Der Lehrstuhl für Cyber-Physical-Systems widmet sich anwendungsorientierter Grundlagenforschung in den Bereichen der künstlichen Intelligenz, der Digitalisierung von Industrieprozessen und der Robotik. Ein Focus liegt dabei auf der Modelierung von intelligenten menschlichen Lernprozessen mit dem Ziel effiziente Lernmethoden und Vorhersagemodelle für cyber-physikalische Systeme zu entwickeln.
In this thesis, the student has the unique opportunity to investigate supervised machine learning methods for predicting yield strengths using probabilistic regression models and deep learning approaches. The thesis is implemented with support of the MSC Software GmbH and the Stahl- und Walzwerk Marienhütte GmbH in Graz.
In the image above and below you see the production line at the Stahl- und Walzwerk Marienhütte GmbH in Graz.
To ensure the high quality standards, frequent ‘yield strength’ measurements are performed. These measurements have resulted in a large dataset which can now be analyzed and used to learn a prediction model. First tests were promising and the thesis will be very likely a big success.
The goal of this thesis is to analyze the data and to learn prediction models taking uncertainty estimates into account.
The models will be implemented and tested in Python.
Tentative Work Plan
To achieve our aim, the following concrete tasks will be focused on:
Literature research on the underlying physical & chemical processes.
Data analysis, filtering, preprocessing, visualization of the existing data.
Implementation of deep neural networks (Variational Autoencoder), neural processes and GPs in Python. Baseline implementations are existing.
Visualization and analysis of the prediction performance. An outlier detection and warning system should be implemented.
(Optional) Implementation of neural time-series models like LSTMs.
1 position for a fully employed University Assistant at the Chair of Cyber-Physical-Systems at the earliest possible date or beginning on 1st of July 2022 in a full-time(100%)4-year term of employment. Salary Group B1 to Uni-KV, monthly minimum charge excl. SZ.: € 3.058,60 for 40 hours per week (14 times a year), actual classification takes place according to accountable activity-specific previous experience.
We are looking for a motivated student interested in a PhD thesis on “Machine Learning of Robot Motor Skills”. The goal of the doctoral thesis is to develop probabilistic or deep neural networks for interactive learning of autonomous systems and industrial processes. This will involve processing complex sensor data such as from RGB-D cameras, tactile data and sensory data of the industrial machines for motion control of robotic systems. The developed models will be tested using realistic industrial applications for process modeling and with robotic systems within our AI Robot Lab.
What we offer
The opportunity to work on research ideas of exciting modern topics in artificial intelligence and robotics, to develop your own ideas, to be part of a young and newly formed team, to go on international research trips, and to receive targeted career guidance for a successful scientific career.
Job requirements
Completed master’s degree in computer science, physics, telematics, statistics, mathematics, electrical engineering, mechanics, robotics, mechanical engineering or an equivalent education in the sense of the desired qualification; Programming experience in one of the languages C++, Python or similar; Experience in robotics, with ROS, and reinforcement learning or in machine learning. Willingness and ability for scientific work in research including publications with the possibility to write a dissertation.
Desired additional qualifications
Experience with movement primitives, Keras, Tensorflow and graphical models. Basic knowledge of Linux is advantageous. Good English skills and willingness to travel for research and to give technical presentations.
The Montanuniversitaet Leoben intends to increase the number of women on its faculty and therefore specifically invites applications by women. Among equally qualified applicants women will receive preferential consideration.
You are interested in working with real robots and want to understand how such machines ‘learn’?
This project will enable you to dig into the fascinating world of robot learning.
You will work alone or in a team on modern, state-of-the art hardware at the Chair of CPS.
We offer complex robotic systems, powerful PCs and GPU clusters to work with.
The course provides a structured and well motivated overview over modern techniques and tools which enable the students to define learning problems in Cyber-Physical-Systems.
Note that offer two courses, 190.014 and 190.019. You may select two project topics or continue your project in the second course.
Selected Topics (Many more are available upon request)
Univ.-Prof. Dr. Elmar Rueckert is organizing this research seminar. Topics include research in AI, machine and deep learning, robotics, cyber-physical-systems and process informatics.
Language: English only
Are you an undergraduate, graduate, or doctoral student and want to learn more about AI?
This course will give you the opportunity to listen to research presentations of latest achievements. The target audience are non-experts. Thus no prior knowledge in AI is required.
To get the ECTS credits, you will select a research paper, read it and present it within the research seminar (10-15 min presentation). Instead of selecting a paper of our list, you can also suggest a paper. This suggestion has to be discussed with Univ.-Prof. Dr. Elmar Rueckert first.
After the presentation, the paper is discussed for 10-15 min.
Further, external presenters that are leading researchers in AI will be invited. External speakers will present their research in 30-45 min, followed by a 15 min discussion.
The exercise will enable the application of modern machine learning techniques and tools in robotics / cyber-physical systems. The following topics will be covered in the course: – Kinematics, dynamics & simulation of CPS. – Data representations & model learning. – Control techniques, priorities & torque control. – Planning & cognitive reasoning. – Reinforcement learning and black-box optimization.
The course provides a structured and well motivated overview over modern techniques and tools which enable the students to define learning problems in Cyber-Physical-Systems.
Find below Latex templates for student reports, B.Sc. theses, M.Sc. theses and doctoral theses.
You may use these templates also for other lectures, courses, seminars or doctoral theses at other chairs at the Montanuniversität Leoben. However, do not remove the acknowledgement or copyright statement.
Student Report or Assignment
We provide a professional scientific student report template using double columns.
Die Anforderungen an Industriebetriebe im Zeitalter der Digitalisierung sind enorm gestiegen und der Bedarf an individualisierten Losungen ist groß. Kleine Stückzahlen, komplexe Bauteilegruppen und der notwendige hohe grad der Automatisierung ist mit fest vorprogrammierten Roboterprogrammen nicht mehr umsetzbar.
Projektziel
Ziel des Projektes ist es sich als starken Partner für Forschungs- und Industriebetriebe zu positionieren. Dazu soll ein begehbares, autonomes Industrieroboterlabor aufgebaut werden, in dem Robotern praxisrelevante Arbeitsablaufe durch moderne Lernmethoden der kunstliche Intelligenz beigebracht werden. Werksmitarbeiter können innerhalb weniger Sekunden, durch Vorzeigen oder durch fuhrendes Anleiten, Maschinen komplexe Bewegungsabläufe beibringen. Für die Koordination multipler autonomer Robotereinheiten und die Prozessüberwachung werden moderne Datenmodellierungsmethoden entwickelt und über Tablets bedient.
Anwendungen
Die Anwendungsszenarien umfassen Manipulations- und Sortieraufgaben an einem Rollenforderband, die automatische visuelle Objekterkennung und Vorhersage unter realen Industriebedingungen, der Warentransport durch mobile Roboter mit Greifarmen und die Bedienung komplexer Industriemaschinen, exemplarisch vorgefuhrt an einer Bohrfräsmaschine und an einer Kleindrehbank.
Kooperationen und öffentliche Events
Das autonome Industrieroboterlabor soll nachhaltig zu Kooperationen mit nationalen und regionalen Forschungs- und Industriepartnern fuhren und die Sichtbarkeit des Lehrstuhls fur Cyber-Physical-Systems (CPS) und der Montanuniversitat Leoben im Bereich der angewandten kunstlichen Intelligenz für CPS durch jährliche öffentliche Events steigern.
Der Lehrstuhl für Cyber-Physical-Systems widmet sich anwendungsorientierter Grundlagenforschung in den Bereichen der künstlichen Intelligenz, der Digitalisierung von Industrieprozessen und der Robotik. Ein Focus liegt dabei auf der Modelierung von intelligenten menschlichen Lernprozessen mit dem Ziel effiziente Lernmethoden und Vorhersagemodelle für cyber-physikalische Systeme zu entwickeln.
Gerade diese Schnittstelle zwischen fundamentaler Grundlagenforschung in tiefen neuronalen Netzen, probabilistischer Informationsverarbeitung und komplexen industriellen Anwendungen zeichnen den Lehrstuhl für Cyber-Physical-Systems aus.
Neben der Entwicklung von Algorithmen und Methoden zur Modelierung und Verarbeitung großer Datenmengen, baut der Lehrstuhl auch komplexe Roboter- und Sensorsysteme. Eines dieser Systeme wird in naher Zukunft autonom an der Universität navigieren, Besucher empfangen und mit ihnen über ein gelerntes Dialogsystem kommunizieren. Darüber hinaus entsteht gerade ein begehbares KI Roboter Labor, dass die anwendungsorientierte Grundlagenforschung anhand von Aufgaben mit Industrieroboterarmen an einem Rollenförderband greifbar macht.