Time
- Location: HS 3 Studienzentrum
- Dates: 02.10.2023 – 06.10.2023, see the course schedule above. Weekly online meetings on Wednesdays 17:00-18:00 via
- Meeting number (access code): 2789 858 4770
- Meeting password: vTHYP5QMj77
Previous Knowledge Expected
Formal Prerequisite: Basic Python programming skills, Fundamentals of Statistics.
Recommended Prerequisites: Introduction to Machine Learning (“190.012” and “190.013”).
Slides
- 02.10.2023
- 03.10.2023
- 04.10.2023
- Introduction to Deep Representation Learning [slides] [code] – Fotios Lygerakis
- Curiosity(MLPs), Imagination(Dreamer) and Information(Empowerment) – Vedant Dave
- Projects Teaser & Questionary
- 05.10.2023
- Introduction to Robot Learning
- Handout on Robot Learning
- Jupyter Notebook on Path Planning
- 06.10.2023
- Projekt Tasks & Workload
- Project Presentations
- Team Assignments & Kickoff Meetings
- 31.01.2024 Project Results & Best Practices – Evaluation Results
Learning objectives / qualifications
- Implement or independently adapt modern machine learning methods and in particular deep learning methods in Python.
- Analyze data of complex industrial problems, process (filter) the data, and divide it into training- and test data sets such that a meaningful interpretation is possible.
- Define criteria and metrics to evaluate evaluations and predictions and generate statistics.
- Develop, evaluate, and discuss meaningful experiments and evaluations.
- Identify and describe assumptions, problems, and ideas for improvement of practical learning problems.
Grading
Continuous assessment: During the lectures and the tutorials 0-20 bonus points can be collected through active participation.
Project assignments: Alone or in small groups (2-3 students) one of the listed projects has to be implemented. A written report in form of a git repository wiki page have to be submitted.
– For the implementation (Python Code) 0-40 Points can be obtained.
– For the wiki page report, 0-60 Points will be given.
Grading scheme: 0-49,9 Points (5), 50-65,9 Points (4), 66-79 Points (3), 80-91 Points (2), 92-100 Points (1).
With an overall score of up to 79%, an additional oral performance review MAY (!) also be required if the positive performance record is not clear. In this case, you will be informed as soon as the grades are released. If you have already received a grade via MU online, you will not be invited to another oral performance review.
Literature
Maschine Learning and Data-modelling:
– Rueckert Elmar 2022. An Introduction to Probabilistic Machine Learning, https://cloud.cps.unileoben.ac.at/index.php/s/iDztK2ByLCLxWZA
– James-A. Goulet 2020. Probabilistic Machine Learning for Civil Engineers. MIT Press.
– Bishop 2006. Pattern Recognition and Machine Learning, Springer.
Learning method Programming in Python:
– Sebastian Raschka, YuxiH. Liu and Vahid Mirjalili 2022. Machine Learning with PyTorch and Scikit- Learn. Packt Publishing Ltd, UK.
– Matthieu Deru and Alassane Ndiaye 2020. Deep Learning mit TensorFlow, Keras und TensorFlow.js., Rheinwerk-verlag, DE.
Problemspecific Litheratur:
– B. Siciliano, L.Sciavicco 2009. Robotics: Modelling, Planning and Control, Springer.
– Kevin M. Lynch and FrankC. Park 2017. MODERN ROBOTICS, MECHANICS, PLANNING, AND CONTROL, Cambridge University Press.
– E.T. Turkogan 1996. Fundamentals of Steelmaking. Maney Publishing,UK.
MU Online LV Anlegen, Kollisionen prüfen
Lehrveranstaltungsbeschreibung
- Nextcloud Dokumente unter (interner NC Link): https://cloud.cps.unileoben.ac.at/index.php/f/206304
- Diese Beschreibung ist die Grundlage für die Dateneingabe im MUOnline.
- Inhalte in DE und EN.
- Wichtig sind due Zuordnungen zu Pflichtfächern, Wahlpflichtfächern.
- Wichtig sind die formalen Voraussetzungen.
Die LV Beschreibung wird bei Bedarf an andere Lehrstühle verschickt und muss Fehlerfrei (Wochenstunden, ECTS, LV Typ, Titel, etc.) sein!
Prüfen von Konflikten nach Studienplänen
Terminkonflikte mit anderen Pflicht- und Wahlpflichtfächern aus den zugeordneten Studiengängen (siehe LV Beschreibung oben) muss unbedingt vermieden werden. Alle Studierende sollen ihren Studienplan ohne Terminkollisionen umsetzen können.
Ausdrucken der Wochenstundenpläne nach Studiengang im MUOnline
Im MUOnline geht man wie folgt vor:
- Nach der Anmeldung klickt man auf den Punkt Studies / Course Offer
- Danach wählt man den relevanten Studiengang aus (hier im Bild ist es das Bachelor IDS Studium).
3. Als nächstes wählt man das Studienjahr und klickt auf Semesterplan.
4. Dann wählt man das zugehörige Semester aus und klickt auf das Kalendersymbol. Wichtig LVs die nur im Wintersemester stattfinden haben ungerade Semesterzahlen (1, 3, 5, …).
5. Als nächstes müssen relevante Wochen ausgewählt werden. Dazu zuieht man das Semesterstartdatum heran.
- Wintersemester: 1.Oktober
- Sommersemster: 1.März
Wenn keine Einträge vorhanden sind, muss das Vorjahr ausgewählt werden.
Wichtig ist mehrere Wochen zu betrachten um möglichst alle Terminkonflikte auszuschließen. Unten sind 2 Beispiele für den Master Maschinenbau im Wintersemster.
Prioritäten und Wahl eines geeigneten Termins
Aus den Wochenplänen erkennt man, dass z.B. Freitag ein ungünstiger Tag für eine neue LV wäre.
Montag von 10:15 bis 12:00 würde gehen, aber es müssen noch alle anderen Semester und alle weiteren Studiengänge betrachtet werden.
Es bietet sich an die Wochenpläne auszudrucken und auf einem Tisch auszulegen. Dann können Lücken gefunden werden.
Prioritäten:
- [Pflicht -> Pflicht] An erster Stelle stehen Konflikte mit anderen Pflichtfächern aus den Studiengängen in denen die neue LV auch ein Pflichtfach darstellt (Pflicht -> in den Klammern).
- Empfohlenes Semester
- Danach alle weiteren Winter- oder Sommersemester
- [Pflicht -> Wahlpflicht] Danach sollen Wahlpflichtfächer berücksichtigt werden.
- [Wahlpflicht -> Pflicht] Studiengängen in denen die neue LV ein Wahlpflichtfach darstellt.
- [Wahlpflicht -> Wahlpflicht] WPF in Studiengängen in denen die neue LV nur ein Wahlpflichtfach darstellt.
Oben ist die Auflistung einiger Wochenpläne für das Wintersemster, von oben nach unten und von links nach rechts, nach Prioritäten sortiert.
Hier gilt es nun 1-3 Terminslots mit möglichst wenigen Konflikten auszuwählen.
Für diese 1-3 Termine müssen dann Räume gesucht werden.
Abstimmen mit anderen Lehrstühlen:
- Gerade die Lehrstühle für Maschinenbau und IDS sollen immer telefonisch oder per Email kontaktiert werden um den Wunschtermin abzusichern.