image_pdfimage_print

190.015 Applied Machine and Deep Learning (5SH IL, WS) [2023 WS]

Course Content

In the first week, advanced machine and deep learning methods like multi-layer-perceptrons, convolutional neural networks, variational autoencoder, transformers, simultaneous navigation and mapping approaches, and more will be presented.

These methods can be tested using interactive tools like for example using   https://playground.tensorflow.org. To deepen the knowledge, students will answer well-crafted scientific questions using latex handouts alone or in teams of two students in the lecture room. 

Additionally, Jupyter notebook files were prepared to implement advanced machine and deep learning approaches without installing any software. For all participants of the course user accounts will be created using our JupyterHub at https://jupyter.cps.unileoben.ac.at. The accounts will remain active till the end of the semester. 



MON TUE WED THUR FRI


02.10.2023 03.10.2023 04.10.2023 05.10.2023 06.10.2023
Topic Intro to ML Organisation Neural Networks Representation Learning Robot Learning AML Projects
10 am




:15 Quizz on ML Quizz on Neural Nets Introduction to Deep Representation Learning: Core Methods & Coding Examples
Quizz on AML

:30 Introduction to ML Introduction to Multi-Layer-Perceptrons
Project Topic Presentations

:45
11 am 15 min Break 15 min Break
:15 Statistics, Model Validation, Figures & Evaluations Handout on Neural Networks using playground.tensorflow
Team Ass., Git Repos & Wiki Instructions

:30 30 min Break

:45
AML Summary
12 pm 30 min Lunch Break 30 min Lunch Break Curiosity (MLPs), Imagination (Dreamer) and Information (Empowerment)

:15 Quizz on Robotics

:30 Course Organisation & Grading Intro to Timeseries & Databases Introduction to Robot Learning

:45
1 pm 15 min Break 15 min Break Quizz Summary
:15 Python Programming with our JupyterHub JupyterHub NB on MLPs & Databases
15 min Break

:30
Handout on Robot Learning (Model Learning & RL)

:45 Quizz Summary Quizz Summary

2 pm



:15


15 min Break

:30


Introduction to Mobile Robotics & SLAM

:45



3 pm


JupyterHub NB on Path Planning
:15




:30


Quizz Summary

:45













Legend





Quizz on ML Online Quizz using https://tweedback.de




Course Content Presentation Using google slides, etc.







15 min Break Breaks to recover or to continue programming




Organisation & Instructions Using google slides, etc.







Practical Exercise Using online tools, our JupyterHub, etc.







Latest Research State-of-the-art research





Prerequisites & If you Miss Course Contents

During the first week, a laptop or tablet will be needed to use the interactive tools and the Jupyter notebooks. 

Webex Online Sessions of the 1st Week

Find here the link to the online stream during the first week in October, 2023: https://unileoben.webex.com/unileoben/j.php?MTID=m5492385776dd885ca5dde72e52563c61

When you miss some course contens

If you miss some course contents due to overlapping events, you can watch recordings of the sessions online. All recordings will be hosted via Moodle at https://moodle.unileoben.ac.at/course/view.php?id=3082.

Course Description

Modern machine learning methods and in particular deep learning methods are entering almost all areas of engineering. 

The integrated course enables the students to apply these methods in the application domains of their study.

For this purpose, current problems from the industry are investigated and the possibilities of machine and deep learning methods are tested.

Students gain a deep understanding of method implementations, how data must be prepared, which criteria are relevant for selecting learning methods, and how evaluations must be performed in order to interpret the results in a meaningful way.

Initially, the basics of learning methods are developed in 5-6 lecture units. Then, students select one of the listed industrial problems and work on it alone or as a team (with extended assignments). The project work is accompanied by weekly tutorials with tips and tricks. Finally, the project results are discussed in a written report and presented for a final 10-15min.

Grading is based on the quality of the code, the report, and the final short presentation.

Among others, one of the following industry problems can be chosen:

1. Application and comparison of deep neural networks for steel quality prediction in continuous casting plants with data from the ‘Stahl- und Walzwerk Marienhütte GmbH Graz’.

2. Predictive maintenance of bearing shells using frequency analysis in decision trees and deep neural networks based on acoustic measurement data.

3. Motion analysis and path planning for human-machine interaction in logistics tasks with mobile robots of the Chair of CPS.

4. Autonomous navigation and mapping with RGB-D cameras of the four-legged robot Unitree Go1 for excavation inspection in mining.

The project list is continuously extended.

Links and Resources

Location & Time

 

Previous Knowledge Expected

Formal Prerequisite: Basic Python programming skills, Fundamentals of Statistics.

Recommended Prerequisites:
Introduction to Machine Learning (“190.012” and “190.013”).

Slides

Learning objectives / qualifications

  • Implement or independently adapt modern machine learning methods and in particular deep learning methods in Python.

  • Analyze data of complex industrial problems, process (filter) the data, and divide it into training- and test data sets such that a meaningful interpretation is possible.
  • Define criteria and metrics to evaluate evaluations and predictions and generate statistics.

  • Develop, evaluate, and discuss meaningful experiments and evaluations.

  • Identify and describe assumptions, problems, and ideas for improvement of practical learning problems.

Grading

Continuous assessment: During the lectures and the tutorials 0-20 bonus points can be collected through active participation.

Project assignments: Alone or in small groups (2-3 students) one of the listed projects has to be implemented. A written report in form of a git repository wiki page have to be submitted.
– For the implementation (Python Code) 0-40 Points can be obtained.
– For the wiki page report, 0-60 Points will be given.

Grading scheme: 0-49,9 Points (5), 50-65,9 Points (4), 66-79 Points (3), 80-91 Points (2), 92-100 Points (1).

With an overall score of up to 79%, an additional oral performance review MAY (!) also be required if the positive performance record is not clear. In this case, you will be informed as soon as the grades are released. If you have already received a grade via MU online, you will not be invited to another oral performance review.

Literature

Maschine Learning and Data-modelling:

– Rueckert Elmar 2022. An Introduction to Probabilistic Machine Learning, https://cloud.cps.unileoben.ac.at/index.php/s/iDztK2ByLCLxWZA

– James-A. Goulet 2020. Probabilistic Machine Learning for Civil Engineers. MIT Press.

– Bishop 2006. Pattern Recognition and Machine Learning, Springer.

Learning method Programming in Python:

– Sebastian Raschka, YuxiH. Liu and Vahid Mirjalili 2022. Machine Learning with PyTorch and Scikit- Learn. Packt Publishing Ltd, UK.

– Matthieu Deru and Alassane Ndiaye 2020. Deep Learning mit TensorFlow, Keras und TensorFlow.js., Rheinwerk-verlag, DE. 

Problemspecific Litheratur:

– B. Siciliano, L.Sciavicco 2009. Robotics: Modelling, Planning and Control, Springer.

– Kevin M. Lynch and FrankC. Park 2017. MODERN ROBOTICS, MECHANICS, PLANNING, AND CONTROL, Cambridge University Press.

– E.T. Turkogan 1996. Fundamentals of Steelmaking. Maney Publishing,UK.

MU Online LV Anlegen, Kollisionen prüfen

Lehrveranstaltungsbeschreibung

  • Nextcloud Dokumente unter (interner NC Link): https://cloud.cps.unileoben.ac.at/index.php/f/206304
  • Diese Beschreibung ist die Grundlage für die Dateneingabe im MUOnline. 
  • Inhalte in DE und EN.
  • Wichtig sind die Zuordnungen zu Pflichtfächern, Wahlpflichtfächern.
  • Wichtig sind die formalen Voraussetzungen.  

Die LV Beschreibung wird bei Bedarf an andere Lehrstühle verschickt und muss fehlerfrei (Wochenstunden, ECTS, LV-Typ, Titel, etc.) sein! 

Prüfen von Konflikten nach Studienplänen

Terminkonflikte mit anderen Pflicht- und Wahlpflichtfächern aus den zugeordneten Studiengängen (siehe LV Beschreibung oben) müssen unbedingt vermieden werden. Alle Studierenden sollen ihren Studienplan ohne Terminkollisionen umsetzen können.

Ausdrucken der Wochenstundenpläne nach Studiengang im MUOnline

Im MUOnline geht man wie folgt vor: 

  1. Nach der Anmeldung klickt man auf den Punkt Studies / Course Offer
  2.  Danach wählt man den relevanten Studiengang aus (hier im Bild ist es das Bachelor IDS Studium).

3. Als nächstes wählt man das Studienjahr und klickt auf Semesterplan.

4. Dann wählt man das zugehörige Semester aus und klickt auf das Kalendersymbol. Wichtig LVs die nur im Wintersemester stattfinden haben ungerade Semesterzahlen (1, 3, 5, …). 

5. Als nächstes müssen relevante Wochen ausgewählt werden. Dazu zieht man das Semesterstartdatum heran.

  • Wintersemester: 1.Oktober
  • Sommersemester: 1.März

Wenn keine Einträge vorhanden sind, muss das Vorjahr ausgewählt werden. 

Wichtig ist, mehrere Wochen zu betrachten um möglichst alle Terminkonflikte auszuschließen.  Unten sind 2 Beispiele für den Master Maschinenbau im Wintersemester. 

Prioritäten und Wahl eines geeigneten Termins

Aus den Wochenplänen erkennt man, dass zB Freitag ein ungünstiger Tag für eine neue LV wäre. 

Montag von 10:15 bis 12:00 würde gehen, aber es müssen noch alle anderen Semester und alle weiteren Studiengänge betrachtet werden. 

Es bietet sich an die Wochenpläne auszudrucken und auf einem Tisch auszulegen. Dann können Lücken gefunden werden. 

Prioritäten: 

  • [Pflicht -> Pflicht] An erster Stelle stehen Konflikte mit anderen Pflichtfächern aus den Studiengängen in denen die neue LV auch ein Pflichtfach darstellt (Pflicht -> in den Klammern).
    • Empfohlenes Semester
    • Danach alle weiteren Winter- oder Sommersemester
  • [Pflicht -> Wahlpflicht] Danach sollen Wahlpflichtfächer berücksichtigt werden. 
  • [Wahlpflicht -> Pflicht] Studiengänge in denen die neue LV ein Wahlpflichtfach darstellt.
  • [Wahlpflicht -> Wahlpflicht] WPF in  Studiengängen in denen die neue LV nur ein Wahlpflichtfach darstellt.

Oben ist die Auflistung einiger Wochenpläne für das Wintersemster, von oben nach unten und von links nach rechts, nach Prioritäten sortiert.

Hier gilt es nun 1-3 Terminslots mit möglichst wenigen Konflikten auszuwählen. 

Für diese 1-3 Termine müssen dann Räume gesucht werden. 

Abstimmen mit anderen Lehrstühlen:

  • Gerade die Lehrstühle für Maschinenbau und IDS sollen immer telefonisch oder per Email kontaktiert werden um den Wunschtermin abzusichern.  

Melanie Neubauer, M.Sc.

Ph.D. Student at the Montanuniversität Leoben

Hi! My Name is Melanie Neubauer and I started at the CPS-Chair in April 2023. 

I studied Industrial Logistics at the Montanuniversität Leoben, where I passed my  Master’s defense in March 2023.

In my doctoral work, I investigate  deep neural networks for image processing in cyber-physical-systems combined with inverse reinforcement learning techniques.

The title of my doctoral work is: Vision-based Deep Inverse Reinforcement Learning

Research Interests

  • Cyber-Physical-Systems 
  • Robotics
  • Machine Learning

Contact

M.Sc. Melanie Neubauer
Doctoral Student supervised by Univ.-Prof. Dr. Elmar Rueckert since April 2023.
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Phone:  +43 3842 402 – 1901 (Sekretariat CPS)

Email:   melanie.neubauer@unileoben.ac.at
Web Work: CPS-Page
Chat: WEBEX

Publications

2024

Neubauer, Melanie; Rueckert, Elmar

Semi-Autonomous Fast Object Segmentation and Tracking Tool for Industrial Applications Proceedings Article

In: IEEE International Conference on Ubiquitous Robots (UR 2024), IEEE 2024.

Links | BibTeX

Semi-Autonomous Fast Object Segmentation and Tracking Tool for Industrial Applications

B.Sc. Thesis – Marco Schwarz: Development of a generic ROS2 Device Interface based on Micro-ROS on a ESP32

Supervisor: DI Nikolaus Feith;
Konrad Bartsch;
Univ.-Prof. Dr Elmar Rückert
Start date: 8th Februar 2023

 

Theoretical difficulty: low
Practical difficulty: high

Abstract

Modern IoT devices are powerful elements in complex Cyber-Physical-Systems (CPS). 

 

However, communicating with such microcontrollers can be challenging and often requires custom software and hardware interfaces. When working with many different devices, this can quickly become overwhelming. 

The goal of this thesis is to develop a generic hardware interface for the ESP32 microcontroller.

Individual hardware devices, sensors, and actuators can be integrated into a CPS through configuration files. Adjusting these files does not require in-depth hardware or software knowledge and allows rapid IoT development and integration via ROS 2.

The power of the generic ROS2 device interface is demonstrated in multiple use cases, e.g., the sensor glove with flex sensors, vibration motors and an IMU, or an ODrive motor controller board for mobile robots. 

Tentative Work Plan

To achieve our objective, the following concrete tasks will be focused on:

  • Assess the hardware and software requirements for the interfaces.
  • Literature research on related or existing generic ROS2 solutions.
  • Development of the generic software program. 
  • Use case evaluation of the interface for various devices. Assessment of the performance and limitations. 
  • Software documentation in the wiki of the git repository.
  • B.Sc. thesis writing
  • Research paper contribution with figures, results (optional).

Related Work

[R1] Dauphin, L., Baccelli, E., & Adjih, C. (2018, September). RIOT-ROS2: low-cost robots in IoT controlled via information-centric networking. In 2018 IFIP/IEEE International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN) (pp. 1-6). IEEE.

[R2] Barciś, M., Barciś, A., Tsiogkas, N., & Hellwagner, H. (2021). Information Distribution in Multi-Robot Systems: Generic, Utility-Aware Optimization Middleware. Frontiers in Robotics and AI8, 685105.

[R3] Jo, W., Kim, J., Wang, R., Pan, J., Senthilkumaran, R. K., & Min, B. C. (2022). Smartmbot: A ros2-based low-cost and open-source mobile robot platform. arXiv preprint arXiv:2203.08903.

Tutorials and Documentations

[1] ESP32 Tutorials, last visited 09.02.2023, https://randomnerdtutorials.com/getting-started-with-esp32/

[2] ESP32 Tutorials, last visited 09.02.2023, https://www.az-delivery.de/en/blogs/azdelivery-blog-fur-arduino-und-raspberry-pi/esp32-das-multitalent

[3] MAC OS Serial Driver, last visited 09.02.2023, https://github.com/adrianmihalko/ch340g-ch34g-ch34x-mac-os-x-driver

[4] ESP32 Datasheet, last visited 09.02.2023, https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

[5] ROS2 Documentation, last visited 09.02.2023, https://docs.ros.org/en/humble

Thesis

PURE Datenbank

Ansprechperson an der MUL

Publikationen

Vergleich der Publikationen auf unserer Webpage https://cps.unileoben.ac.at/publications/mit den Publikationen in PURE. Fehlende Einträge müssen erstellt werden. 

 

Neuer Eintrag: Contribution to Journal

Etwas verwirrend mag die Kategorisierung sein. Alle unsere Arbeiten sind unter dem Hauptpunkt “Contribution to Journal” angesiedelt. 

  • Conference Article (our peer-reviewed conf., workshop and abstract papers)
  • Article (real journal articles)

Maximilian Pettinger, B.Sc.

Student Assistant at the Montanuniversität Leoben

IMG_E2067[1]

Short bio: Maximilian Pettinger, B.Sc started at CPS in November  2022.

Maximilian Pettinger is a master student in Polymer Engineering and bachelor student in Mechanical Engineering, both Montanuniversity Leoben. Prior to his master program he studied Polymer Engineering at the Montanuniversität Leoben, where he passed his Bachelor defense in January 2022. Furthermore, he is a member of the MotoStudent Team (MontanFactory Racing) of the University of Leoben.

Research Interests

  • Robotics, MicroROS, 

Thesis

Contact

Maximilian Pettinger, B.Sc 
Student Assistent at the Chair of Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Email:   maximilian.pettinger@stud.unileoben.ac.at

Unitree GO1

The video shows our Unitree GO1 robot at its first steps at CPS. This quadruped robot can locomote in rough terrain, autonomously avoids obstacles like stones or blocking barriers, and provides a large number of sensors for navigation and mapping research projects. 

Links

Videos

  • Research videos using the robot will be presented here. 
 

Publications

  • Publications about the robot as well as related topics will be found here.

Zoll / Imports / Exports

Für Exporte u. Importe aus dem Nicht-EU Ausland

  • Zollvorschriften: https://mydhl.express.dhl/at/de/help-and-support/customs-clearance-advice/customs-regulatory-updates.html
  • HAM. Code check: https://hs.e-to-china.com/

Importe / Exporte über die DHL

Hier sollen alle Daten vorab auf MyDHL+online eingetragen werden.

Hilfe gibte es hier

  • https://dhl-news.com/624-82NYR-FTBW2X-4YH5EJ-1/c.aspx

Ansprechperson MUL

Finanzbuchhaltung: Nadja Schulhofer (nadja.schulhofer@unileoben.ac.at).

Vacations and Work from Home

General Workflows and Agreements

Find below some general descriptions of workflows and agreements for working at our chair.

For any further question, you can always ask the whole CPS team.

Vacation Application Process

Please follow the instructions below, when you apply for any vacation days. 
 
  1. Request my permission via email
    • Please always send me an email first, where you ask for my ok for your vacation plan. Otherwise, I will ignore any notifications from the SAP system.
    • Add Regina cc to the email

  2. Apply for vacations in the online SAP portal (https://ess.unileoben.ac.at/)
    • I will receive an automatic email notification and will approve your application.
    • Without my approval, your application is not granted.

  3. Add your vacation days to our “CPS Events” Calendar
    • All of you have write access to add your vacation days.  

Working from at Home

According to your work contract, you have to come to the office for work.

Exceptions based on eventually valid covid regulations will be communicated via emails from the president of the university.

Understanding the basics of privacy

Important Articles

Companies like Google collect and process your data

Google collects your data from many different sources. Here are some examples:

  • Gmail: Google can read and store information from every email you write and receive, including in the spam, draft, and trash folders.
  • Google Maps: Google saves every location you search, in addition to all the places you physically visit with your devices, even if you aren’t logged in. Are you using Waze instead? Google owns that too. The ubiquity of phones and our constant use of them makes them almost like tracking devices we carry around willingly.
  • Android devices: Because Android phones and tablets run on an operating system built by Google, the company can track which ads you’re shown while using your phone. Google also knows what time, down to the second, you open each app.
  • Google apps: The Google Play store records all your searches and downloads, as well as any rewards cards used. Google also tracks which articles you’ve read through Google News.
  • YouTube: Google acquired YouTube back in 2006. When you’re using YouTube, Google tracks your search history, your watch history, how long you spend watching videos, and all your comments and likes or dislikes.
  • Google Assistant: Every request you make and every question you pose is recorded — you can even listen to the audio playback.
  • G Suite: Your calendar shows where you’ll be and when, and Google Hangouts saves all of your conversations.

If you are interessted in which data Google has collected about you, test Google Takeout.

Recommendations: Browser, Search Engine & Online Docs

In our digital age, we have to be aware of the data collection strategies of all services that we use. However, often, alternatives  developed by the open-source community exist. Here are some recommendations:

 

Recommendations: Messenger & Repositories

  • I personally recommend: Nextcloud’s Talk App.
  • Setup your own repo server using, e.g., Gitea or Gitey.

Final remarks: Stay sensitive to what happens to your data. Nothing is for free.