image_pdfimage_print

Linus Nwankwo, M.Sc.

Short Bio

Mr. Linus Nwankwo started as a PhD student at the Chair of Cyber-Physical-Systems (CPS) in August 2021.  Prior to joining CPS, he worked as a research intern at the Department of Electrical and Computer EngineeringTechnische Universität Kaiserslautern, Germany.

In 2020, he obtained his M.Sc. degree in Automation and Robotics, a speciality in control for Green Mechatronics (GreeM) at the University of Bourgogne Franche-Comté (UBFC), France. In his M.Sc. thesis,  he implemented a stabilisation control for a mobile inverted pendulum robot and investigated the possibility of controlling and stabilising the robot via CANopen communication network.

Research Interests

  • Robotic Spatial Awareness
    • Development of robust and ecocentric SLAM methods.
    • Path planning and autonomous navigation
    • Environment-aware perception for enhanced robot autonomy in heterogenous in-outdoor, and subterranean environments.
    • Probabilistic learning for robotics
  • Machine Learning and Human-Robot Interaction (HRI)
    • Grounding free-form natural language instructions into robotic affordances.
    • Large language models (LLMs) and vision language models (VLMs) for effective language-condition HRI in the real world.
    • Intention and social-aware planning for social service robots navigation

Research Videos

Contact & Quick Links

M.Sc. Linus Nwankwo
Doctoral Student supervised by Univ.-Prof. Dr. Elmar Rueckert since August 2021.
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Phone:  +43 3842 402 – 1901 (Sekretariat CPS)
Email:   linus.nwankwo@unileoben.ac.at 
Web Work: CPS-Page
Web Private: https://sites.google.com/view/linus-nwankwo
Chat: WEBEX

Publications

2025

Nwankwo, Linus; Ellensohn, Bjoern; Dave, Vedant; Hofer, Peter; Forstner, Jan; Villneuve, Marlene; Galler, Robert; Rueckert, Elmar

EnvoDat: A Large-Scale Multisensory Dataset for Robotic Spatial Awareness and Semantic Reasoning in Heterogeneous Environments Proceedings Article

In: IEEE International Conference on Robotics and Automation (ICRA 2025)., 2025.

Links | BibTeX

EnvoDat: A Large-Scale Multisensory Dataset for Robotic Spatial Awareness and Semantic Reasoning in Heterogeneous Environments

2024

Nwankwo, Linus; Rueckert, Elmar

Multimodal Human-Autonomous Agents Interaction Using Pre-Trained Language and Visual Foundation Models Workshop

2024, ( In Workshop of the 2024 ACM/IEEE International Conference on HumanRobot Interaction (HRI ’24 Workshop), March 11–14, 2024, Boulder, CO, USA. ACM, New York, NY, USA).

Abstract | Links | BibTeX

Multimodal Human-Autonomous Agents Interaction Using Pre-Trained Language and Visual Foundation Models

Nwankwo, Linus; Rueckert, Elmar

The Conversation is the Command: Interacting with Real-World Autonomous Robots Through Natural Language Proceedings Article

In: HRI '24: Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction., pp. 808–812, ACM/IEEE Association for Computing Machinery, New York, NY, USA, 2024, ISBN: 9798400703232, (Published as late breaking results. Supplementary video: https://cloud.cps.unileoben.ac.at/index.php/s/fRE9XMosWDtJ339 ).

Abstract | Links | BibTeX

The Conversation is the Command: Interacting with Real-World Autonomous Robots Through Natural Language

2023

Nwankwo, Linus; Rueckert, Elmar

Understanding why SLAM algorithms fail in modern indoor environments Proceedings Article

In: International Conference on Robotics in Alpe-Adria-Danube Region (RAAD). , pp. 186 – 194, Cham: Springer Nature Switzerland., 2023.

Abstract | Links | BibTeX

Understanding why SLAM algorithms fail in modern indoor environments

Nwankwo, Linus; Fritze, Clemens; Bartsch, Konrad; Rueckert, Elmar

ROMR: A ROS-based Open-source Mobile Robot Journal Article

In: HardwareX, vol. 15, pp. 1–29, 2023.

Abstract | Links | BibTeX

ROMR: A ROS-based Open-source Mobile Robot

Nikolaus Feith, M.Sc.

Ph.D. Student at the Montanuniversität Leoben

Hello, my name is Nikolaus Feith and I started working at the Chair for CPS in June 2021. After finishing my Master’s degree in Mining Mechanical Engineering at the University of Leoben in June 2022, I started my PhD at the CPS Chair in July 2022.

In my PhD thesis, I am investigating the application of human expertise through Interactive Machine Learning in robotic systems.

Research Interests

  • Machine Learning
    • Interactive Machine Learning
    • Model Free Reinforcement Learning
    • Robot Learning
  • Optimization
    • Bayesian Optimization
    • CMA-ES
  • Human-Robot Interfaces
    • Augmented Reality
    • Robot Web Tools
  • Embedded Systems in Robotics
  • Cyber Physical Systems

Teaching & Thesis Supervision

Current & Past Theses

Teaching

Contact

M.Sc. Nikolaus Feith
Doctoral Student supervised by Univ.-Prof. Dr. Elmar Rueckert since July 2022.
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Phone:  +43 3842 402 – 1901 (Sekretariat CPS)
Email:   nikolaus.feith@unileoben.ac.at 
Web Work: CPS-Page
Chat: WEBEX

Publications

2024

Feith, Nikolaus; Rueckert, Elmar

Integrating Human Expertise in Continuous Spaces: A Novel Interactive Bayesian Optimization Framework with Preference Expected Improvement Proceedings Article

In: IEEE International Conference on Ubiquitous Robots (UR 2024), IEEE 2024.

Links | BibTeX

Integrating Human Expertise in Continuous Spaces: A Novel Interactive Bayesian Optimization Framework with Preference Expected Improvement

Feith, Nikolaus; Rueckert, Elmar

Advancing Interactive Robot Learning: A User Interface Leveraging Mixed Reality and Dual Quaternions Proceedings Article

In: IEEE International Conference on Ubiquitous Robots (UR 2024), IEEE 2024.

Links | BibTeX

Advancing Interactive Robot Learning: A User Interface Leveraging Mixed Reality and Dual Quaternions

Dr. Daniel Tanneberg

Ph.D. Student at the University of Luebeck

Portrait of Daniel Tanneberg, Jan. 2018

Short bio: Dr. Daniel Tanneberg passed his PhD defense on the 3rd of December in 2020. He is now working as senior researcher at the Honda Research Institute in Offenbach, Germany. 

He was co-supervised by Prof. Jan Peters from the Technische Universitaet Darmstadt and Univ.-Prof. Dr. Elmar Rueckert, the head of this lab.

Daniel has joined the Intelligent Autonomous Systems (IAS) Group at the Technische Universitaet Darmstadt in October 2015 as a Ph.D. Student. His research focused on (biologically-inspired) machine learning for robotics and neuroscience. During his Ph.D., Daniel investigated the applicability and properties of spiking and memory-augmented deep neural networks. His neural networks were applied to robotic as well as to algorithmic tasks. 

With his masters thesis with the title Neural Networks Solve Robot Planning Problems he won the prestigoues Hanns-Voith-Stiftungspreis 2017 ’Digital Solutions’.

Research Interests

  • (Biologically-inspired) Machine Learning, (Memory-augmented) Neural Networks, Deep Learning, (Stochastic) Neural Networks, Lifelong-Learning.

Contact & Quick Links

Dr. Daniel Tanneberg
Former Doctoral Student supervised by Prof. Dr. Jan Peters and Univ.-Prof. Dr. Elmar Rueckert from 10/2015 to 12/2020.
Hochschulstr. 10,
64289 Darmstadt,
Deutschland

Email:
   daniel@robot-learning.de
Web: https://www.rob.uni-luebeck.de/index.php?id=460

Publcations

2021

Tanneberg, Daniel; Ploeger, Kai; Rueckert, Elmar; Peters, Jan

SKID RAW: Skill Discovery from Raw Trajectories Journal Article

In: IEEE Robotics and Automation Letters (RA-L), pp. 1–8, 2021, ISSN: 2377-3766, (© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.).

Links | BibTeX

SKID RAW: Skill Discovery from Raw Trajectories

2020

Tanneberg, Daniel; Rueckert, Elmar; Peters, Jan

Evolutionary training and abstraction yields algorithmic generalization of neural computers Journal Article

In: Nature Machine Intelligence, pp. 1–11, 2020.

Links | BibTeX

Evolutionary training and abstraction yields algorithmic generalization of neural computers

2019

Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks Journal Article

In: Neural Networks – Elsevier, vol. 109, pp. 67-80, 2019, ISBN: 0893-6080, (Impact Factor of 7.197 (2017)).

Links | BibTeX

Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks

2017

Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Efficient Online Adaptation with Stochastic Recurrent Neural Networks Proceedings Article

In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2017.

Links | BibTeX

Efficient Online Adaptation with Stochastic Recurrent Neural Networks

Thiem, Simon; Stark, Svenja; Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Simulation of the underactuated Sake Robotics Gripper in V-REP Proceedings Article

In: Workshop at the International Conference on Humanoid Robots (HUMANOIDS), 2017.

Links | BibTeX

Simulation of the underactuated Sake Robotics Gripper in V-REP

Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals Proceedings Article

In: Proceedings of the Conference on Robot Learning (CoRL), 2017.

Links | BibTeX

Online Learning with Stochastic Recurrent Neural Networks using Intrinsic Motivation Signals

2016

Tanneberg, Daniel; Paraschos, Alexandros; Peters, Jan; Rueckert, Elmar

Deep Spiking Networks for Model-based Planning in Humanoids Proceedings Article

In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2016.

Links | BibTeX

Deep Spiking Networks for Model-based Planning in Humanoids

Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan

Recurrent Spiking Networks Solve Planning Tasks Journal Article

In: Nature Publishing Group: Scientific Reports, vol. 6, no. 21142, 2016.

Links | BibTeX

Recurrent Spiking Networks Solve Planning Tasks

Sharma, David; Tanneberg, Daniel; Grosse-Wentrup, Moritz; Peters, Jan; Rueckert, Elmar

Adaptive Training Strategies for BCIs Proceedings Article

In: Cybathlon Symposium, 2016.

Links | BibTeX

Adaptive Training Strategies for BCIs

Svenja Stark, M.Sc.

Ph.D. Student at the Technical University of Darmstadt

Portrait of Svenja Stark, Jan. 2018

Short bio: Svenja Stark left the TU Darmstadt team in 2020 and is now a successful high school teacher in Hessen. She joined the Intelligent Autonomous Systems Group as a PhD student in December 2016, where she was supervised by Prof. Dr. Jan Peters and Univ.-Prof. Dr. Elmar Rueckert. 

She has been working on the GOAL-Robots project that aimed at developing goal-based open-ended autonomous learning robots; building lifelong learning robots.

Before joining the Autonomous Systems Labs, Svenja Stark received a Bachelor and a Master of Science degree in Computer Science from the TU Darmstadt. During her studies, she completed parts of her graduate coursework at the University of Massachusetts in Amherst. Her thesis entitled “Learning Probabilistic Feedforward and Feedback Policies for Generating Stable Walking Behaviors” was written under supervision of Elmar Rueckert and Jan Peters.

Research Interests

  • Multi-task learning, meta-learning, goal-based learning, intrinsic motivation, lifelong learning, Reinforcement Learning, motor skill learning.

Contact & Quick Links

M.Sc. Svenja Stark
Doctoral Student supervised by Prof. Dr. Jan Peters and Univ.-Prof. Dr. Elmar Rueckert. 
Hochschulstr. 10,
64289 Darmstadt,
Deutschland

Email:   svenja@robot-learning.de
Web: https://www.rob.uni-luebeck.de/index.php?id=460

Publcations

2019

Stark, Svenja; Peters, Jan; Rueckert, Elmar

Experience Reuse with Probabilistic Movement Primitives Proceedings Article

In: Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), 2019., 2019.

Links | BibTeX

Experience Reuse with Probabilistic Movement Primitives

2017

Stark, Svenja; Peters, Jan; Rueckert, Elmar

A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries Proceedings Article

In: Proceedings of the International Conference on Humanoid Robots (HUMANOIDS), 2017.

Links | BibTeX

A Comparison of Distance Measures for Learning Nonparametric Motor Skill Libraries

Thiem, Simon; Stark, Svenja; Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar

Simulation of the underactuated Sake Robotics Gripper in V-REP Proceedings Article

In: Workshop at the International Conference on Humanoid Robots (HUMANOIDS), 2017.

Links | BibTeX

Simulation of the underactuated Sake Robotics Gripper in V-REP

Honghu Xue, M.Sc.

Ph.D. Student at the University of Luebeck

Portrait of Honghu Xue

Short bio: Mr. Honghu Xue investigates in his doctoral thesis deep reinforcement learning approaches for  planning and control. His methods are applied to mobile robots and the FRANKA EMIKA robot arm. He started his thesis in March 2019.

Honghu Xue received his M.Sc. in Embedded Systems Engineering at Albert-Ludwigs-University of Freiburg with the study focus on Reinforcement Learning, Machine Learning and AI.

Research Interests

  • Deep Reinforcement Learning: Model-Based RL, Sample-efficient RL, Long-time-horizon RL, Efficient Exploration Strategies in MDP, Distributional RL, Policy Search.
  • Deep & Machine Learning: Learning Transition Model in MDP (featuring visual input and modelling the stochasticity of the environment), Super-resolution Image using DL, Time-Sequential Model for Partial Observability.

Research Videos

Contact & Quick Links

M.Sc. Honghu Xue
Doctoral Student supervised by Univ.-Prof. Dr. Elmar Rueckert since March 2019.
Ratzeburger Allee 160,
23562 Lübeck,
Deutschland

Phone:  +49 451 3101 – 5213
Email:   xue@rob.uni-luebeck.de
Web:https://www.rob.uni-luebeck.de/index.php?id=460

CV of M.Sc. Honghu Xue
DBLP
Frontiers Network
Github
Google Citations
LinkedIn
ORCID
Rearch Gate

Meeting Notes

Publcations

2023

Yadav, Harsh; Xue, Honghu; Rudall, Yan; Bakr, Mohamed; Hein, Benedikt; Rueckert, Elmar; Nguyen, Thinh

Deep Reinforcement Learning for Autonomous Navigation in Intralogistics Workshop

2023, (European Control Conference (ECC) Workshop, Extended Abstract.).

Abstract | Links | BibTeX

Deep Reinforcement Learning for Autonomous Navigation in Intralogistics

2022

Xue, Honghu; Song, Rui; Petzold, Julian; Hein, Benedikt; Hamann, Heiko; Rueckert, Elmar

End-To-End Deep Reinforcement Learning for First-Person Pedestrian Visual Navigation in Urban Environments Proceedings Article

In: International Conference on Humanoid Robots (Humanoids 2022), 2022.

Abstract | Links | BibTeX

End-To-End Deep Reinforcement Learning for First-Person Pedestrian Visual Navigation in Urban Environments

Herzog, Rebecca; Berger, Till M; Pauly, Martje Gesine; Xue, Honghu; Rueckert, Elmar; Munchau, Alexander; B"aumer, Tobias; Weissbach, Anne

Cerebellar transcranial current stimulation-an intraindividual comparison of different techniques Journal Article

In: Frontiers in Neuroscience, 2022.

Links | BibTeX

Cerebellar transcranial current stimulation-an intraindividual comparison of different techniques

Xue, Honghu; Hein, Benedikt; Bakr, Mohamed; Schildbach, Georg; Abel, Bengt; Rueckert, Elmar

Using Deep Reinforcement Learning with Automatic Curriculum Learning for Mapless Navigation in Intralogistics Journal Article

In: Applied Sciences (MDPI), Special Issue on Intelligent Robotics, 2022, (Supplement: https://cloud.cps.unileoben.ac.at/index.php/s/Sj68rQewnkf4ppZ).

Abstract | Links | BibTeX

Using Deep Reinforcement Learning with Automatic Curriculum Learning for Mapless Navigation in Intralogistics

2021

Xue, Honghu; Herzog, Rebecca; Berger, Till M.; Bäumer, Tobias; Weissbach, Anne; Rueckert, Elmar

Using Probabilistic Movement Primitives in analyzing human motion differences under Transcranial Current Stimulation Journal Article

In: Frontiers in Robotics and AI , vol. 8, 2021, ISSN: 2296-9144.

Abstract | Links | BibTeX

Using Probabilistic Movement Primitives in analyzing human motion differences under Transcranial Current Stimulation

Cansev, Mehmet Ege; Xue, Honghu; Rottmann, Nils; Bliek, Adna; Miller, Luke E.; Rueckert, Elmar; Beckerle, Philipp

Interactive Human-Robot Skill Transfer: A Review of Learning Methods and User Experience Journal Article

In: Advanced Intelligent Systems, pp. 1–28, 2021.

Links | BibTeX

Interactive Human-Robot Skill Transfer: A Review of Learning Methods and User Experience

2020

Akbulut, M Tuluhan; Oztop, Erhan; Seker, M Yunus; Xue, Honghu; Tekden, Ahmet E; Ugur, Emre

ACNMP: Skill Transfer and Task Extrapolation through Learning from Demonstration and Reinforcement Learning via Representation Sharing Proceedings Article

In: 2020.

Abstract | Links | BibTeX

ACNMP: Skill Transfer and Task Extrapolation through Learning from Demonstration and Reinforcement Learning via Representation Sharing

Rottmann, N.; Bruder, R.; Xue, H.; Schweikard, A.; Rueckert, E.

Parameter Optimization for Loop Closure Detection in Closed Environments Proceedings Article

In: Workshop Paper at the International Conference on Intelligent Robots and Systems (IROS), pp. 1–8, 2020.

Links | BibTeX

Parameter Optimization for Loop Closure Detection in Closed Environments

Xue, H.; Boettger, S.; Rottmann, N.; Pandya, H.; Bruder, R.; Neumann, G.; Schweikard, A.; Rueckert, E.

Sample-Efficient Covariance Matrix Adaptation Evolutional Strategy via Simulated Rollouts in Neural Networks Proceedings Article

In: International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI’ 2020), 2020.

Links | BibTeX

Sample-Efficient Covariance Matrix Adaptation Evolutional Strategy via Simulated Rollouts in Neural Networks

Dr. Nils Rottmann

Ph.D. Student at the University of Luebeck

Short bio: With January 2018, Nils Rottmann is a PhD student and research scientist at the Institute for Robotics and Cognitive Systems at the University of Luebeck. In his doctoral study, with the title “Smart Sensor, Navigation and Learning Strategies for low-cost lawn care Systems”, he develops low-cost sensor systems and investigates probabilistic learning and modeling approaches. His research addresses the challenges of learning adaptive control strategies from few and sparse data and to predict and plan complex motions in dynamical systems.

He holds a master’s degree in Theoretical Mechanical Engineering from the Hamburg University of Technology, Germany. Nils Rottmann graduated with honors in December 2017 with a thesis entitled „Geometric Control and Stochastic Trajectory Planning for Underwater Robotic Systems“.

Research Interests

  • Robotics: Mobile Robotics, Sensor Development, Robot-Operating-System (ROS), Mobile Navigation, Path Planning, Complete Coverage Path Planning, Probabilistic Robotics.
  • Machine Learning: Non-Linear Regression, Graphical Models, Probabilistic Inference, Variational Inference, Gaussian Processes, Bayesian Optimization.

Contact & Quick Links

M.Sc. Nils Rottmann
Doctoral Student supervised by Univ.-Prof. Dr. Elmar Rueckert since March 2018.
Ratzeburger Allee 160,
23562 Lübeck,
Deutschland

Phone:  +49 451 3101 – 5222 
Email:   rottmann@rob.uni-luebeck.de
Web:  https://nrottmann.github.io

CV of M.Sc. Nils Rottmann
DBLP
Frontiers Network
GitHub
Google Citations
LinkedIn
ORCID
Research Gate

Publcations

2021

Rottmann, N.; Denz, R.; Bruder, R.; Rueckert, E.

Probabilistic Approach for Complete Coverage Path Planning with low-cost Systems Proceedings Article

In: European Conference on Mobile Robots (ECMR 2021), 2021.

Links | BibTeX

Probabilistic Approach for Complete Coverage Path Planning with low-cost Systems

Cansev, Mehmet Ege; Xue, Honghu; Rottmann, Nils; Bliek, Adna; Miller, Luke E.; Rueckert, Elmar; Beckerle, Philipp

Interactive Human-Robot Skill Transfer: A Review of Learning Methods and User Experience Journal Article

In: Advanced Intelligent Systems, pp. 1–28, 2021.

Links | BibTeX

Interactive Human-Robot Skill Transfer: A Review of Learning Methods and User Experience

2020

Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E.

Exploiting Chlorophyll Fluorescense for Building Robust low-Cost Mowing Area Detectors Proceedings Article

In: IEEE SENSORS , pp. 1–4, 2020.

Links | BibTeX

Exploiting Chlorophyll Fluorescense for Building Robust low-Cost Mowing Area Detectors

Rottmann, N.; Kunavar, T.; Babič, J.; Peters, J.; Rueckert, E.

Learning Hierarchical Acquisition Functions for Bayesian Optimization Proceedings Article

In: International Conference on Intelligent Robots and Systems (IROS’ 2020), 2020.

Links | BibTeX

Learning Hierarchical Acquisition Functions for Bayesian Optimization

Rottmann, N.; Bruder, R.; Xue, H.; Schweikard, A.; Rueckert, E.

Parameter Optimization for Loop Closure Detection in Closed Environments Proceedings Article

In: Workshop Paper at the International Conference on Intelligent Robots and Systems (IROS), pp. 1–8, 2020.

Links | BibTeX

Parameter Optimization for Loop Closure Detection in Closed Environments

Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E.

A novel Chlorophyll Fluorescence based approach for Mowing Area Classification Journal Article

In: IEEE Sensors Journal, 2020.

Links | BibTeX

A novel Chlorophyll Fluorescence based approach for Mowing Area Classification

Xue, H.; Boettger, S.; Rottmann, N.; Pandya, H.; Bruder, R.; Neumann, G.; Schweikard, A.; Rueckert, E.

Sample-Efficient Covariance Matrix Adaptation Evolutional Strategy via Simulated Rollouts in Neural Networks Proceedings Article

In: International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI’ 2020), 2020.

Links | BibTeX

Sample-Efficient Covariance Matrix Adaptation Evolutional Strategy via Simulated Rollouts in Neural Networks

2019

Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E.

Loop Closure Detection in Closed Environments Proceedings Article

In: European Conference on Mobile Robots (ECMR 2019), 2019, ISBN: 978-1-7281-3605-9.

Links | BibTeX

Loop Closure Detection in Closed Environments

Rottmann, N.; Bruder, R.; Schweikard, A.; Rueckert, E.

Cataglyphis ant navigation strategies solve the global localization problem in robots with binary sensors Proceedings Article

In: Proceedings of International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS), Prague, Czech Republic , 2019, ( February 22-24, 2019).

Links | BibTeX

Cataglyphis ant navigation strategies solve the global localization problem in robots with binary sensors

Mrs. Mag. Elenka Orszova

Secretrary

Short bio: Mrs. Mag. B.Sc. Elenka Orszova  started in August 2021 at the chair of CPS. 

She studied Anthropology and Cognitive Science at the Comenius University in Bratislava, Slovakia. 

Research Interests

  • Cyber-Physical-Systems 
  • Modern Technologies 
  • Learning Machines and Robotics

Contact

Mrs. Mag. Elenka Orszova
Sekretariat des Lehrstuhls für Cyber-Physical-Systems
Montanuniversität Leoben
Franz-Josef-Straße 18, 
8700 Leoben, Austria 

Phone:  +43 3842 402 – 1901
Email:   elenka.orszova@unileoben.ac.at 
Web:  https://cps.unileoben.ac.at

Integrated CPS Project or B.Sc./M.Sc. Thesis: Learning to Walk through Reinforcement Learning

Supervisor: 

Start date: ASAP, e.g., 1st of October 2022

Qualifications

  • Interest in controlling and simulating legged robots
  • Interest in Programming in Python and ROS or ROS2
 
Keywords: locomotion, robot control, robot operating system (ROS), ESP32

Introduction

For humans, walking and running are effortless provided good health conditions are satisfied. However, training bipedal or quadrupedal robots to do the same is still today a challenging problem for roboticists and researchers. Quadrupedal robots are known to exhibit complex nonlinear dynamics which makes it near impossible for control engineers to design an effective controller for its locomotion or task-specific actions. 

Reinforcement learning in recent years has shown the most exciting and state-of-the-art artificial intelligence approaches to solving the above-mentioned problem. Although, other challenges, such as learning effective locomotion skills from scratch, transversing rough terrains, walking on a narrow balance beam [3], etc remains. Several researchers in their respective work have proved the possibilities of training quadrupedal robots to walk (fast or slow) or run (fast or slow) through reinforcement learning. Nevertheless, how efficient and effective these walking and running skills are achieved with real-time systems in comparison to humans or quadrupedal animals is still a task to solve.

In the context of this thesis, we propose to study the concept of reinforcement learning and subsequently apply it to train our 3D printed quadrupedal robot in the figure above to walk and run. For this, we will leverage on the work of [1, 2] to explore the robots’ capabilities in generating very dynamic motions or task-specific locomotive actions through reinforcement learning.

Tentative Work Plan

The following concrete tasks will be focused on:

  • study the concept of reinforcement learning as well as its application in quadruped robots for testing control and learning algorithms.
  • apply reinforcement learning algorithms to train the robot to perform skill-specific tasks such as walking, running, etc.
  • real-time experimentation, simulation (MATLAB, ROS & Gazebo, Rviz, C/C++, Python, etc) and validation.

References

[1]        Felix Grimminger, Avadesh Meduri, Majid Khadiv, Julian Viereck, Manuel Wuthrich Maximilien Naveau, Vincent Berenz, Steve Heim, Felix Widmaier, Thomas Flayols Jonathan Fiene, Alexander Badri-Sprowitz and Ludovic Righetti, “An Open Torque-Controlled Modular Robot Architecture for Legged Locomotion Research”, arXiv:1910.00093v2 [cs.RO] 23 Feb 2020.

[2]        Tuomas Haarnoja, Sehoon Ha, Aurick Zhou, Jie Tan, George Tucker and Sergey Levine, Learning to Walk via Deep Reinforcement Learning, arXiv:1812.11103v3 [cs.LG] 19 Jun 2019.

[3]        Haojie Shi1, Bo Zhou2, Hongsheng Zeng2, Fan Wang2y, Yueqiang Dong2, Jiangyong Li2, Kang Wang2, Hao Tian2, Max Q.-H. Meng, “Reinforcement Learning with Evolutionary Trajectory Generator: A General Approach for Quadrupedal Locomotion”, arXiv: 2109.0 6 4 09v1  [cs.RO]  14 Sep 2021.

Link: zur Folie

Robert-Bosch-Stiftung LEGO Robotic 07/2019-10/2021

Neuartige Robotertechnologien und künstliche Lernmethoden können Schlüsseltechnologien sein, um  unsere Umwelt zu schützen. Prof. Dr. Elmar Rückert und Herr Ole Pein haben diese Seite ins Leben gerufen, um diese Thematik gemeinsam mit Schülerinnen und Schülern des Carl-Jacob-Burckhardt-Gymnasium in Lübeck zu untersuchen.

Das Projekt wird innerhalb des Wahlpflichtunterrichts am Carl-Jacob-Burckhardt-Gymnasium  in der 8. und 9. Klassenstufe verwirklicht. In der 8. Klasse lernen die Schülerinnen und Schüler Lego-Mindstorms-EV3-Roboter zu konstruieren und zu programmieren. 

Das Projekt basiert auf unserer frei verfügbaren Python Software für LEGO EV3s. Es wird kontinuierlich von einem Team der Universität Lübeck weiterentwickelt und an die Bedürfnisse und Fragestellungen der Schülerinnen und Schüler angepasst.

Das Projekt mit dem Titel „Autonome Elektrofahrzeuge als urbane Lieferanten“ wird im Rahmen des Programms „Our Common Future“ von der Robert Bosch Stiftung gefördert.

Link: https://future.ai-lab.science

1 Secretary – July 1st 2021, RefID: 2106APC

1 Stelle für eine/n halbbeschäftigte/n Sekretär/in am Department Product Engineering – Lehrstuhl Cyber
Physical Systems an der Montanuniversität Leoben ab ehest möglichem Termin in einem unbefristeten
Arbeitsverhältnis Verw.Gr. IIb nach Uni-KV, monatl. Mindestentgelt exkl. Szlg.: 2.023,50 € für 40 Wochenstunden (14xjährlich), tatsächliche Einstufung erfolgt lt. anrechenbarer tätigkeitsspezifischer Vorerfahrung).

Aufgabenbereich

Korrespondenz; Buchhaltungs- und Verrechnungsaufgaben; Tätigkeiten im Zusammenhang mit MU_online und PURE betreffend den Lehrstuhl; Studentenbetreuung; Parteienverkehr; Allgemeine Büro- und Verwaltungstätigkeiten; Büromaterialverwaltung, eigenverantwortliche Führung der Lehrstuhlbibliothek.

Voraussetzungen

Abgeschlossene kaufmännische Ausbildung (Handelsschule oder ähnliches).

Erwünschte Qualifikation

Ausgezeichnete Korrespondenz in deutscher und englischer Sprache; sehr gute EDV-Kenntnisse (MS Office); SAP-Kenntnisse; MUonline-Kenntnisse; Kenntnisse im Bereich der Buchhaltung und des Rechnungswesens, Homepage-Kenntnisse, Selbständiges und genaues Arbeitensowie Einsatzfreude und Organisationsgeschick.

Männliche Bewerber nur nach abgeschlossenem Präsenz-/Zivildienst.

Bewerbung und Unterlagen

Application deadline: June 30th, 2021

Online Bewerbung auf: Montanuniversität Leoben Homepage (unter dem Kürzel 2106APC)

Die Montanuniversität Leoben strebt eine Erhöhung des Frauenanteiles an und fordert deshalb qualifizierte Frauen ausdrücklich zur Bewerbung auf. Frauen werden bei gleicher Qualifikation wie der bestgeeignete Mitbewerber vorrangig aufgenommen.